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ABSTRACT: 
Multi-criteria decision analysis (MCDA) problems (also known as multi-criteria decision-making or MCDM) 
involve the ranking of a finite set of alternatives in terms of a finite number of decision criteria.  Often times such 
criteria may be in conflict with each other.  That is, an MCDA problem may involve both benefit and cost criteria at 
the same time.  Although this is a frequent characteristic of many real-life MCDA problems, this subject has not 
received adequate attention in the literature.  This paper examines the use of four key MCDA methods when two 
approaches for dealing with conflicting criteria are used.  The two approaches are the benefit to cost ratio approach 
and the benefit minus cost approach.  The MCDA methods used in this study are the weighted sum model, the 
weighted product model, and the analytic hierarchy process (AHP) along with some of its variants, including the 
multiplicative AHP.  Not surprisingly, these two approaches for aggregating conflicting criteria may result in a 
different indication of the best alternative or ranking of all alternatives when they are used on the same problem.  As 
it is demonstrated here, it is also possible for the two approaches to even result in the opposite ranking of the 
alternatives. An extensive empirical analysis of this methodological problem revealed that the previous phenomena 
might occur frequently on simulated MCDA problems.  The WSM, the AHP, and the revised AHP performed in an 
almost identical manner in these tests.  The contradiction rates in these tests were rather significant and became more 
dramatic when the number of alternatives was high.  Although it may not be possible to know which ranking is the 
“correct” one, this study also theoretically proved that the multiplicative AHP is immune to these ranking 
inconsistencies.  
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criteria, decision-making, multi-criteria decision analysis (MCDA), multi-criteria decision-making (MCDM), 
analytic hierarchy process (AHP), weighted sum model, multiplicative AHP. 
 
1 Some Background Information 
 Multi-criteria decision analysis (MCDA) is one of the most widely used decision methodologies in the 
sciences, business, and engineering worlds.  Some applications of MCDA in engineering include the use on flexible 
manufacturing systems [Wabalickis, 1988], layout design [Cambron and Evans, 1991], integrated manufacturing 
systems [Putrus, 1990], and the evaluation of technology investment decisions [Boucher and Mcstravic, 1991].   
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A typical problem in MCDA is concerned with the task of ranking a finite number of decision alternatives, 
each of which is explicitly described in terms of different characteristics (also often called attributes, decision criteria, 
or objectives) which have to be taken into account simultaneously.  Usually, an MCDA method aims at one of the 
following four goals, or “problematics” [Roy, 1985], [Jacquet-Lagreze and Siskos, 2001]: 

Problematic 1:   Find the best alternative. 
Problematic 2: Group the alternatives into well-defined classes. 
Problematic 3: Rank the alternatives in order of total preference. 
Problematic 4: Describe how well each alternative meets all the criteria simultaneously. 

Many interesting aspects of MCDA theory and practice are discussed in [Hobbs, 2000; and 1986], [Hobs, et al., 
1992], [Stewart, 1992], [Triantaphyllou, 2000], [Zanakis, et al., 1995], and [Zanakis, et al., 1998].  

Another term that is also used frequently to mean the same type of decision models is multi-criteria 
decision-making (MCDM).  It should be stated here that the term MCDM is also used to mean finding the best 
alternative in a continuous environment.  This is a different type of decision problem than the one highlighted in 
the previous paragraph.  In that setting the alternatives are not known a priori but they can be determined by 
calculating the values of a number of discrete and/or continuous variables.    
 All methods of multi-criteria decision analysis require information regarding the relative or absolute 
importance of each criterion.  The main challenge of a multi-criteria problem is that, mathematically speaking, it is 
not well defined.  A central problem is how to quantify all pertinent data.  Even in the very special case of which one 
can know precisely the values of the different alternatives in terms of the decision criteria, it is not clear how to 
process the data.  For such cases the main methodological problem is how to process data which may be expressed in 
different units.  
 More often than not there exist contradictions between the different decision criteria, in such a way that an 
action (alternative) a might be 'better' than an action b in terms of one criterion, and 'worse' in terms of another.  
Another major problem occurs when decision criteria can be grouped into two opposite categories, usually called the 
"benefit" and the "cost" criteria.  Alternatively, benefit criteria may be called "reward" criteria and cost criteria 
"regret" or "loss" criteria.  A benefit criterion means that the higher an alternative scores in terms of it, the better 
the alternative is.  The opposite is considered true for the cost criteria. 
 This kind of decision problems with conflicting criteria is very common in engineering applications.  It is 
hard to imagine a complex real-life engineering problem which does not involve the need to evaluate alternatives 
in terms of conflicting criteria.  That means that many problems need a kind of conflicting criteria analysis in 
view of a finite number of possible alternatives.   

