Computers Ops Res. Vol. 21, No. 2. pp. 185-197, 1994 0305-0548/94 $6.00+0.00
Printed in Great Britain. All rights reserved Copyright © 1993 Pergamon Press Ltd

GENERATING LOGICAL EXPRESSIONS FROM POSITIVE
AND NEGATIVE EXAMPLES VIA A BRANCH-AND-BOUND
APPROACH

EVANGELOs TRIANTAPHYLLOU'1$, ALLEN L. SOYSTER2§ and
SOUNDAR R. T. KUMARAZ

'Department of Industrial Engineering, 218 Durland Hall, Kansas State University, Manhattan,
KS 66506-5101 and ?Department of Industrial and Management Systems Engineering,
207 Hammond Building, Penn State University, University Park, PA 16802, U.S.A.

(Received July 1992; accepted December 1992)

Scope and Purpose—Learning rules from examples is a very important activity in designing intelligent
systems which can improve their behavior over time. In this paper rules are represented by logical clauses
in conjunctive normal form while examples by binary vectors. Given a set of such logical clauses then, a
positive example is accepted by all the clauses in the system, while a negative example is rejected by at
least one of the clauses. The problem examined in this paper is how to infer a small set of logical clauses
given a set of positive examples and a set of negative examples. The proposed approach is based on an
efficient branch-and-bound algorithm which attempts to derive a small number of clauses from collections
of positive and negative examples.

Abstract—Consider a logical system with N entities which assume binary values of either TRUE (1) or
FALSE (0). There are 2V vectors, each with N components, of this type. Even when a modest value of
N, e.g. N=50, the number of such vectors exceeds one quadrillion. We assume that an ‘expert’ exists
which can ascertain whether a particular vector (observation) such as (1, 1, 0,0, 1,0, .. ., 1) is allowable
or not. This expert can be a human expert or an unknown system whose rules have to be inferred. Further,
we assume that a sampling of m observations has resulted in M, instances which the expert has classified
as allowable and M,=m— M, instances which are not allowable. We call these instances positive and
negative examples, respectively. The objective of this research is to infer a set of logical rules for the entire
system based upon the m, and possibly, additional sample observations.

The proposed algorithm in this paper is based on an highly efficient branch-and-bound formulation.
This algorithm configures a sequence of logical clauses in conjunctive normal form (CNF), that when are
taken together, accept all the positive examples and reject all the negative examples. Some computational
results indicate that the proposed approach can process problems that involve hundreds of positive and
negative examples in a few CPU seconds and with small memory requirements.

tE. Triantaphyllou received a Dual Ph.D. in Industrial Engineering and Operations Research from the Pennsylvania State
University in 1990. He also has an M.S. degree in Computer Science from the same university. Currently, he is an
Assistant Professor at Kansas State University. His research interests include interfaces of artificial intelligence and
operations research, mathematical programming, decision making, fuzzy sets, and machine learning. He is the author
of more than 15 papers in the above areas which appeared in Decision Support Systems, Fuzzy Sets and Systems,
Optimization Theory and Applications, ORSA Journal on Computing, OR Letters, Global Optimization, IEEE
Transactions on Fuzzy Systems among others. He also served as co-editor for a book on fuzzy decision making and
as guest editor for the Journal of Global Optimization.

}Author for correspondence.

§A. L. Soyster is a Professor and Head of Industrial & Management Systems Engineering at The Pennsylvania State
University. He received his Ph.D. from Carnegie Mellon University, his M.S. from Cornell University and his B.S.
from the Pennsylvania State University. His research expertise is in optimization of energy distribution systems and
planning methods, modeling economic energy processes, and transportation; as well as artificial intelligence and expert
systems application to Industrial Engineering. He is a member of IIE, ORSA, and TIMS. Dr Soyster is also
Editor-in-Chief of /IE TRANSACTIONS, an international journal sponsored by IIE. He was awarded with the IIE
Fellow Award in May 1988.

€S. Kumara obtained his Ph.D. in Industrial Engineering from Purdue University during 1985. He is currently an Associate
Professor of Industrial Engineering at Penn State University. During 1990, he worked with the Research Center for
Advanced Science and Technology (RCAST), University of Tokyo, Japan, as a CSK Chair Visiting Associate Professor.
His primary research interests are in product design, process monitoring and process diagnostics. He has developed
Al and neural networks based methods in these three domains. He has co-authored about 60 publications; and
co-edited three books on AI and neural networks in manufacturing.

185

186 EVANGELOS TRIANTAPHYLLOU et al.

1. INTRODUCTION

This paper deals with the problem of inferring logical expressions given a set of positive (or allowable
states) and a set of negative examples (or non-allowable states). This is a typical representative
problem of learning from examples. Complexity issues of this type of learning have been studied by
Valiant [1, 2], and Pitt and Valiant {3]. A number of algorithms which implement learning from
examples were presented by Michalski [4], Dietterich and Michalski [5], Helft [6], Quinlan [7, 8],
and Utgoff [9].

Recent research has been focused on the logical inference or satisfiability problem. In the logical
inference problem, one is given a set of logical clauses and the problem is to determine whether
certain assertions are true or false. This problem has been examined from an integer programming
point of view with considerable success (see, for example, [10]-[15]). The conjunctive normal form
(CNF) is used in all these treatments. In the logical inference problem the CNF clauses (rules) are
given and a set of assertions are examined to see whether or not they are implied by these clauses.
In contrast, in this paper we are given a set of positive examples and a set of negative examples
and the main issue is to infer an appropriate set of clauses (rules). By an appropriate set of clauses
we mean a set of clauses that can infer all the positive examples while they do not infer any of the
negative examples.

