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Linear Programming Based Decomposition Approach
in Evaluating Priorities from
Pairwise Comparisons and Error Analysis’

E. TRIANTAPHYLLOU?

Communicated by R. E. Kalaba

Abstract. One of the most difficult issues in many real-life decision-
making problems is how to estimate the pertinent data. An approach
which uses pairwise comparisons was proposed by Saaty and is widely
accepted as an effective way of determining these data. Suppose that
two matrices with pairwise comparisons are available. Furthermore,
suppose that there is an overlapping of the elements compared in these
two matrices. The problem examined in this paper is how to combine
the comparisons of the two matrices in order to derive the priorities of
the elements considered in both matrices. A simple approach and a
linear programming approach are formulated and analyzed in solving
this problem. Computational results suggest that the LP approach,
under certain conditions, is an effective way for dealing with this

" problem. The proposed approach is of critical importance because it
can also result in a reduction of the total required number of compari-
sons.

Key Words. Pairwise comparisons, eigenvectors, analytic hierarchy

process, linear programming, fuzzy sets, membership values, artificial
intelligence.

1. Introduction

For a long time, it has been recognized that an exact description of
many real physical situations is virtually impossible. This is due to the high
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degree of imprecision involved in real-world situations. Zadeh (Refs. 1 and
2) proposed fuzzy set theory as the means for quantifying the inherent
fuzziness that is present in ill-posed problems. Fuzziness is a type of
imprecision which may be associated with sets in which there is no sharp
transition from membership to nonmembership (Ref. 3). Examples of fuzzy
sets are classes of objects characterized by such adjectives as large, small,
serious, simple, approximate, etc. (Ref. 3). ,

A comprehensive description of the importance of fuzzy set theory
in engineering and scientific problems is best illustrated in the more than
1,800 references given in Refs. 4-12. Currently, an increasingly large
number of researchers has been faced with the problem that either their
data or their background knowledge is fuzzy. It is particularly critical to
people building expert systems and decision support systems, for the
knowledge they are dealing with is almost always riddled with vague
concepts and judgmental rules (e.g., Refs. 13—17). Some recent develop-
ments of fuzzy theory on decision-making problems are reported in Ref.
18. The most critical step in any application of fuzzy set theory is to
effectively estimate the pertinent membership values. Although this is a
fundamental problem, there is not a unique way of determining member-
ship values in a fuzzy set. This is mainly due to the way different
researchers perceive this problem.

A method proposed by Saaty (Refs. 19-21), which is based on pair-
wise comparisons, has captured the interest of many researchers (see, for
example, Refs. 22-25). According to this approach, the decision maker
needs to compare the elements of a fuzzy set by considering all possible pairs.
That is, if there are N members then he needs to perform N x (N —1)/2
pairwise comparisons. Each comparison reflects the personal judgment of
the decision maker on how strongly one member of a set belongs to that set
when it is compared with another member of the same set.

Saaty (Ref. 20) proposes the use of the scale depicted in Table 1 as the
means for quantifying these pairwise comparisons. Other researchers have
proposed alternative scales (e.g. Refs. 16 and 27). A scale is nothing but a
mapping between a set of discrete linguistic phrases, such as “A is more
important than B”, and a set of numerical intensities. In Ref. 28, two
classes of a total of 78 scales were studied in terms of two evaluative
criteria. In that study, it was found that no single scale is the best, but
different scales are more effective under different circumstances. However,
the original Saaty scale is the most widely used, and thus this is the one
used in the computational experiments described in this paper.

After the pairwise comparisons on N entities are quantified by using a
scale, they are used to form the entries of a reciprocal matrix of order N.
The (i, j) entry of this matrix reflects the pairwise comparison of the ith



JOTA: VOL. 84, NO. 1, JANUARY 1995 | 209

Table 1. Scale of relative importances, according to Saaty (Ref. 21).

Intensity of

importance Definition Explanation
1 Equal importance Two activities contribute
equally to the objective.
3 Weak importance of one Experience and judgment
over another slightly favor one
activity over another.
5 Essential or strong Experience and judgment
importance strongly favor one ’
activity over another.
7 Demonstrated An activity is strongly’
importance favored and its dominance
demonstrated in practice.
9 Absolute importance Evidence favoring one
: activity over another is
of the highest possible
order of affirmation.
2,4,6,8 Intermediate values When compromise is needed.

between the two
adjacent judgments

If activity / has one.
of the above nonzero
numbers assigned to it
when compared with
activity j, then j has
the reciprocal value
when compared with i.

Reciprocals of
above nonzero

entity when it is compared with the jth entity. Apparently, entry a; = 1 and
a; = 1/a;. Ideally, if the decision maker is perfectly consistent, then the
following relation should also be true: :

i k=1,2,3,...,N.