This analysis can be done in terms of a number of ways.  One way is to use criteria aggregation 
techniques that group the decision criteria into two sets: one set for the “benefit” criteria and another set for the 
“cost” criteria.  Next the analyst uses the “benefit” criteria to compute an aggregated index.  The same is done with 
the “cost” criteria.  Then the alternatives are evaluated by using information from these two aggregated indexes.  
Methods that belong to this category are the Analytic Hierarchy Process and its variants (AHP) [Saaty, 1994], the 
weighted sum model [Fishburn, 1967], and the weighted product model [Bridgeman, 1922], [Miller and Starr, 1969]. 
  

A closely related idea is to use “outranking” methods.  Such methods also group criteria into two categories 
as above.  They also compute aggregated indexes for each one of the two categories and compare the alternatives two 
at a time in terms of these two aggregates.  Finally, these methods propose a ranking of the alternatives.  Such 
methods are the ELECTRE group of methods [Roy and Bouyssou, 1993] the TOPSIS method [Hwang and Yoon, 
1981], and the PROMETHEE group of methods (for an overview please see [Figueira, De Smet and Barns, 2004].  

A different way is to use an explicit trade-offs approach which is based on the so-called “value functions” 
[Keeney and Raiffa, 1976], [Keeney, 1992], [Kirkwood, 1997].  A value function attempts to map changes of 
values of performance of the alternatives in terms of a given criterion, into a dimensionless value.  Some key 
assumptions are made in the process for transferring changes in values into these dimensionless quantities (see, for 
example, the fourth chapter of the book by Kirkwood [1997]).  If the criterion is of the “benefit” type, then we would 
like this value to be high.  The opposite is true if the criterion is of the “cost” type. The roots of this type of analysis 
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can be found in [Edwards, 1977], [Edwards and Barron, 1994], [Edwards and Newman, 1986], and [Dyer and Sarin, 
1979].   

Although the type of decision analysis which is based on value functions has many supporters, it is not the 
subject of study in this paper.  Perhaps an interesting research task is for one to compare value function based 
approaches with approaches that use an explicit aggregation of conflicting criteria into the “benefits” and “costs” 
groups.  Such a study would require the analysis of many behavioral, psychological, as well as mathematical 
properties of such different multi-criteria decision analysis philosophies.   
 Finally, a third approach is based on “preference disaggregation approaches” (or PDA).  Such methods use 
the notion of a reference set of alternatives.  That is, it is assumed that the decision maker has access to a set of 
ranked alternatives and any new ranking should somehow be consistent with that ranking.  Next, regression methods 
are applied to infer a model that was implicitly used to derive the reference ranking.  This model is calibrated with 
the use of linear programming (LP) optimization models in order to achieve an adequate level of consistency.  New 
alternatives are then ranked by using this derived model.  An overview of this approach is given in [Jacquet-Lagreze 
and Siskos, 2001].  Some related recent work can be found in [Doumpos and Zopounidis, 2002; and 2004].  
 In [Triantaphyllou 2001] a number of MCDA methods were evaluated in terms of a number of evaluative 
criteria.  In that study it was found that all of them do exhibit ranking irregularities.  Such ranking irregularities, for 
instance, appear when the transitivity property is not observed.  That is, when a large MCDA problem is decomposed 
into a number of small MCDA problems, each defined on two alternatives, then often times it is possible to have 
situations in which three alternatives, say A, B, and C, exhibit A > B, B > C, but A < C.  Other evaluative tests do 
demonstrate similar ranking irregularities.  Recently, in [Wang and Triantaphyllou, 2004] it is demonstrated that 
these problems do occur with some of the ELECTRE type of MCDA methods. 