The motivation for this research is best illustrated via an example. Consider a rule-based system
(RBS) that involves the following four atoms (or premises): A;, 4,, A3, A4. In any situation each
atom can either be TRUE (designated by 1) or FALSE (designated by 0). For instance, in state
(0,1,1,0) atoms A4,, A;, A, A,, are true or, equivalently, A,, 4,, 4,, A, are false. There are
2*=16 possible states in the system. If an RBS is specified, then each of these 16 states could be
categorized as either allowable or non-allowable. A state is allowable if and only if it is satisfied
by each clause in the system. For example, the state (0, 1, 0, 1) satisfies the clause: (4, v 4, v A3)
(where v stands for the logical OR and A stands for the logical AND). Similarly, a state is
non-allowable if it violates at least one of the clauses in the RBS. Consider the following RBS:

(A, vA,vAsv A,
(A1 v A4,)
(A, v A, v Aj).

Then, the 16 states are characterized as (1, 1, 1, 1) allowable, (1,0, 0, 0) non-allowable, (1, t, 0, 0)
non-allowable, etc.

In this paper it is assumed that any Boolean expression (and consequently any rule) is expressed
in the CNF form. An example of a statement in CNF is:

(A; VA3V AYA (A v A7) A (AL V Ag),

which is simply a conjunction of disjunctions. The above statement is true if and only if the three
disjunctions are true.
More formally, a Boolean expression is in CNF if it is in the form (where a;is either 4;0r 4;):
N /M
AV)
i=1 \j=1

Similarly, a Boolean expression is in disjunctive normal form (DNF) if it is in the form:

N M,
V(Ra)
i=1 \j=1

In other words, a CNF expression is a conjunction of disjunctions, while a DNF expression is a
disjunction of conjunctions.

Any expression in CNF form is true if and only if all the associated disjunctions are true. Since
the rule base of any expert system contains a finite selection of rules and any rule can be reduced
to clausal form [16], it follows that any rule base can be expressed as a finite set of disjunctions
(clauses in CNF form). Therefore, we can assume that any RBS is in CNF form.

The general problem we analyze in this paper is the construction of a set of Boolean expressions
(clauses in CNF form) which correctly classify a set of sampled states. We assume that each of

Generating logical expressions 187

these states can be correctly classified (by an oracle or ‘expert’) as either allowable (also called a
positive example) or non-allowable (also called a negative example). The expert somehow knows
the correct identification of any state. However, the underlying RBS is not explicitly known. We
believe that this is quite a common situation. The expert somehow can identify (probably through
experience) the nature of any particular state but lacks an ability to characterize the decision-making
rules. We seek methods to approximate the RBS in situations in which the nature of finite numbers
of states is known.

We will consider this problem in a practical and applied context. Instead of four atoms, consider
the case in which we may have 50 atoms. Here the number of all the possible states is:
250=1,125,899,906,842,624. It would be impractical to generate all possible states. However, one
may be able to generate and categorize 500 or 1000 sampled states. From this partial set of states,
we determine a set of CNF clauses which correctly classify all the sampled states and, hopefully,
a large proportion of the remaining states.

2. GENERATING CLAUSES FROM NEGATIVE EXAMPLES

Consider any state (example) a defined on N atoms. For instance, if N =5, then consider a state
such as (1,0, 1, 1, 0). Observe that the CNF clause

(A, vA,vAsv A, v As),

is satisfied by all states (d,, d,, d5, d,, ds), where d; € {0, 1}, except (1,0, 1, 1,0). A clause C, can
always be constructed which rejects any single state o while it accepts all other possible states. To
formalize this let ATOMS(«) be the set of indices of the atoms which are true in the state a. For
instance, ATOMS((1, 0, 1, 1,0))={1, 2, 3, 4, 5}. If the clause C, is defined as:

Co=ByvByvBsv...v By,

where

8 _{Z,- iffie ATOMS (a)

] } foreach i=1,2,3,..., N,
A;, otherwise

then the clause C, will reject only the state (example) « and accept any other state.

Suppose that m states are somehow generated. Define E* as the set of M, states which are
classified as allowable (positive examples) and E~ as the set of states which are not allowable
(negative examples). For each of the M,=m— M, states in E~, generate the unique clause as
defined above. Each of these clauses rejects one and only one state and, hence, accepts all the states
in E*. This set of M, clauses precisely satisfies the objective of this paper. However, this approach
is impractical for large selections of negative examples, since it results in large numbers of clauses.
Therefore, it is important to have an approach that constructs a rather small (relative to the number
M,) number of clauses. The method described in the following section is such an approach.

3. THE ONE CLAUSE AT A TIME APPROACH

The proposed one clause at a time (OCAT) approach, which is a greedy one, uses as input data
the two collections of positive and negative examples. It determines a set of CNF clauses that,
when taken together, reject all the negative examples and each of them accepts all the positive
examples. The OCAT approach is sequential. In the first iteration it determines a clause in CNF
form that accepts all the positive examples in the E* set while it rejects as many negative examples
in the current E~ set as possible. In the second iteration it performs the same task using the original
E* set but the current E~ set has only those negative examples (non-allowable states) that have
not been rejected by any clause so far. The iterations continue until a set of clauses is constructed
which reject all the negative examples. Figure 1 summarizes the iterative nature of OCAT.

The core of the OCAT approach is Step 2 in Fig. 1. In Section 5 a branch-and-bound based
algorithm is presented that solves the problem posed in Step 2. The OCAT approach returns the
set of desired clauses as the set C. The following theorem states a critical property of the OCAT
approach.