In real-life situations, there is no guarantee that the above matrix will
be consistent. Saaty uses a measurement of consistency, called the consis-
tency index (CI), to express the consistency of the comparisons. If the CI
coefficient is not within certain acceptable limits, then the comparisons
have to be repeated until an acceptable consistency level is reached (Ref.
29). After the above reciprocal matrix has been established, the principal

a; = ay X Ay,



210 JOTA: VOL. 84, NO. 1, JANUARY 1995

right eigenvector of this matrix is estimated in order to express the relative
priority of the N entities (Ref. 21). That is, according to Saaty (Ref. 21);
the entries of this eigenvector reflect the membership values of the members
in the set under consideration. An evaluation of the effectiveness of this
eigenvector approach can be found in Ref. 30. -

Other researchers have proposed the use of a logarithmic regression
model (e.g., Refs. 26, 27, 31, 32) instead of the eigenvector approach. In
Ref. 33, a least squares approach is proposed and compared with some
other related methods. However, the eigenvector approach is simple and
widely used in the literature. Therefore, this is the method used in' the
computational experiments described in this paper.

The main problem examined in this paper is how to estimate the
priorities (i.e., membership values) of N elements when the pairwise
comparisons of two subsets with N, and N, elements, where N, + N, > N,
are known. Solving this problem is of critical importance for a number of
reasons. When the number of elements to be processed is large, the number
of all possible comparisons is very large. For instance, for a collection of 20
elements one needs to perform 190 =20 x 19/2 comparisons. Therefore,
finding a way for reducing the total number of comparisons is of great
practical importance. One may want to partition a large collection of
elements into a number of smaller groups. The elements may be clustered
into these groups by placing very similar elements in the same group. In
this way, the decision maker will evaluate elements which are ‘more
homogeneous. This has the potential of deriving more accurate compari-
sons than when one has to compare very different elements.

Another application comes from the area of performing the union
operation on the membership values of two sets. If the pairwise compari-
sons used to derive these membership values are available, then one may
want to utilize them in order to determine the membership values of the
union of the two sets. This operation can be applicable when performing
the union operation in fuzzy data bases.

A similar problem was examined by Harker in Ref. 34. In that
approach, the decision maker starts with a minimum set of N comparisons,
where N is the number of elements. Then, an expert system:-like approach
is developed for determining what should be the next comparisons to be
made. In this way, the decision maker determines the comparisons in a
guided manner. The main difference of the problem examined in this paper
is that the pairwise comparisons are assumed to be clustered into two
groups of N; and N, elements each, where N, + N, > N. Therefore, in the
present investigation, we assume that we have two complete collections of
pairwise comparisons. The first collection has' N;(N, —1)/2 comparlsons
and the second has N,(N, — 1)/2 comparisons.
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In this paper, two methods are developed for solving the problem
of estimating the priorities from two collections of comparisons. The
first method is a simple and straightforward approach, while the second
is more sophisticated and uses a linear programming (LP) formulation.
The LP approach estimates the missing comparisons of the reciprocal
matrix by attempting to minimize the CI coefficient of the matrix defined
on all the N elements. The two methods are also evaluated in terms of a
forward error analysis. The computational results reveal that, when the
number of common pairwise comparisons is high enough (i.e., Ny + N, is
significantly greater than N), then the LP approach is the most reliable
approach.

2. Problem Description

The main problem examined in this paper is best described in terms of
an example. Suppose that there are five entities (say 4;, 4,, 43, 44, 45) for
which a decision maker wishes to find their priorities by using pairwise
comparisons. These entities may be the alternatives of a problem, and the
decision maker wishes to find their relative priorities in terms of a single
decision criterion. Furthermore, suppose that the decision maker has
available the pairwise comparisons when these five entities are grouped into
two subsets of four and three members as follows: The first subset has the
entities {4,, A,, 43, A4}, and the second subset is {4, A4, 4s}.

Let the reciprocal matrices with the pairwise comparisons for the
previous two subsets be as follows:

1.000 2.000 1.000 0.333

1. . ,
L, _ |0:500 1000 0.500 0.200 o 3833 (1’(3)3(3) (2)(5)33
1= 11.000 2.000 1.000 0333’ 2= |2 : :

2.000 0.500 1.000

3.000 5.000 3.000 1.000

In this paper, it is always assumed that the pairwise comparisons of the
same pair of entities is the same regardless of the matrix. This is the reason
why the comparison between 4, and 4, is the same (equal to 0.3333) in
both the M, and M, matrices.

It can be verified that both of the previous matrices are satisfactorily
consistent (their CI values are less than 0.10) and thus can be used to
derive the relative priorities of the two groups of elements. Saaty suggests
in Ref. 19 that an effective way for estimating the principal right eigen-
vector for this type of matrices is to first calculate the geometric means of
each row and then normalize these means. When this procedure is applied
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to the previous two matrices M; and M,, the following two vectors P, and
P, with the relative priorites are derived, respectively:

0.1855
P 0.9710 P %15633946
1= s 2= .
0.1855 0.2970
0.5318

Observe that, from the first vector, the ratio of the relative priorities of
the elements 4; and A4, is 0.3488 = 0.1855/0.5318; from the second vector,
the same ratio is 0.3028 = 0.1634/0.5396. Therefore, the question that we
seek to answer in this example is: what are the relative priorities when all
the five elements are considered together?