In common practice, when criteria can be divided into the "benefit" and "cost" groups, practitioners use two 
processing approaches for ranking the alternatives.  The first approach is the benefit to cost approach and the 
second one is the benefit minus cost approach (see, for example, [Saaty, 1994], [Saaty and Vargas, 1994], 
[Bozeman and Melkers, 1993], [Augood, 1978], and [Kuwahara and Takeda, 1990]).  These approaches are then 
combined with the standard MCDA methods and rank the alternatives of a given problem.  The benefit to cost ratio 
approach and the benefit minus cost approach are mathematically two different scales (or functions) for quantifying 
the existing differences between two mathematical quantities.  The former approach is a ratio scale and the latter, is 
an interval scale. Although both approaches are not expected to give the same numerical value, they give a 
relationship between two quantities, that is, an indication of which quantity is higher and which one is lower. 
 This paper demonstrates that when the two approaches for aggregating conflicting criteria into two groups 
(i.e., the benefits minus cost approach and the benefits to cost approach) are used on the same problem, even when 
using the same MCDA method, then one may derive very different rankings of the alternatives.  Furthermore, an 
extensive empirical study revealed that this situation might occur rather intensively with random test problems.  The 
only method that is invariant to these ranking disputes is the weighted product method (WPM) and a newer version 
of the AHP called the multiplicative AHP [Barzilai and Lootsma, 1994], [Lootsma, 1999].  However, in 
[Triantaphyllou and Mann, 1989] the WPM (and consequently the multiplicative AHP) method was found to be 
susceptible to some other methodological problems. 
 This paper is organized as follows.  The second section briefly describes the four MCDA methods 
considered in this study.  The third section illustrates, in terms of a number of demonstrative examples, the ranking 
disputes that can be generated when the previous two criteria aggregation approaches are used.  The fourth section 
describes the way simulated test problems were generated on a computer.  The fifth section analyzes the 
computational results.  Finally, the paper ends with a conclusions section.  
 
2 Brief Description of the MCDA Methods Used 
 The typical MCDA problem considered in this paper is comprised by a number, say m, of alternatives to be 
evaluated in terms of a number, say n, of decision criteria.  The alternatives will be denoted as Ai (for i = 1, 2, 3, ..., 
m) and the criteria as Cj (for j = 1, 2, 3, ..., n).  Each criterion is associated with a weight of importance, denoted as wj 
(for j = 1, 2, 3, ..., n).  In general, the higher the weight is, the more important the criterion is assumed to be.  Usually 
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these weights are normalized so they add up to one.  Furthermore, when an alternative Ai is considered in terms of 
criterion Cj, the decision maker is assumed to know the corresponding performance value aij.  That is, aij denotes how 
well alternative Ai meets criterion Cj.  Different MCDA methods may impose different requirements on these 
performance values. When the data are qualitative or are expressed in different units of measurement, some methods 
(such as the AHP) require that these values be normalized and thus be transformed into dimensionless quantities.  
The above data are best summarized in a decision matrix as follows:  
      C r i t e r i a  
     C1 C2    ... Cn   
     (w1 w2  ... wn) 
   Alts.  ------------------------------------ 
   A1   a11    a12  ... a1n  
   A2    a21    a22     ... a2n 
    .    .                           . 
    .    .                           . 
    .    .   . 
   Am   am1    am2     ... amn   
 

It should be clarified here that an entry aij in the previous decision matrix reflects the relative importance 
of alternative Ai in the set of all alternatives when they are evaluated in terms of criterion Cj.  This is not to be 
confused with the entries of a judgment matrix (also known as a pairwise matrix) in which an entry aij reflects the 
relative importance of alternative Ai with alternative Aj when they are compared in terms of a single criterion.  The 
decision matrix is of dimension mxn and its columns are usually the eigenvectors of a number of pairwise 
(judgment) matrices.  The later type of matrices (i.e., pairwise/judgment) are always square (actually reciprocal 
ones). 

In the previous decision matrix the decision criteria have not been separated into the benefit and cost groups. 
 Moreover, the problems examined in this paper are deterministic in nature.  Next, we present a brief description of 
the way the MCDA methods considered in this paper process a decision matrix. 
 