188 EVANGELOS TRIANTAPHYLLOU et al.
i=0,C=¢9¢
DO WHILE (E~ # @)
Step 1: =i+ 1
Step 2: Find a clause ¢, which accepts all members of E* while it rejects as many

members of E~ as possible

Step 3: Let E-(c,) be the set of members of E~ that are rejected by c;
Step 4: LletC«< C U ¢
Step 5: Let E- « E~ - E™(c)

REPEAT

Fig. 1. The OCAT approach.

Theorem 1. The OCAT approach terminates within M, iterations.

Proof. From Section 2 it is always possible to construct a clause C, that rejects only one negative
example while it accepts any other possible example. At worse, in Step 2 OCAT could propose a
clause that rejects only one negative example. Therefore, it follows that the maximum number of
iterations of the OCAT approach is M,. EOP (end of proof).

4. CLAUSE INFERENCE AS A SATISFIABILITY PROBLEM

In [17] it is shown that given two collections of positive and negative examples then a DNF
system can be inferred to satisfy the requirements of these examples. This is achieved by formulating
a satisfiability (SAT) problem and then using the interior point method of Karmakar [18] as a
solution strategy. This approach requires the specification of the number of conjunctions (K) in the
DNF system. The SAT problem uses the following Boolean variables [17]:

B {0 if A, is in the jth conjunction
{1 if A;is not in the jth conjunction

, {0 if 4;is in the jth conjunction

S, = _
* |1 if A;is notin the jth conjunction

o = {S}i if A;=1inthe positiveexamplex e E*
’ s; ifA;=0in the positiveexamplex € E +

. { 1 ifthe positive example a is accepted by the jth conjunction
Z,=
0, otherwise.

Then, the clauses of this SAT problem are as follows:

51V Sin i=1,...,nj=1,.. K (1)
<\/§}i>\/<\[§ﬁ>’ =1L .. K, r=1,..., M, (2)
ieP, ieP,
K
\ 2, a=1,..., M, 3)
ji=1
ot \/ 2, i=1, ..., mj=1,.. K, a=1,..., M, @)

where P, is the set of indices of A for which 4;=1 in the negative example r € E~. Similarly, P, is
the set of indices of A for which 4;=0 in the negative example re E~.

Clauses of type (1) ensure that both 4; and A, will never appear in any conjunction. Clauses of
type (2) ensure that each negative example is rejected by all conjunctions. Clauses of type (3) ensure

Generating logical expressions 189

that each positive example is accepted by at least one conjunction. Finally, clauses of type (4)
ensure that zi=1 if and only if the positive example « is accepted by the jth disjunction. In general,
this SAT problem has K(n(M, + 1)+ M,)+ M, clauses, and K(2n(1+M,)+nM,+M,) Boolean
variables. A detailed example on this formulation can be found in [17].

Besides the fact that OCAT infers CNF systems, while the SAT approach infers DNF systems,
the two approaches have another major difference. The OCAT approach attempts to minimize the
number of disjunctions in the proposed CNF system. However, the SAT approach pre-assumes a
given number, say K, of conjunctions in the DNF system to be inferred and solves a SAT problem.
If this SAT problem is infeasible, then the conclusion is that there is no DNF system which has K
or less conjunctions and satisfies the requirements imposed by the examples. It should be emphasized
here that it is not very critical whether an inference algorithm determines a CNF or DNF system
(i.e. CNF or DNF Boolean function). As shown in [19], either a CNF or DNF system can be
derived by using either algorithm.

5. THE BRANCH-AND-BOUND APPROACH OF THE OCAT PROBLEM

The branch-and-bound (B&B) approach is best described with an illustrative example. Suppose
that the following are the two sets (it is assumed that N =4, i.e. the system involves four atoms)
E* and E~ with the positive and negative examples of cardinality M, and M,, respectively.

1010

0100 0001

1100 111
Et = E =

0011 0000

1001 1000

1 1 1 ol

We number the positive examples as (1, 2, 3, 4) and the negative examples as (1, 2, 3, 4, 5, 6). For
instance, the set of the negative examples {1, 3} means the set of the first and the third negative
examples. The B&B approach will determine a single clause that accepts all the positive examples
in the E™ set, while rejecting as many negative examples from the current E~ set as possible. Before
proceeding with a description of the B&B approach, it is instructive to compare it with a complete
enumeration methodology.

Consider the first positive example (0, 1,0, 0). Observe that in order to accept this positive
example at least one of the four atoms 4, 4,, A5, A, must be specified as follows: (4, =FALSE,
ie. A, =TRUE), (4,=TRUE), (4; =FALSE, i.e. 4;=TRUE), and (4,=FALSE, i.e. 4,=TRUE).
Hence, any valid CNF clause must include 4, or 4,, or 4, or A,. Similarly, the second positive
example (1, 1,0, 0) means that any valid CNF clause must include A4,, or 4,, or A5 or 4,. In
this manner, all valid CNF clauses must include at least one atom as specified from each of the
following sets: {A,, A,, A3, A,}, {A1, Az, A3, A4}, {4}, A,, A3, Ay}, and {A,, 4,, 45, A,).

This is a special case of the set covering problem which we denote as the minimum cardinality
problem (or MCP). Let |s| denote the cardinality of a set s. For the clause inference problem, the
corresponding MCP problem takes the following form:

subject to f3; € B; fori=1,2,3,...,M,,

minimize

where the B; (i=1, 2, 3, ..., M,) are finite sets, each of which contains exactly N elements, and
each element is a subset of {1, 2, 3, ..., M,}.