We can view the previous two matrices as parts of a larger matrix
which is defined on the entire five elements. When the matrices M, and M,
are combined, the following 5 x 5 matrix M is derived, where the asterisk
indicates undetermined comparisons:

71.000 2.000 1.000 0.333  =*
0.500 1.000 0.500 0.200 =
M= [1.000 2.000 1.000 0.333 0.500
3,000 5.000 3.000 1.000 2.000
* *  2.000 0.500 1.000

In other words, only the comparisons 4,/4s and A4,/As are missing.

In general, suppose that there are N entities divided into two subsets
of N, and N, elements each, where N, + N, > N. Without loss of general-
ity, suppose that the K =N, + N, — N last elements in the first subset
correspond, with the same order, to the first K elements in the second
subset (as was the case in the previous numerical example with
K=2=4+3-5).

When we consider the matrix with all possible comparlsons for the N
elements, from the above considerations it follows that the decision maker
has available the following comparisons:

a;, i,j=1,2,3,...,N,,

a i,j=N2,N2+1,N2+1,...,N.

ij»
The comparisons
i=N+1,N+2,...,N,

Jj=12,3,...,N,—1,

aij ’
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N1 Missing comparisons
Qomrereaennn o] >
1
1 | s
Reciprocals of
missing comparisons
N
1
1
1
N
Conmeneenenrnnennneces B e N
N
< ............................................................. >

Fig. 1. Partitioning of the N x (N — 1)/2 pairwise comparisons.

are undetermined (recall that a; = 1/a;). In other words, the N x N matrix
with the N x (N — 1)/2 comparisons can be viewed to be partitioned into
submatrices as depicted in Fig. 1. '

In the next section, two procedures are developed for estimating the
missing comparisons. The first procedure is a simple and straightforward
one, while the second procedure attempts an error minimization and 1is
based on an LP formulation.

3. Solution Approaches

3.1. Simple Approach. As was mentioned in the introduction section,
perfectly consistent reciprocal matrices with pairwise comparisons satisfy
the following relationship: '

a; = dg X A, ij,k=123,...., N (1)

From relationship (1) it follows that, in the perfectly consistent case, the
missing comparisons, denoted here as X;; can be determined as follows (see
also Fig. 1):

X,=aglag, =123 ,N=N,
j=Ny+ LNy +1, N, +3,..., N,
k=N-N,+1,...,N,. 2)
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In nonconsistent cases, the previous relationship (2) is not always true,
However, the unknown terms X, are expected to be as close to the
products a; X a; as possible. Therefore, it is reasonable to determine the
unknown terms X;; as the averages of all possible products. In other words,
a simple way is to calculate the terms X; as follows:

Xij=[ Z] (aik/ajk)]/(Nl+N2_N)s

k=N-Njy+1
i=1,2,3,...,N—N2,
j=N1+1,N1+2,N1+3,...,N. (3)

After these averages are calculated, the missing entries of the entire
matrix are estimated. Next, the eigenvector approach or any other perti-
nent approach can be applied on the complete matrix, and thus the final
priorities of the N entities can be estimated.

Although the above averages can be calculated in a straightforward
manner, the above approach fails to capture the requirement for the
following relationship (4):

X, ~(ay X a5) X Xy,
ii'=1,2,3,...,N—N,,
J',J"=N1+1,N1+2,N1+3,’...,N. : (4)

Note that relationship (4) follows directly from the fact that a; = 1/a;, for
any i,j=1,2,3,...,N. ' '

3.2. Linear Programming Approach. The previous approach can be
modified and transformed into a more sophisticated procedure. Consider
relationship (3). When one wishes to incorporate relationship (4), then
relationship (3) may not hold as an equality but instead will be-satisfied as
follows:

Xi'z|: Z] (aik/ajk)]/(N1+N2“N)a

k=N=Ny+1

i=1,2,3,...,N=N,,
j=N,+1,N,+2,N,+3,...,N. (5)

That is, now the left-hand side is approximately equal to the right-hand
side. If we wish relationship (5) to be an equality, then an error term,

denoted as e;, can be introduced as follows:

g
¢
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Xij=[k 2 (aik/ajk)]/(Nl+N2—N) +éy,

=N-Nj3+1
i=1,2,3,...,N—Ny,
j=N,+1,N,+2,N;+3,...,N. (6)

Similarly, relationship (4) can be transformed into an equality by introduc-
ing an error term, denoted as e{}', as follows:

X, =(ay xay) x Xy +ef,  5I7=123...,N-N,
=N+ LN +2,N+3,.. N (D)

Relationships (6) and (7) suggest that a reasonable treatment to the
problem of estimating the missing entries (and thus determining the final
priorities) is to attempt to minimize the sum of all the previous error terms.
This is in accordance with the implicit assumption that the decision maker
attempts to be as consistent in his judgments as possible. Since the errors may
be positive or negative, we would like to minimize the sum of their absolute
values. Thus, this consideration leads to the following LP formulation:

N-N, ' -N, N N-MN

T TR S D W 7 1

i=1 j=N,+1 {=1 j=N,+1 =1 j=Nj+1
Ny
s.t. Xx=[ Z (aik/ajk)]/(Nl+N2_N) + ey,
k=N—Ny+1

i=1,2,3,...,N=N;,
j=N+1,N;+2,N,+3,..., N,

X; = (a;r X a;;) % Xy + e;'vjj,
ii'=1,23...,N-N,

G =Ni+1L,N+2,N+3,.... N

the variables X; are =0,

the variables e;; and e}/ are unrestricted.