2.1  The Weighted Sum Model 
 The Weighted Sum Model (WSM) is the simplest and the most commonly used method in MCDA.  The 
basic principle behind this technique is the additive utility assumption.  That is, if the performance of each alternative 
in terms of each criterion in the decision problem (i.e., the aij values) is measurable and is of the same unit where 
higher is better, then the alternative with the largest cumulative value is the best.  For example, if all the criteria 
represent benefit, then the most preferred alternative is the one for which the preference value (denoted as Pi) 
satisfies the following expression [Fishburn, 1967](for the maximization case): 

      for i = 1, 2, 3, ..., m.   (2-1)  ,wa  =  P   =  P jij

n

j=1i
i

i

*
WSM ∑maxmax

where P*
WSM  is the WSM preference value of the best alternative.  Next the alternatives can be ranked according to 

their Pi vales. 
 In WSM the performance measures of the alternatives must be both numerical and comparable and 
expressed in the same unit.  A violation may occur, because of the assumption of additive utility, when dealing with 
multi-dimensional criteria.  
 If the data are not expressed in terms of the same unit, then one may employ an approach based on 
tradeoffs that leads to the definition of what is called single dimensional value functions (see, for example, 
Chapter 4 in [Kirkwood, 1997]).  Next, the basic WSM formula (2-1) is applied to the transformed data.  An 
alternative way to value functions is to normalize the data in which case the WSM is transformed into an additive 
AHP type of model as described in the following sub-sections.  In this paper when we talk about WSM, we mean 
that all the data are expressed in the same unit from the beginning of the definition of the problem and that 
formula (2-1) is used. 
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2.2  The Analytic Hierarchy Process  
 Details about this method can be found in [Saaty, 1980; and 1994]). This method has attracted the interest of 
many researchers and practitioners alike.  A central difference with the WSM method is that now the aij values of the 
decision matrix are normalized vertically.  That is, the elements of each column in the decision matrix add up to one. 
 In this way, values with units of measurement can be transformed into dimensionless ones.  When all the criteria 
express some type of benefit, then according to the AHP the best alternative is the one that satisfies the following 
expression:  

     for i = 1, 2, 3, ..., m. (2-2)  ,wa  =  P   =  P jij

n

j=1i
i

i

*
AHP ∑maxmax

 Although this formula is similar to the one used by the WSM, it should be emphasized again that now the aij 
values have been normalized to add up to one.  Saaty uses an approach for eliciting judgments that compare two 
decision-making items (i.e., a pair of alternatives or a pair of criteria) at a time in terms of a single criterion (for the 
case of comparing two alternatives) or how well two criteria meet a goal.  That approach is based on the use of a 
scale for converting linguistic statements about the relative importance of decision-making items (i.e., alternatives or 
criteria) into numerical statements.  More on this can be found in [Saaty, 1980; and 1994] or in [Triantaphyllou, 
2000]. 
 
 
2.3  The Revised Analytic Hierarchy Process  
 The Revised Analytic Hierarchy Process (RAHP), was proposed by Belton and Gear [Belton and Gear, 
1983].  These two authors demonstrated a case of ranking abnormality when the original AHP is used.  After many 
debates and a heated discussion (e.g., [Dyer, 1990a; and 1990b], [Saaty, 1983; 1987; and 1990], and [Harker and 
Vargas, 1990]) Saaty accepted this variant and now it is also called the ideal mode AHP [Saaty, 1994].  According to 
this variant, the aij values of the decision matrix need to be normalized by dividing the elements of each column in 
the decision matrix by the largest value in that column.  As before, the best alternative is given again by the additive 
formula (2-2), but now the normalization is different.  
 