The MCP formulation for the current clause inference problem is developed as follows. Define
as NEG(4,) the set of the negative examples which are accepted by a clause when the atom A4, is
included in that clause. For the example in this section the NEG(A,) sets are presented in Table
1. In the light of the definition of the sets NEG(A4,) and the sets ATOMS(a) (as defined in Section

190 EVANGELOS TRIANTAPHYLLOU et al.

Table 1. The NEG(A,) sets for the illustrative example

Atom Set of negative examples Atom Set of negative examples
A, NEG(A4,)={1, 3, S, 6} 4, NEG(4,)={2, 4}

4, NEG(4,)={3, 6} i NEG(4,)=1{1, 2,4, 5}
4, NEG(4;)={1, 3, 6} i, NEG(4,)={2, 4, 5}

Ay NEG(4,)=1{2, 3} Ay NEG(4,)={1, 4,5, 6}

2), the sets B, in problem MCP are defined as follows:
B;={NEG(4,), for each k e ATOMS(«,)},
where o; is the ith positive example in E*.

Therefore, the previous minimization problem takes the form:
M,

U,

i=1

subject to f; € B; fori=1,2,3,...,M,,

minimize

@

where
B;={NEG(A,), for each ke ATOMS (%)} and «; is the ith positive example in E*.
Using the data presented in Table 1, the formulation (I), takes the following form for the case of

the illustrative example of this section.

minimize

U]

subject to
Be B, ={{2,4},{3,6},{2,4,5},{1,4,5,6}}
p.eB,={{1,3,5,6},{3,6},{2,4,5},{1,4,5,6}}

By By={{2,4},{1,2,4,5},{1,3,6},{2,3}}
Bs e By={{1,3,5,6},{1,2,4,5},{2,4,5},{2,3}}.

An exhaustive enumeration approach to solve this MCP problem is to construct a tree that has
nodes arranged in 4 (= M) levels. In the description of the search that follows, we call these levels
stages. These levels correspond to the four positive examples enumerated as #1, #2, #3, and
#4, in E*. Each interior node (i.e. nodes with descendents), say at level h (where 1<h<4), is
connected to N nodes in the next higher level via N arcs. These N arcs represent the atoms that
are true at the hth positive example (i.e. the members of the set ATOMS(«,) and «, is the hth
positive example), as described in Section 2. The nodes (or search states) in this graph represent
sets of negative examples, in our illustrative example these are subsets of the set {1, 2, 3, 4, 5, 6}.

For instance, the state {2, 3, 5} refers to the second, third, and fifth negative examples in the
set E7. The set of negative examples that corresponds to a node (state) is the set of all the negative
examples accepted by the atoms that correspond to the arcs that connect that node with the root
node. That is, if one is at node (state) Y, and one follows the arc that corresponds to the atom 4,,
then the resulting state, say Y,, is:

Y, = Y UNEG(A,).

If this strategy is followed, then the current illustrative example would create 4 x 4 x 4 x 4=256
terminal nodes and, in the general case, N' terminal nodes (where: M, is [E*]). Then, the clause
which accepts all the positive examples and rejects as many negative examples as possible is found
by simply selecting the terminal node that corresponds to a state with the minimum cardinality.
This is true because that state accepts the minimum number (or equivalently, rejects the maximum
number) of negative examples.

Generating logical expressions 191

Apparently, an exhaustive enumeration strategy is impractical. This is true because an exhaustive
enumeration will require one to construct a search tree with N*' different terminal nodes (final
states). However, our proposed B&B approach which is based on the previous tree, is very fast
because it is capable of pruning this tree very efficiently. Each node of the tree is examined in terms
of two tests. If any of these two tests succeeds, then that node is fathomed and it is not expanded
further.

Consider the two nodes which correspond to the two states {2, 4, 5} and {1, 2, 4, 5, 6} in the
second stage of the search tree (see also Fig. 2). Clearly, the states that correspond to the leaves
(terminal nodes) that have the state {1, 2, 4, 5, 6} as an ancestor are going to have at least as
many members (i.e. negative examples) as the states of the leaves (terminal nodes) that have as
ancestor the state {2, 4, 5}. This is true because subsequent states are derived by performing union
operations on these two states with the same sets. Therefore, if at any stage of building the search

Ay_e {1,2,3,6)

° (1,3,6}/“2-:0 {1,2,3,4,5,6)

Ayag (1,2,3,4,5,6)

A

{2,3,6} 1+e (1,2,3,5,6}

e 3.6y T \
/ 1*e (2,3,4,6}
A

Ag™e (2,3,6) « Optimal
ptim

® (3,6}

3-»0 {2,3,4,5,6)

\ 2 e {1,2,3,4,5,6}

B4 e (1,3,4,5,6) N
3 ‘o (2,3,4,5,6}

A

A2 Ve {1,2,3,4,5,6)

® {(1,2,3,4,5,6) A ® {(1,2,3,4,5,6})

® {1,2,3,4,5,6})

A

® (2,3,4,5) 4,0 {2,3,4,5}

By e (2,3,4,6}
® (2,4,5 77— Prse (1,2,4,5)

A

=~ ® {2,4) ——=3—»e@ {2,4,5) \

A \ T T~z A

28 {1,2,4,5} 3 ™e {2,4,5) t-Optlimal
- Solution
A Ng (1,2,4,5,6)
¢ {} —P3 ¢ (2,4,5;

A ® {(1,3,4,5,6)

1

54 ® (1,4,5,6}

2

2 7e {1,3,4,5,6)

A ® {1,3,4,5,6)

Y 3
A3 Yo {1,2,4,5,6)
A, »® {1,2,3,4,5,6)

o~

® {(1,4,5,6)>~—~——_2

\1». {1,2,4,5,6)

Ay %e (1,2,4,5,6)

Fig. 2. The B&B search.