The absolute values in the preVious LP model can be eliminated by

introducing the following transformations in the body of constraints:
ey = Pij — Nij» i=1,2,3...,N=N,,
j=N,+1,N;+2,N+3,..., N,
ii'=1,2,3,...,N—N;
j,‘j’=N,+l,N,+2,N,+3,...-,N,

the variables p;;, n;, Pif, Nij are >0,

i ptf _ N
eij_Pij Nijs
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and also modifying the objective function f as follows:

N—N, N-N, N N-N, N
f=2 Z py+ml+ ¥ Y Y X [PJ+NYL
i=1 j=N;+1 i=1 j=Nj+1 i=1 j=N;+1

This is true because if say the actual term e;; has to be negative, then it can
be easily seen (from the linear dep_endences in the columns of the new
constraints) that the value of the variable p; will be equal to zero (as a
nonbasic variable), while the variable n,; will be greater than zero. In other
words,

eyl =py +ny,

e/ | = P + N
Therefore the prev1ous LP model takes the following form:
N-N, N-N, N N-N; N
min f= 3, > py+nl+ Y X Y X [PT+NT]
i=1 j=N;+1 i=1 j=N1+1 =1 j=N;+1
N :
s.t. X,-j=[ Y (axla k):l/(N1+N2“N)+Pij_”zf"
k=N—-Ny+1

i=1,2,3,...,N=N,
j=N;+1,N;+2,N,+3,...,N,
X, = (a; x a;;) x Xy + P = N7,
ii'=1,2,3,..., N—N,

i =Ny+1,N;+2,N,+3,...,N,

the variables X,

ij> Pijs Nij and P¥ NU are >0.

i

From the above considerations, it follows that the proposed LP model
uses (N — N,))(N — N,)[3 + 2(N — N,)(N — N,)] continuous variables and
(N — N)(N — N,)[1 + (N — N,(N — N,)] constraints. It can also easily be
seen that, if the input pairwise comparisons (i.e., the ones defined on the
two subgroups of N, and N, members) are perfectly consistent, then at
optimality. the value of the objective function of the previous LP problem
is equal to zero (i.e., all errors vanish). Moreover, the optimal solution of
the X,; variables is given by relationship (3). The previous concepts and
issues are further illustrated in the following numerical example.

3.3. Numerical Example. In this example, we use the same data as in
the illustrative example described in Section 2. Therefore, the pertinent LP
model will have 14 variables and 6 constraints, since N =5, N, =4, and
N, = 3. Note that
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(1/2)(a13/as3 + aia/ass) = 0.583,
(1/2)(azs/ass + azfass) = 0.325,
(a;; %X ass) =1.000,

(@), x ass) =2.000.

Therefore, the constraints of the LP formulation for this numerical exam-
ple are as follows:

X,5=0.583 + p;s — nys,
X55 =0.325 + p,os — nys,
X5 =2.000X,5s + P33 — N1,
X,5 =0.500X,5 + P33 — N33,
X,5s=1.000X,5+ P} — NIz,
X,5 = 1.000X,5 + P33 — N%.

Observe that the last two constraints are redundant, since we can directly
set

Pl=Nii=PE=NE=0.
In general, we can always set

Py =N%=0.
This observation suggests that the LP formulation, defined in the previous
subsection, can have fewer variables and constraints.

From the previous discussions, it follows that the LP formulation for

this example is

min f=pys+ M5+ Pos + Mas + P33+ NI+ P33 + N33,
s.t.  Xis—pys+ms=0.583,
Xps — Pas + nps = 0.325,
Xis —2000X25— + N2 =0,
25 — 0. 500X15——P +N25—0
Xys5, Xas, P15, P2s» Tis, Mas, P13, P33, N3, N3 =0.
An optimal solution to this LP problem is
X¥ = 0.5830, X% =0.2915, n¥ =0.0335,

and all other variables are equal to zero. The value of the objective
function at optimality is = 0.0335.
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From this optimal solution, it follows that the complete 5 x 5 matrix,
with all the pairwise comparisons, is as follows:

71.000 2.000 1.000 0.333 0.583]
0.500 1.000 0.500 0.200 0.292
M'= |1.000 2.000 1.000 0.333 0.500
3.000 5.000 3.000 1.000 2.000
| 1.715 3.431 2.000 0.500 1.000 |

When the eigenvector approach is applied on the previous pairwise com-
parisons, the following priorities are derived for the entire set of the five
elements A4,, A,, A5, A, As:

[0.1392 ]

0.0722
P'=10.1350

0.4137
| 0.2398 |

If the non-LP approach is used, then it can be easily verified that
X15 = 0.583, X25 = 0.325.