2.4   The Weighted Product Model 
 The Weighted Product Model (WPM) is a method that uses multiplication to rank alternatives instead of 
addition (which is used in the WSM, the AHP and its previous additive variant). Each alternative is compared with 
others in terms of a number of ratios, one for each criterion. Each ratio is raised to the power of the relative weight of 
the corresponding criterion.  Generally, in order to compare two alternatives AK and AL, (where: m $ K, L $ 1) the 
following formula is used ([Bridgeman, 1922] and [Miller and Starr, 1969]):  

  .
a
a  =  

A
AR

Lj

Kj
w

n

j=1L

K
j



















∏  (2-3) 

If  R ( AK / AL ) $ 1, then AK is more desirable than AL (for the maximization case). Then the best alternative is the one 
that is better than or at least equal to all other alternatives.  
 The structure of the WPM eliminates any units of measure.  Hence it is also called dimensionless analysis.  
Therefore, this method can be used for single and multi-dimensional decision problems.    
 
2.5 The Multiplicative AHP  
 In [Barzilai and Lootsma, 1994] and [Lootsma 1999] a multiplicative version of the AHP was proposed.  
This method was further analyzed in [Triantaphyllou, 2000; and 2001]. According to that approach, the relative 
performance values aij and criteria weights wj are not processed according to formula (2-2), but the WPM formula (2-
3) is used instead.   
 Furthermore, one can use a variant of formula (2-3) to compute preference values that in turn, can be used to 
rank the alternatives.  These preference values can be computed as follows: 
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                                                    (2-4) ( ) .ij w
n

1=j
AHPmultii a  =  P j∏-,

 Please note that if Pi > Pj, then Pi/Pj > 1, or equivalently, Pi - Pj > 0.  That is, two alternatives Ai and Aj can 
be compared in terms of their preference values Pi and Pj by forming the ratios or, equivalently, the differences of 
their preference values. 
  
3 Examples of the Use of the Two Ranking Approaches 
 The benefit to cost ratio approach and the benefit minus cost approach used in conjunction with various 
multi-criteria decision analysis methods may affect the choice of the best alternative when the criteria are grouped 
into the two classes as described earlier. These two approaches may also affect the ranking of all the alternatives.  
The next sub-section describes how these two approaches were combined with the four MCDA methods considered 
in this paper. After that, we present some numerical examples which demonstrate that the ranking of the alternatives 
may depend on which approach is combined with these MCDA methods. 
 
3.1 Implementation of the Two Approaches for Aggregating Conflicting Criteria  
 In the following treatments we assume that an MCDA problem is defined both on benefit and cost criteria.  
As a convention, criteria C1, ..., Cn1 are assumed to be the benefit criteria, while criteria Cn1+1, ..., Cn (i.e., the 
remaining ones) are assumed to be the cost criteria (where 1 < n1 < n).  Furthermore, now it will be assumed that the 
criteria weights have been normalized as follows: 

   and      (3-1)  ,  =  1w j

n

1 =j 

1

∑ .   =  1w j

n

1 + n =j 1

∑
When the WSM method is used with the benefit to cost approach, the alternatives are ranked according to their 
performance values Pi (for i = 1, 2, 3, ..., m).  These “Ratio” performance values are computed according to an 
extension of the previous formula (2-1) as follows: 

   ,
wa

wa
  =  P

jj i

n

1 + n =j 

jj i
n

1 =j 
RatioWSMi,

1

1

∑

∑
,       for i = 1, 2, 3, ..., m. (3-2) 

Similarly, under the benefit minus cost criteria, the previous preference values will be computed now as 
“Difference” performance values as follows: 

        for i = 1, 2, 3, ..., m. (3-3)  ,wa - wa  =  P jj i

n

1 + n =j 
jj i

n

1 =j 
DiffWSMi,

1

1

∑∑,

When the AHP (or its revised additive version as described in Section 2.3) is used, then the previous two formulas 
are used but now the aij elements are normalized accordingly.  
 The case of the WPM or the multiplicative AHP presents some special interest.  When the previous formulas 
are combined with the WPM or the multiplicative AHP main formula given as (2-3) or (2-4), the following are 
derived: 
 For the benefit to cost criteria approach: 

  .   
a

a

a

a
  =  

A
A R

w
j L

n

1 =j 

w
j L

n

1 + n =j 

w
i K

n

1 + n = i

w
i K

n

1 = i

L

K

j
1

j

1

i

1

i
1

∏

∏
×

∏

∏








    (3-4) 

Similarly, for the benefit minus cost criteria approach: 