A,

/

192 EVANGELOS TRIANTAPHYLLOU et al.

tree there is a state that has another state (in the current stage) as a subset then, that state (node)
can be fathomed without eliminating any optimal solutions. This characterization of the states is
formalized by the following definition, which is derived from the above discussion.

Definition 1. A state Sy is a dominated state if there is another state S; in the same stage which is
a proper subset of Sy, i.e., S; = S,. Otherwise, the state S, is an undominated state.

The notion of dominated states leads to an important simplification of the (MCP) problem.
Define (MCP’) as the problem derived from (MCP) when all dominated states are eliminated.
Then, the previous definition and discussion about dominated and undominated states are
summarized in the following theorem:

Theorem 2. An optimal solution to (MCP’) is also optimal to (MCP).

Corollary 1. The optimal solution of the original MCP problem, given as (I), and the foliowing
MCP problem are identical.

i=M;

U's,

subject to ;e B, fori=1,2,3,.. .M,

minimize |f|=

where B, (i=1, 2, 3, ..., M,) is the set that has as members only the undominated members of
the set B;.

The previous corollary can be used for problem pre-processing. That is, when an MCP problem
formulated as (I) is given, it is beneficial to first transform it to the problem MCP’ (as described
above). In this way, the number of options (arcs in the B&B search graph) available at each node
(state) of the search graph will be the same or smaller than in the original MCP problem. Clearly,
this means that the search can be done faster than in the original MCP problem.

In Fig. 2 the B&B tree for the current illustrative example is presented. The states in the last
stage (i.e. the leaves of the tree) with the minimum number of negative examples indicate an optimal
solution. In this example there are two such minimum size states. They are: {2, 3, 6} and {2, 4, 5}.
The first optimal state (i.e. {2, 3, 6}) is derived from the clause (4, v A,). The atoms 4, and A,
are the only atoms (as indicated by the B&B tree) which are involved in the decisions that generate
the state {2, 3, 6}. Similarly, the second optimal state (i.e. {2,4,5}) is derived from the clause
(4, v 43).

An alternative and more efficient implementation of this B&B formulation is to keep in memory
only the nodes (states) of the current level (stage). Then, when an optimal state S is determind at
the last stage, the optimal clause can be found by simply activating (i.e. setting as true in the current
clause) all the atoms which make only the negative examples included in this state S to be accepted.

Note that the optimal solution (4, v A,) does not reject the second, third, and sixth current
non-allowable states (negative examples in E~). Hence, the remaining negative examples are:

0 0 01
E-=[1 1 11
1 110

Similarly, the second OCAT iteration, when applied to the E* set and the new E~ set, yields the
clause (4, v A;). The remaining negative examples are:

E-=[0001].

Iterating further, the third OCAT iteration yields the clause (4, v 4; v 4,). That is, the system of
the CNF clauses which are generated from the original examples E* and E~ is:

Clause 1: (4, Vv A,)
Clause 2: (4, v A4,)
Clause 3: (4, vA; Vv A,).

Generating logical expressions 193

It can be easily verified that the previous three clauses, when taken together, reject all the negative
examples in E”. Moreover, each of the three clauses accepts all the positive examples in E*.

There is another observation that allows a further reduction in the number of states in the B&B
search. Suppose that it is known (possibly via a heuristic) that one of the terminal states in the
B&B search (not necessarily an optimal one) has k elements. Then, at any stage of the B&B
approach, all states which have more then k elements can be deleted from further consideration.
This is true because any descendent of a state may only get larger at subsequent stages. This
observation is summarized in the following theorem:

Theorem 3. Suppose some feasible solution to MCP has cardinality k. Then, an optimal solution
to a modified B&B problem in which all states that have more than k members are deleted, is also
optimal for MCP. Furthermore, if this B&B problem is infeasible, then an optimal solution to
MCP has cardinality k.

Corollary 2. The optimal solution of the original MCP problem, given as (I), and the following
problem are identical:
i=My

U's,

subject to f; € B, fori=1,2,3,...,M,,

minimize |[f]|=

where B; (i=1,2, 3, ..., M,) is the set which has as members only the members of the set B; which
have less than or equal to k members.

6. A HEURISTIC FOR PROBLEM PRE-PROCESSING

The previous corollary can be used for problem pre-processing. That is, when an MCP problem
is formulated as (I) then, it is a good idea first to run a heuristic (as it will be described next) that
very quickly yields a good feasible solution of size k (i.e. k is small) to the original MCP problem.
When a value for k is available, the B&B search does not need to expand nodes in the search
graph that have cardinality greater than k. This is true even for nodes that correspond to

undominated states. In this way, the number of nodes to be expanded in the B&B search tree will,
in general, be smaller than in the original MCP problem. This step has the potential to expedite
the B&B search.

Theorem 3 can further improve the performance of the proposed B&B search. When the B&B
search is performed, the number of states at each stage (i.e. level of the search tree) may increase
dramatically. Therefore, the time and memory requirements of the search may increase dramatically.
An efficient way to overcome this complication is to run the B&B search in two phases. In the
first phase the B&B search is applied by allowing up to a small number, say five, of states (i.e.
nodes in the search tree) to be considered at any stage (i.e. level of the search tree). These five
states are the ones with minimal cardinality. That is, if more than five states (nodes) are formed
at any stage, then only the five states with the smallest cardinality will be considered for the next
stage. This type of search is used in the AI literature often and is called beam search (see, for
instance [20]).