Therefore, M” and P”, the matrix with the pairwise comparisons and
vector with the priorities, respectively, are as follows:

1.000 2.000 1.000 0.333 0.583
0.500 1.000 0.500 0.200 0.325
1.000 2.000 1.000 0.333 0.500 |,
3.000 5.000 3.000 1.000 2.000

| 1.715 3.077 2.000 0.500 1.000 |

MII

[0.1478 ]
0.0783
0.1433
0.4390

| 0.1916 |

P/I

4. Computational Experiments

One challenging issue in designing computational experiments is how
to generate the pertinent data. In this study, in deriving the pertinent data,
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we follow a similar strategy as in the experiments reported in Refs. 33, 35,
36, 37, 38, 39. ‘

The following forward error analysis is based on the assumption that,
in the real world, the actual relative priorities. of the members of a
collection of entities take on continuous values. These relative priorities can
also be viewed as the degree of belonging to a fuzzy set. This continuity
assumption is believed to be reasonable, since it captures the majority of
real-world cases. As was mentioned earlier, these members may be a set of
alternatives, and the membership values are the degrees that these alterna-
tives meet a single decision criterion.

Let w,, Wy, W3, - ., Dy be the real and thus unknown membership
values of a fuzzy set with n members. If the decision maker knew the above
real values, then he would be able to have constructed a matrix with the real
pairwise comparisons. In this matrix, say matrix 4, the entries are o;; = @;/
;. This matrix is called the real continuous pairwise (RCP) matrix.

Since in the real world the w,’s are unknown, so are the entries o; of
the previous matrix. However, we can assume here that the decision maker
instead of an unknown entry o is able to determine the closest values taken
from the set {1/9,1/8,...,1,2,..., 8, 9}, if the original Saaty scale is to be
used. That is, instead of the real (and thus unknown) value o, one is able
to determine a,; such that

the difference |« — a;;| is minimum,
0y (U9 18,17, .., 1,2, 78,9},

In other words, it is assumed here that one’s judgment about the value of
the pairwise comparison of the ith element when it is compared with the
jth one, is so accurate that, in real life, it is the closest (in absolute value
terms) to the values one is supposed to choose from.

The matrix with the a,; entries, which we assume that the decision
maker is able to construct, has entries from the discrete and finite set
{1/9,1/8, ..., 1,2,...,8,9}. This second matrix is called the closest dis-
crete pairwise (CDP) matrix. More on some interesting properties of RCP
and CDP matrices can be found in Ref. 28.

For illustrative purposes, suppose that the actual relative priorities of
a set of five elements, denoted as (A, Az, 43, As, As}, are as follows:

70.1328
0.0745
Q= |0.1542
0.3888
| 0.2498 |
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Using the previous data, the corresponding RCP matrix can be found to be
as follows:

[1.000 1.783 0.861 0.342 0.5327
0.561 1.000 0.483 0.192 0.298

RCP= | 1.161 2.070 1.000 0.397 0.617
2928 5220 2.521 1.000 1.556

[ 1.881 3.354 1.620 0.643 1.000 |

This is true because say the element (1,2) is equal to 1.783 =, /w, =
0.1328/0.0745. A similar interpretation holds for the remaining entries in
this RCP matrix. Given the previous RCP matrix, it can be easily verified
that the corresponding CDP matrix is

[1.000 2.000 1.000 0.333 0.500
0.500 1.000 0.500 0.200 0.333
CDP = | 1.000 2.000 1.000 0.333 0.500 |-
3.000 5.000 3.000 1.000 2.000
[ 2.000 3.000 2.000 0,500 1.000

This is true because say the element (1, 2) is equal to 2.000, since the value
2.000 (taken from the current scale on use) is the closest value to the
corresponding entry in the RCP matrix (i.e., 1.783). A similar interpreta-
tion holds for the remaining entries in this CDP matrix. Given the previous
CDP matrix, the relative priorities derived by using the eigenvector ap-
proach are

[0.1352 ]
0.0743

P= [0.1352
0.4143

| 0.2410

Next, consider the case in which N, = 4 and N, = 3. This setting, along
with the previous CDP matrix, creates the data considered in the numerical
example discussed in Section 3.3. In that example, it was found that the LP
approach and the non-LP approach yield the following relative priorities P,
and P,, respectively:
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[0.1392 70.14787
0.0722 0.0783
p,= |01350|, P,= |0.1433
0.4137 0.4390
| 0.2398 | | 0.1916 |

From the previous two sets of relative priorities, we can observe that
the priorities derived by using the LP approach are closer to the priorities
when the CDP matrix is considered (i.e., with vector P). However, the
ranking of the five elements, when the LP and non-LP approaches are used,
is different than the ranking implied by the priorities in P.