  .     -    aaaa  =  
A
A D w

j L

n

1 =j 

w
i K

n

1 + n = i

w
j L

n

1 + n =j 

w
i K

n

1 = iL

K j
1

i

1

j

1

i
1

∏×∏∏×∏







 (3-5) 

 It should be stated here that the last formula expresses the difference (and hence the notation D(AK/AL)) 
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between the performance measures of the two alternatives AK and AL under the WPM or the multiplicative AHP 
method.  From the last two formulas it can easily be seen that when alternative AK is ranked better than alternative AL 
according to formula (3-4), then the same will be true according to formula (3-5) and vice-versa.  This is true because 
if in formula (3-4) the numerator is greater than the denominator, then the previous ratio will be greater than one and 
the previous difference will be positive and vice-versa.  This is summarized next as Theorem 1. 
Theorem 1: 
When the WPM or the multiplicative AHP method is used, then the benefit to cost and benefit minus cost approaches 
always yield the same ranking of the alternatives. 
 
 The previous theorem indicates that under the WPM or the multiplicative AHP method the two approaches 
for dealing with conflicting criteria are perfectly consistent with each other. The numerical examples in the following 
sub-section demonstrate that this property does not hold true with the WSM and the two additive AHP models 
described in sub-sections 2.2 and 2.3, respectively.  
 
3.2 Extensive Numerical Examples 
 The main points in this sub-section are best illustrated in terms of some numerical examples.  Thus, five 
numerical examples are described next.  One example for each of the WSM method, the AHP, the revised AHP, the 
WPM method and the multiplicative AHP. 
  
Example 3.1 (the WSM case): 
 Let us consider the data depicted in the following decision matrix.  In these data it is assumed that the first 
two criteria are benefit criteria, while the last two are cost ones.   
 
                                    C r i t e r i a 
       Benefit                      Cost 
   C1 C2  C3 C4 
      (8/13  5/13)  (6/13 7/13) 
  Alts. ---------------------------------------------- 
  A1 96 83  75  7 
  A2 63  5  56  9 
  A3 72 30  32 48 
  A4 11  4  27  9 
  A5 77 21  17 11 
 
Next, we use the benefit to cost approach with the WSM method.  Thus, formula (3-2) is applied as follows: 

  . 2.37 = 
13) / (7 x 7  + 13) / (6 x 75
13) / (5 x 83 + 13) / (8 x 96  =  P WSM 1,  

Similarly, working as above we get:  
  P2, WSM = 1.32, P3, WSM = 1.38, P4, WSM = 0.48, and P5, WSM = 4.03. 
 However, when using the benefit minus cost approach (i.e., formula (3-3)) the corresponding preference 
values become:  
   P1,WSM = {96H(8/13) + 83H(5/13)} - {75H(6/13) + 7H(7/13)} = 52.62. 
Similarly, working as above we get: 
  P2, WSM = 10.00, P3, WSM = 15.23, P4, WSM = -9.00, and P5, WSM = 41.70. 
The previous results are next used to derive the rankings of the five alternatives which are summarized as follows: 
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       Ranking 
 Alternative Under the Benefit to Cost Ratio  Under the Benefit Minus Cost  
      A1    2     1 
      A2    4     4 
      A3    3     3 
      A4    5     5 
      A5    1     2 
   or: A5 > A1 > A3 > A2 > A4   or: A1 > A5 > A3 > A2 > A4 
 
That is, the two rankings differ by the indication of the best alternative (only). 
 
Example 3.2 (the AHP case): 
 The data for this example are different than the ones for the previous example in order to better illustrate the 
main points of interest.  If the same data were used throughout these examples, the magnitude of the ranking 
differences may had not been so dramatic.  These data are presented in the following decision matrix:   
 
         C r i t e r i a 
         Benefit                 Cost 
   C1 C2  C3 C4 
        (8/13  5/13)  (6/13 7/13) 
  Alts. ---------------------------------------------- 
  A1 7/31 8/21  7/27 9/33 
  A2 4/31 2/21  5/27 9/33 
  A3 6/31 4/21  5/27 5/33 
  A4 8/31 1/21  8/27 3/33 
  A5 6/31 6/21  7/27 7/33 
 