Since up to five states are allowed to be considered at any stage of the B&B search and the
number of stages is equal to the number of positive examples, it follows that the first phase will
terminate quickly. Furthermore, the terminal nodes (final states) of the search tree will tend to
represent states which have a tendency to have small cardinalities. This is expected to be the case
because at each stage only the five states with the minimal cardinality are considered.

Suppose that in the first phase of the B&B process more than five states were generated at some
stage. Let k be the cardinality of the smallest state that is dropped from further consideration due
to the upper limit of five states per stage. Then, if one of the terminal nodes has cardinality less
than k, then one can conclude that this node (state) represents an optimal solution. This is true
because in this case none of the deleted states could lead to a terminal state with cardinality less
than k. If there is no terminal state with cardinality less than k, then a terminal node (search state)
with the minimal cardinality represents a good feasible solution which may or may not be optimal.

194 EvANGELOS TRIANTAPHYLLOU et al.

It should be emphasized here that by an optimal solution we mean the one that represents a clause
which accepts all the positive examples in E* while it rejects as many negative examples in the
current E~ set as possible.

If after the first phase optimality is not provable, then the second phase is initiated. In the second
phase, the B&B process is repeated with an upper limit, say 20, states per stage. As in the first
phase, these 20 states are the states with the 20 smallest cardinalities. Suppose that L is the cardinality
of the solution obtained in the first phase. Then in the second phase, theorem 3 is applied by
eliminating any state that has cardinality greater than L. However, memory limitations may prohibit
this B&B search from reaching an optimal solution. It should be stated here that if a too large
number of states is allowed to be considered at any stage, then the B&B approach will take excessive
time in ranking these states. The previous limit of 20 states was empirically found to be a reasonable
choice.

As it was done in the first phase, if more than 20 states are generated at any stage, then only
20 states are allowed at ecach stage. Similarly to the first phase, let k be the cardinality of the
smallest state that was dropped from further consideration due to the upper limit of 20 states per
stage. Then, if one of the terminal nodes has cardinality less than k one can conclude that this
node (state) represents an optimal solution. Otherwise optimality is not provable. In this case one
may want to proceed with a third phase, or fourth phase until optimality is reached.

Some computational experiments indicate that theorems 2 and 3 provide a very efficient way
for keeping the states at each stage in a manageable number and the resulting CPU requirements
are dramatically reduced. For instance, a case with N equal to 10, 50 positive examples, and with
170 negative examples required more than 1100 CPU s on an IBM ES/3090-600S machine running
an integer programming implementation of the OCAT approach by using MPSX. However, the
same problem took less than 30 CPUs with the proposed B&B formulation. Other similar
comparisons also demonstrated significant improvement in time performance for the B&B approach.

7. SOME COMPUTATIONAL RESULTS

In order to gain some computational experience with OCAT and the B&B formulation, some
random problems were generated and tested. The derived computational results are depicted in
Table 2. For these problems N, the number of atoms, was set equal to 30. First a set of 40 random

Table 2. Some computational results when N =30 and the OCAT approach is used

{E°| (E*| IE™| s Time |E°| (E*| [E| S Time
100 9 91 4 2 400 10 390 6 10
100 5 95 4 2 400 7 393 6 10
100 15 85 4 7 400 36 364 13 282
100 7 93 4 6 400 47 353 6 97
100 3 97 4 1 400 49 351 12 400
100 8 92 4 2 400 15 385 5 7
100 7 93 4 2 400 5 395 5 3
100 1 99 4 1 400 17 383 6 23
100 7 93 4 3 400 16 384 6 8
100 5 95 4 3 500 35 465 12 194
200 5 195 4 2 500 16 484 5 38
200 2 198 5 1 500 7 493 6 15
200 18 182 5 18 500 34 466 7 73
200 6 194 5 2 500 13 487 6 8
200 1 199 4 1 500 20 480 5 19
200 1 189 7 38 500 6 494 5 13
200 19 181 4 4 600 83 517 6 300
200 51 149 12 212 600 49 551 15 315
200 10 190 4 6 600 44 556 5 41
200 4 196 5 2 600 8 592 6 16
200 2 278 8 70 600 23 577 12 184
300 14 286 6 25 600 1 589 6 15
300 14 286 7 29 700 56 644 16 467
300 2 298 5 1 700 18 682 6 30
300 22 278 10 102 700 19 681 6 15
300 36 264 1 243 700 19 681 9 60
300 24 276 4 12 700 13 687 6 26
300 71 229 14 524 800 64 736 18 739
300 3 297 5 2 900 72 828 17 836
300 17 283 1 107 1000 47 953 14 80

Time is in seconds.

Generating logical expressions 195

clauses (disjunctions) was generated (the number 40 is arbitrary). Each such clause included, on
the average, five atoms (as was the case with the experiments reported in [13]). The range of the
number of variables per clause was from 1 to 10. Next, a collection E° of random examples was
generated. In these experiments we generated groups of 100, 200, 300, . . ., 1000 random examples.

Each such random example was classified, according to the previous 40 clauses, either as a
positive or as a negative example. With 40 clauses, this process resulted in more negative than
positive examples. Because the stages in the B&B algorithm correspond to positive examples,
problems with higher percentages of positive examples would demand more CPU time.