" The computational experiments were conducted in a similar manner.
Sets with N=4,5,6, ..., 13 members were assumed. For each case, all
possible pairs of values of N, and N, were considered. For instance, for the
case with N = 6, the (N,, N,) pairs were (3, 3), (3,4), (3,5, (4,4, 4,5),
and (5, 5). In this manner, for the previous values of N, a total of 170
different combinations of N, N;, N, values were generated. These values are
depicted in the computational results presented in Tables 2a, 2b, 2¢; note
that the results are sorted in ascending order of the entries of the fifth
column. ‘

Table 2a. Computational results.

N, N, N Common Available Error rate, Error rate,
PCs (%) PCs (%) LP approach  non-LP
' approach
3 3 4 20 83.33 2 2
3 3 5 0 60 15 5
3 3 6 0 40 82 100
3 4 5 12.5 80 7 5
3 4 6 60 21 11
3 4 7 0 42.86 88 100
3 5 6 8.33 80 8 10
3 5 7 0 61.9 27 21
3 5 8 0 46.43 94 100
3 6 7 5.88 80.95 5 8
3 6 8 0 64.29 38 27
3 6 -9 0 50 92 100
3 -7 8 435 82.14 21 19
3 7 9 0 - 66.67 40 25
3 7 10 0 53.33 98 100
3 8 9 3.33 83.33 15 16
3 8 10 0 68.89 48 4]
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Table 2a. (continued).

N, N, N Common Available Error rate, Error rate,
PCs (%) PCs (%) °  LP approach non-LP
. approach
3 8 11 0 56.36 75 45
3 9 10 2.63 84.44 23 18
3 9 11 0 70.91 57 32
3 9 12 0 - 59.09 99 100
3. 10 11 2.13 85.45 34 27
3 10 12 0 72.73 53 _ 42
3 10 13 0 61.54 99 100
3 11 12 1.75 ' 86.36 33 30
3 11 13 0 ' 74.36 74 48
3 12 13 1.47 87.18 33 35
4 4 5 33.33 90 0 0
4 4 6 9.09 73.33 12 , 9
4 4 7 0 57.14 21 9
4 4 8 0 42.86 93 100
4 5 6 23.08 - 86.67 0 2
4 5 7 6.67 71.43 14 ) 15
4 5 8 0 57.14 33 18
4 5 9 0 44.44 94 100
4 6 7 16.67 85.71 "3 10
4 6 8 5 71.43 28 18
4 6 9 0 58.33 47 33
-4 6 10 0 ' 46.67 : 100 100
4 7 8 12.5 85.71 7 5
4 7 9 3.85 © 7222 32 21
4 7 10 0 60 58 40
4 7 11 0 49.09 98 100
4 8 9 9.68 86.11 13 16
4 8 10 3.03 73.33 23 25
4 8 il 0 61.82 72 42
4 8 12 0 51.52 100 100
4 9 10 7.69 86.67 5 13
4 9 11 2.44 74.55 47 35
4 9 12 0 63.64 76 49

For each such case, 100 random problems were generated and tested
to see if the ranking derived by the non-LP and the LP approaches were
identical with the ranking derived when the CDP matrix is processed with
the eigenvalue method. Note that sometimes the LP formulation with
N > 13 required excessive CPU time (when 100 random test problems had
to be solved), and thus values of N > 13 were dropped from further
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Table 2b. Computational results.