The above data have been normalized according to the standard AHP practice.  That is, the entries in each column, 
and the criteria weights within each of the two groups, add up to one.  Next the two aggregation criteria approaches 
are applied as before. 
 As earlier, the benefit to cost ratio approach is applied and it yields the following results: 

  . 1.15 = 
13) / (7 x 9/33 + 13) / (6 x 7/27
13) / (5 x 8/21 + 13) / (8 x 7/31  =  P AHP 1,  

 
Similarly, working as above we get: 
  P2, AHP  = 0.53, P3, AHP  = 1.25, P4, AHP  = 1.08, and P5, AHP  = 1.06. 
 
The benefit minus cost approach yields: 
 P1, AHP = {7/31 H 8/13 + 8/21 H 5/13} - {7/27 H 6/13 + 9/33 H 7/13} = 0.53. 
 
Similarly, working as above we get: 
  P2, AHP  = 0.33, P3, AHP  = 0.35, P4, AHP  = 0.34, and P5, AHP  = 0.44. 
 
The previous results are next used to derive the rankings of the five alternatives which are summarized as follows:  
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       Ranking 
 Alternative Under the Benefit to Cost Ratio   Under the Benefit Minus Cost  
    A1    2    1 
    A2    5    5 
    A3    1    3 
    A4    3    4 
    A5    4    2 
   or: A3 > A1 > A4 > A5 > A2  or: A1 > A5 > A3 > A4 > A2   
 
 It is remarkable to observe that in this illustrative example there is not even any resemblance in the rankings 
derived by using both approaches except that both approaches rank A2 as the worst alternative. 
 
Example 3.3 (the Revised AHP Case): 
 For the revised AHP case we also use a new data set as presented in the following decision matrix: 
         C r i t e r i a 
    Benefit                      Cost 
   C1 C2  C3 C4 
       (8/13  5/13)  (6/13 7/13) 
  Alts. ---------------------------------------------- 
  A1 4/7 1  1 2/7 
  A2 4/7 2/8  4/9 2/7 
  A3 1 3/8  1 1 
  A4 4/7 1  7/9 2/7 
 
The previous data have been normalized according to the revised AHP requirement.  That is, in each column each 
entry is divided by the largest element, while the criteria weights are normalized as in the previous example.  
 When the benefit to cost ratio approach is applied as before, the previous data yield the following preference 
values: 

  .   1.20 = 
13) / (7 x 2/7 + 13) / (6 x 1  
13) / (5 x 1   + 13) / (8 x 4/7  =  P RAHP 1,

 
Similarly, working as above we get: 
  P2,RAHP = 1.25, P3, RAHP = 0.76, and P4, RAHP = 1.44. 
 
The benefit minus cost approach yields the following results:  
  P1, RAHP = {4/7 H 8/13 + 1 H 5/13} - {1 H 6/13 + 2/7 H 7/13} = 1.35. 
 
Similarly, working as above we get: 
  P2, RAHP = 0.81, P3, RAHP = 1.76, and P4, RAHP = 1.25. 
 
As before, the above results can be summarized as follows:  
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       Rankings 
 Alternative Under the Benefit to Cost Ratio  Under the Benefit Minus Cost  
    A1   3     2 
    A2   2          4 
    A3   4         1 
    A4   1     3 
   or:  A4 > A2 > A1 > A3   or: A3 > A1 > A4 > A2  
 
The rankings of the alternatives, as derived by using the two approaches, are almost the complete opposite!  The best 
two alternatives in one approach are the worst two alternatives in the other.  
 
 Next we observe that according to Theorem 1, the WPM and the multiplicative AHP do not exhibit any 
ranking contradictions when these two conflicting criteria aggregation approaches are used.  However, for the sake of 
completeness of the presentation two numerical examples are briefly described when the WPM and the multiplicative 
AHP are used.  For easier comparison, the data for these examples are now the same as the ones for Example 3.2.  
 