Next, the OCAT approach was applied on the previous positive and negative examples. The
computational results are shown in Table 2. In this table the number of clauses derived by OCAT
is denoted as S. The CPU time of the OCAT approach was recorded as well. This simulation
program was written in PL/I and run on an IBM ES/3090-600S computer.

Each entry in Table 2 represents the performance of a single test problem, rounded to the nearest
integer. Recall that [S| indicates the size of set S. The computational results in Table 2 strongly
suggest that the B&B approach is computationally tractable. For instance, no test problem took
more than 836 CPU's (with an average of 96.17 CPU s). As it was anticipated, the number of
clauses created by OCAT increases with the number of input examples.

It is also interesting to observe the behavior of the CPU time used by OCAT under the B&B
formulation. Since the number of stages in the B&B search is equal to the number of positive
examples, the CPU time increases with the size of the set of the positive examples. Furthermore,
the total number of examples |E°| is critical too.

In [19] an approach is presented to derive DNF expressions by using the OCAT approach.
Some ways for partitioning large scale learning problems of the type described in this paper are
also discussed in [21]. In [22] an approach for guided learning is described. In that approach
examples are not randomly generated, instead they are generated in a manner which attempts to
derive the correct system by considering only few new examples.

In these test problems the B&B formulation was applied as follows. During the first phase up
to five states were allowed. If after the final stage optimality was not proved, the best (i.e. the one
with the smallest cardinality) solution available at this point was kept and the B&B approach was
repeated by allowing up to 20 B&B states per stage (20 was an upper limit for memory
considerations). These 20 states were selected as follows. If more than 20 B&B states were generated
at some stage, then these states were ranked in descending order according to the number of
elements (negative examples) per state and the top 20 states were selected.

In this second phase of the B&B search, the best solution found at the end of the first phase
was used to reduce the state space at each stage (i.e. theorem 3 was applied to reduce the memory
requirements). The process was terminated after this second phase (in which the 20 states per stage
limit was imposed) whether the current best solution could be confirmed as optimal or not. It
should be mentioned here that if a higher limit of states was used, then the B&B approach takes
more time because at each stage more states need to be considered. Some computational tests
indicated that the previous limits (i.e. five and 20 states) seem to be reasonable. In 83% of the
problems examined, confirmation of optimality could be made. The very low CPU times strongly
indicate that the B&B approach is very efficient both in terms of CPU time and memory
requirements.

Tables 3 and 4 present some computational results when the SAT approach is used. These results
are the ones originally reported in [17]. The CPU times are approximated to the closest integer
value (in seconds). These experiments were performed on a VAX 8700 running UNIX. The program
was written in Fortran and C. The strategy of generating and testing the random problems is
similar to the one mentioned in the OCAT case. The only difference is that now the ‘hidden system’
is in DNF form and consists of a few conjunctions (three to four). Recall, that in the OCAT case
the ‘hidden logic’ was a system in CNF form consisted of 40 randomly generated disjunctions.

The main point with the SAT results is that even for a small number of (positive and negative)
examples the CPU times are rather high. This happens because the resulted SAT problems (as it
was indicated in the formulas presented in Section 4) require many variables and clauses (as it is
shown under the ‘Vars’ and ‘Clauses’ columns in Tables 3 and 4). In Table 4 the test problems
considered 32 atoms. The CPU times are smaller than the ones with 16 atoms (in Table 3) because

196 EVANGELOS TRIANTAPHYLLOU et al.

Table 3. Some computational results when N =16 and the SAT approach is used

|E9| Problem id k Vars Clauses Time
100 16A1 15 1650 19.368 2039
100 16C1 20 1580 16.467 758
200 16D1 10 1230 15,901 1547
200 16E1 15 1245 14,766 2156
300 16A2 6 1602 23,281 608
300 16B1 8 1728 24,792 78
400 16B2 4 1076 16.121 236
400 16C2 4 925 13,804 521
400 16D2 4 836 12,461 544
400 t6E2 4 532 7825 376

Time is in seconds.

Table 4. Some computational results when N =32 and the SAT approach is used

|E°| Problem id k Vars Clauses Time
50 32Bt 3 228 1374)
50 32C1 3 225 1280 24
50 32D1 4 332 2703 66
50 32E1 3 222 1186 8
100 32B2 3 261 2558 57
100 32C2 3 249 2182 9
100 32D2 4 404 5153 178
100 32E2 3 267 2746 10
150 32C3 3 279 3272 14
200 32E3 3 330 5680 133
250 32A1 3 459 9212 177
250 32B3 3 348 5734 190
300 32B4 3 381 6918 259
300 32E4 3 387 7106 277
400 32D3 4 824 19,478 1227
400 32ES 3 450 9380 390
1000 32C4 3 759 20.862 155

Time is in seconds.

now k was allowed to take much smaller values (three or four). In the 16 atom case, however, k
was allowed to take larger values (four to 20).

In other words, the CPU requirements increase dramatically with the number of conjunctions
assumed in the SAT formulation (denoted with k). This behavior is in direct agreement with the
formulas mentioned in Section 4. However, if the original k value is too small, then infeasibility
will be reached and the SAT problem needs to run again (with a larger k value) until a feasible
solution is reached. This situation may increase the actual CPU requirements even more dramatically
than the figures shown in Tables 3 and 4.

8. CONCLUDING REMARKS

In general, the expert in a domain can somehow categorize a given state as being positive or
negative. However, the underlying RBS may not be explicitly known. In this paper we consider
the problem of learning the structures of clauses from selections of positive and negative examples.
Since the rules in any rule based system can be transformed into a set of clauses in CNF form [16]
the problem of being able to infer clause structures is very critical in RBS development. As described
earlier, most often the structure of the rules in the knowledge base of an RBS is not known and
has to be derived from examples.