Ny N, N Common Available Error rate, Error rate,
"PCs (%) PCs (%) =  LP approach non-LP
approach
4 9 13 0 53.85 100 100
4 10 11 6.25 87.27 18 23
4 10 12 2 75.76 51 » 42
4 10 13 0 65.38 88 61
4 11 12 5.17 87.88 24 ' 26
4 11 13 1.67 76.92 55 44
4 12 13 435 88.46 11 19
5 5 6 42.86 93.33 0 1
5 5 7 17.65 80.95 9 11
5 5 8 5.26 67.86 24 16
5 5 9 0 55.56 56 » 28
S 5 10 0 44.44 98 100
5 6 7 31.58 90.48 4 2
5 6 8 13.64 78.57 12 18
5 6 9 4.17 66.67 38 28
5 6 10 0 55.56 59 35
5 6 11 0 4545 100 100
5 7 8 24 89.29 4 I 4
5 7 9 10.71 77.78 18 16
5 7 10 3.33 - 66.67 35 32
5 7 11 0 56.36 98 . 100
5 7 12 0 . 46.97 89 79
5 8 9 18.75 88.89 6 8
5 8 10 8.57 77.78 26 36
5 8 11 2.7 67.27 53 45
5 8 12 0 57.58 84 62
5 8 13 0 48.72 90 75
5 9. 10 15 88.89 1 14
5 9 11 6.98 78.18 24 29
5 9 12 222 68.18 57 45
5 9 13 0 58.97 95 66
5 10 11 12.24 89.09 1 24
5 10 12 5.77 78.79 43 27
5 10 13 1.85 69.23 55 49
5 11 12 10.17 89.39 13 18
5 11 13 4.84 79.49 43 50
5 12 13 8.57 89.74 18 21
6 6 7 50 95.24 0 0
6 6 8 25 85.71 3 » 11
6 6 9 11.11 75 19 30
6 6 10 3.45 64.44 44 34
6 6 11 0 - 54.55 79 51
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Table 2b. (continued).
N, N, N Common Available Error rate, Error rate,
PCs (%) PCs (%) - LP approach non-LP
approach
6 6 12 0 45.45 99 100
6 7 8 38.46 92.86 2 2
6 7 9 20 83.33 10 15
6 7 10 9.09 73.33 39 31
6 7 11 2.86 63.64 57 42
6 7 12 0 54.55 83 52
6 7 13 0 46.15 98 100
6 8 9 30.3 91.67 1 6
6 8 10 16.22 82.22 20 21
6 8 11 7.5 72.73 32 38
6 8 12 2.38 63.64 65 50
6 8 13 0 55.13 97 66
6 9 10 24.39 91.11 5 10
6 9 11 13.33 81.82 20 30
6 9 12 6.25 72.73 45 43
6 9 13 2 64.1 76 51
6 10 11 20 90.91 10 13
6 10 12 11.11 81.82 20 20
Table 2c. Computational results.
N, N, N Common Available Error rate, Error rate,
PCs (%) PCs (%) LP approach non-LP
approach
6 10 13 5.26 73.08 47 54
6 11 12 16.67 90.91 6 8
6 11 13 9.38 82.05 29 35
6 12 13 14.08 91.03 14 24
7 7 8 55.56 96.43 0 1
7 7 9 31.25 88.89 6 8
7 7 10 16.67 80 16 22
7 7 11 7.69 70.91 45 36
7 7 12 2.44 62.12 68 56
7 7 13 0 53.85 93 66
7 8 9 44.12 94.44 2 3
7 8 10 25.64 86.67 14 20
7 8 11 13.95 78.18 26 23
7 8 12 6.52 69.7 46 40
7 8 13 2.08 61.54 77 55
7 9 10 35.71 93.33 3 7
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Table 2c. (continued).

N, N, N Common Available Error rate, Error rate,
PCs (%) PCs (%) - LP approach non-LP
approach

7 9 11 21.28 85.45 14 20
7 9 12 11.76 71.27 30 32
7 9 13 5.56 69.23 66 52
7 10. 11 29.41 92.73 8 12
7 10 12 17.86 84.85 16 23
7 10 13 10 76.92 41 48
7 11 12 24.59 92.42 7 19
7 11 13 15.15 84.62 20 24
7 12 13 20.83 92.31 9 9
8 8 9 60 97.22 0 0
8 8 10 36.59 91.11 4 6
8 8 11 21.74 83.64 13 22
8 8 12 12 75.76 38 40
8. 8 13 5.66 67.95 51 47
8 9 10 48.84 95.56 4 4
8 9 11 30.61 89.09 12 14
8 9 12 18.52 81.82 19 25
8 9 13 10.34 74.36 46 38
8 10 11 40.38 94.55 3 7
8 10 12 25.86. 87.88 14 25
8 10 13 15.87 80.77 23 31
8 11 12 33.87 93.94 7 10
8 11 13 22.06 87.18 10 26
8 12 13 28.77 93.59 8 10
9 9 10 63.64 97.78 1 1
9 9 1n 41.18 92.73 7 13
9 9 12 26.32 86.36 17 21
9 9 13 16.13 79.49 24 38
9 10 11 52.83 96.36 1 8
9 10 12 35 90.91 14 23
9 10 13 22.73 84.62 17 26
9 11 12 44.44 95.45 4 15
9 11 13 30 89.74 13 22
9 12 13 37.84 94.87 3 6
10 10 11 66.67 98.18 0 0
10 10 12 45.16 93.94 4 10
10 10 13 30.43 88.46 23 26
10 11 12 56.25 96.97 4 3
10 11 13 38.89 92.31 8 16
10 12 13 48 96.15 3 9
11 11 12 69.23 98.48 1 0
11 11 13 48.65 94.87 6 12
11 12 13 59.21 97.44 3 4
12 12 13 71.43 98.72 1 0
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consideration. For each such random problem, actual relative weights were
assumed as in the numerical example. However, because the Saaty matrices
use values from the set {1/9,1/8,...,1,2,...,8,9}, only the random
problems which are associated with RCP matrices with entries within the
continuous interval [1/9, 9/1] were considered. These computational results
are described in more detail in the next section.

5. Computational Results

The computational results are presented in Table 2, which has three
parts (Tables 2a, 2b, 2¢). The first three columns present the values of
N, N,, N,, respectively. The fourth column gives the percent of common
pairwise comparisons (PCs) of the number of available comparisons.
Furthermore, the fifth column presents the percent of available pairwise
comparisons of the total number of comparisons. Finally, the last two
columns present the number of contradictions (i.e., when the derived

CR\ @Y 0wy

Fig. 2. Error rates under the LP approach for sets of different size versus the available
comparisons. »
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ranking is different than the ranking derived by the original CDP matrix)
under the LP and the non-LP approaches.