The approach proposed in this paper helps in efficiently learning the ruies (in CNF) of an RBS
through sets of positive and negative examples. The OCAT approach is based on an efficient B&B
algorithm. This approach attempts to derive as few logical clauses (i.e. rules) as possible. A
satisfiability based approach, proposed in [17], can actually determine the minimum number of
clauses, given the sets of positive and negative examples. However, the SAT approach pre-assumes
an upper limit on the number of clauses and it is very CPU time consuming. Therefore, if the
absolute minimum number of clauses is required, the OCAT approach may be used first to derive

Generating logical expressions 197

an upper limit for the SAT approach. It should also be stated here that in [19] it is demonstrated
that either approach can derive a CNF or DNF system of clauses. Furthermore, in [19] and [21]
it is shown how to solve large scale problems of inductive inference.

A related issue is to examine whether the inferred systems are correct in a domain. In other
words, what is the accuracy of these inferred systems for unseen examples in that particular domain.
Although this is an important issue, it is not examined in this paper. However, this can be one of
the extensions of the present work.

Although considerable work has been done on the logical inference problem, the problem of
inferring clause structures from positive and negative examples has not been examined adequately
in the literature. The present paper demonstrates that a B& B approach has the potential to efficiently
solve large learning from examples problems.

Acknowledgement — The authors would like to thank the referees for their thoughtful comments which significantly improved
the quality of this paper.

REFERENCES

. L. G. Valiant, A theory of the learnable. Comm. ACM 27, 1134-1142 (1984).
- L. G. Valiant, Learning disjunctions of conjunctives. Proc. 9th IJCAI 560-566 (1986).
. L. Pitt and L. G. Valiant, Computational limitations on learning from examples. J. Ass. Comput. Mach. 35, 965-984

(1988).

4. R. S. Michalski, Machine learning research in the artificial intelligence laboratory at Ilinois. In Machine Learning: A
Guide to Current Research (Edited by T. M. Mitchell, J. G. Carbonell and R. S. Michalski), pp. 193-198. Kluwer,
Boston, Mass. (1986).

5. T. C. Dietterich and R. S. Michalski, A comparative review of selected methods for learning from examples. In Machine
Learning: An Artificial Intelligence Approach (Edited by R. S. Michalski, J. G. Carbonell and T. M. Mitchell), pp. 41-81.
Tioga, Palo Alto, Calif. (1983).

6. N. Helft, Learning systems of first-order rules. In Proceedings of the Fifth International Conference on Machine Learning
(Edited by John Laird), pp. 395-401. University of Michigan, Ann Arbor, Mich. (1988).

7. J. R. Quinlan, Discovering rules by induction from large numbers of examples: a case study. In Expert Systems in
the Micro-Electronic Age (Edited by D. Michie). Edinburgh University Press (1979).

8. J. R. Quinlan, Induction of decision trees. Mach. learn. 1, 81-106 (1986).

9. P. E. Utgoff, ID5: an incremental ID3. In Proceedings of the Fifth International Conference on Machine Learning (Edited
by John Laird), pp. 107-120. University of Michigan, Ann Arbor, Mich. (1988).

10. H. P. Williams, Linear and Integer Programming Applied to Artificial Intelligence, pp. 1-33. Faculty of Mathematical
Studies, University of Southampton (1986).

11. R.G.Jeroslow, Computation-oriented reductions of predicate to propositional logic. Decis. supp. Syst. 4, 183197 (1988).

12. J. N. Hooker, Generalized resolution and cutting planes. In Annals of Operations Research (Edited by R. G. Jeroslow),
Vol. 12, pp. 217-239 (1988).

13. J. N. Hooker, Resolution vs cutting plane solution of inference problems: some computational experience. Ops Res.
Leir. 7, 1-7 (1988).

14. T. M. Cavalier, P. M. Pardalos and A. L. Soyster, Modeling and integer programming techniques applied to propositional
calculus. Computers Ops Res. 17, 561-570 (1990).

15. A. P. Kamath, N. K. Karmakar, K. G. Ramakrishnan and M. G. C. Resende, Computational experience with an
interior point algorithm on the satisfiability problem. 4nn. Ops Res. 27 (1991).

16. C. E. Blair, R. G. Jeroslow and J. K. Lowe, Some results and experiments in programming techniques for propositional
logic. Computers Ops Res. 13, 633645 (1986).

17. A. P. Kamath, N. K. Karmakar, K. G. Ramakrishnan and M. G. C. Resende, A continuous approach to inductive
inference. Math. Program. Submitted for publication (1993).

18. N. K. Karmakar, M. G. C. Resende and K. G. Ramakrishnan, An interior point algorithm to solve computationally
difficult set covering problems. Math. Program. Submitted for publication (1993). .

19. E. Triantaphyllou and A. L. Soyster, A relationship between CNF and DNF systems derivable from examples. ORSA
J. Comput. To appear (1993).

20. T. C. Dietterich and R. S. Michalski, Inductive learning of structural descriptions. Artific. Intell. 16 (1981).

21. E. Triantaphyllou and A. L. Soyster, On the minimum number of logical clauses which can be inferred from examples,
working paper, Department of Industrial Engineering, Kansas State University (1992).

22. E. Triantaphyliou and A. L. Soyster, An approach to guided learning of Boolean functions, working paper, Department
of Industrial Engineering, Kansas State University (1992).

Lo DD