For instance, consider the seventh row in Table 2a. This row has the
numbers [3, 5, 6, 8.33, 80, 8, 10]. In this case, the size of the original set is
6. The first subset includes the first three elements, and the second group
includes the last five elements. From the values of N, N,, N,, we can verify
that the number of available comparisons is 12, the number of common
comparisons is 1, and the number of all possible comparisons is 15.
Therefore, 8.33% of the available comparisons are common, and the
available comparisons represent 80.00% of all possible comparisons. When
the LP approach was applied on 100 randomly generated test problems
with the previous characteristics, in eight cases the derived ranking was
different from the one implied by the corresponding CDP matrices. For the
case of using the non-LP approach, however, the same rate was 10%.

These results are also plotted in Figs. 2-7. Figures 2 and 3 depict the
error rates, for sets of different size, when the LP and non-LP approaches
are used, respectively. In these figures, the error rates are presented as a

SR\ BB WY

Fig. 3.  Error rates under the non-LP approach for sets of different size versus the available
comparisons. ' ’
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Fig. 4. Error rates under the LP approach for sets of different size versus the common
comparisons.

function of the size of the set (i.e., the N value) and the percent of available
comparisons (i.c., the fifth column in Table 2). Figures 4 and 5 also depict
the error rates for different sets, but now the percent of common compari-
sons (i.e., the fourth column in Table 2) are used instead: Figures 6 and 7
present the error rates of the two approaches when the results are in-terms
of the averages of all set sizes. This is the reason why there are only two
curves in Figs. 6 and 7; one represents the performance. of the LP
approach, while the other represents the performance of the non-LP
approach. Figure 6 refers to available comparisons, while Fig. 7 refers to
common comparisons.

From the prevxous results, a number of conclusions can be derlved
First of all, as is natural, the percent of common comparisons increases
with the number of available comparisons. From Figs. 2 to 5, we can
observe that, for larger set sizes, the error rates are lower. Furthermore, the
LP approach yields, on the average, smaller error rates. The effectiveness of
the two approaches becomes more transparent in Figs. 6 and 7. We can
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Fig. 5. Error rates under the non-LP approach for sets of different size versus the common
comparisons.

observe that, when the percentages of available or common comparisons
are low, then either method is unreliable, since it results in too high error
rate. For instance, if the percent of available comparisons is less than 50%,
then both methods yield error rates higher than 50% (see also Fig. 6).

However, for error rates in lower levels, say less than 30%, the LP
approach is always the best method. This is the case where the percent of
available comparisons is 80% or higher. This is also the case where we
consider the percent of common comparisons. Figure 7 suggests that, when
the percent of common comparisons is 10% or higher, then -the two
methods have error rates less than 20%. Moreover, the LP approach
consistently outperforms the non-LP. approach. As is anticipated, the
performance of the methods converges to being perfect (i.e., the error rates
vanish) when the percentages of available or common comparisons ap-
proach the upper limit of 100%. . ;

‘The fact that, in these results, the LP approach performs. better than
the non-LP ‘approach as the number of common comparisons increases 1s
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Fig. 6. Error rates for the two approaches versus the available comparisons.

in direct agreement with the way the two approaches were designed. The
main difference of the two approaches is that the LP approach utilizes the
presence of common comparisons in minimizing the sum of the absolute
errors; in the non-LP approach, the issue of the common comparisons is
totally ignored. However, it is interesting to observe that, when the percent
of common comparisons is very high (more than 60%), then the non-LP
approach is as good as the LP approach. Moreover, the non-LP approach
is extremely simple [we just need to calculate the means in relations (3)]
compared to the more CPU time consuming LP formulation.

6. Concluding Remarks

This paper examined the problem of decomposing a large set of
pairwise comparisons in two subsets. These two subsets may have some
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Fig. 7. Error rates for the two approaches versus the common comparisons.

common comparisons. These subsets may be defined by groups of elements
which are more similar within these two subsets than when they are
considered all together. Two approaches were developed and tested. The
first is a simple approach, while the second one is based on an LP
formulation. Both approaches first attempt to estimate the missing com-
parisons and then to derive the relative priorities and rankings by using all
the pairwise comparisons.

The LP formulation attempts to minimize the sum of the absolute
errors in the missing comparisons. The simulation results suggest that the
LP approach is consistently better than the non-LP approach. Further-
more, the effectiveness of this approach improves with the amount of the
common comparisons. It should also be stated here that an interesting issue
for future research in this area might be how to decompose a large set of
elements to be compared into more than two subsets.
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Finally, it is important to note that the computational results in this

paper are contingent on the way the random data were generated. It is
possible that if the random data are generated from other distributions, the
results will be different. However, it is anticipated that the LP approach
will perform better than the non-LP approach, and moreover its perfor-
mance to improve with the amount of the input data. Since deriving
relative priorities from pairwise comparisons is a popular approach in
multicriteria decision making, finding ways of reducing the amount of
required data is of critical importance.
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