Example 3.4 (the WPM case): 
 Under the WPM method one does not have to normalize the data.  As a matter of fact, it can be easily seen 
(for instance, by comparing the computations between Examples 3.4 and 3.5) that the end results are essentially the 
same whether the data are normalized or not.  Thus, one can view the data to be as follows (i.e., before 
normalization): 
 
         C r i t e r i a 
         Benefit                 Cost 
   C1 C2  C3 C4 
        (8/13  5/13)  (6/13 7/13) 
  Alts. ---------------------------------------------- 
  A1 7 8  7 9 
  A2 4 2  5 9 
  A3 6 4  5 5 
  A4 8 1  8 3 
  A5 6 6  7 7 
 When one uses the benefit to cost approach with the WPM method, then formula (3-4) yields for the pair of 
the alternatives A1 and A2: 

 ,1059.2
24

95

97

87
13/513/8

13/713/6

13/713/6

13/513/8

2

1 >=×






      =  
A
A R   or A1 > A2. 

Similarly, working as above we get: 
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From the above results, it can be easily derived that the implied ranking is as follows: 
 A3 > A1 > A5 > A4 > A2. 
Next we apply the benefit minus cost approach (by using formula (3-5)) as follows: 
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 From the above results it can easily be derived that the implied ranking is identical with the previous one 
(i.e., A3 > A1 > A5 > A4 > A2) as it should be according to Theorem 1 in Section 3.1 but different than the AHP results 
of the same data in Example 3.2. 
 
Example 3.5 (the Multiplicative AHP case): 
 The application of the multiplicative AHP is very similar to the case of the WPM method. The only 
difference is that now the entries of the decision matrix are normalized by dividing the elements in each column by 
the largest element of that column.  Thus, the decision matrix becomes as follows: 
         C r i t e r i a 
         Benefit                 Cost 
   C1 C2  C3 C4 
        (8/13  5/13)  (6/13 7/13) 
  Alts. ---------------------------------------------- 
  A1 7/8 8/8  7/8 9/9 
  A2 4/8 2/8  5/8 9/9 
  A3 6/8 4/8  5/8 5/9 
  A4 8/8 1/8  8/8 3/9 
  A5 6/8 6/8  7/8 7/9 
 
 When one uses the benefit to cost approach with the multiplicative AHP method, then formula (3-4) yields 
for the pair of the A1 and A2 alternatives: 

 ,1059.2
)8/2()8/4(
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 One may observe that it should had been expected that the WPM and the multiplicative AHP would 
produce identical results when the ratio formula is used.  This occurs because the results for the WPM case and 
also for the multiplicative AHP case are divided by a constant that cancels out in the ratio formulas.  Similarly 
with the above, the rest of the R(Ai/Aj) values are identical to those in the example for the WPM method.  
 When we apply the benefit minus cost approach (i.e., by using formula (3-5)) the multiplicative AHP also 
yields results identical (as far as the positive/negative sign is concerned) to those for the WPM method.  This occurs 
because now the results for the multiplicative AHP method are exactly the same as those for the WPM case 
multiplied by a positive quantity which is due to the presence of the normalization step under the multiplicative AHP 
method.  For this numerical example this positive quantity is equal to:    (1/8)8/13(1/8)5/13 x (1/8)6/13 (1/9)7/13.  
 The startling variations which are exhibited in the final results in Examples 3.1, 3.2, and 3.3 lead one next to 
study this phenomenon in more depth in terms of an extensive empirical analysis as described in the following 
section.  This empirical analysis studies how often such ranking discrepancies occur in simulated MCDA problems.  
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Table I (part a):   Computational Results for the WSM Model. 

Size of Problem Differences in Rankings Size of Problem Differences in Rankings 

Alts. 
 

Crit. Rate 1 Rate 2 Rate 3 Rate 4 Rate 5 Alts. Crit. Rate 1 Rate 2 Rate 3 Rate 4 Rate 5 

3  3  6.02 7.57  7.73 11.2  5.53 3 9 3.42 4.51  4.59 6.66 3.09 

5  3  10.45 14.01  14.97 31.68 6.17 5 9 5.7 8.4  8.73 19.85 3.39 

7  3  13.84 19.8  21.97 54.76 6.39 7 9 8.22 12.07  12.9 36.59 3.68 

9  3  16.91 24.62  28.52 73.16 6.55 9 9 9.96 15.31  16.67 53.2 3.78 

11  3  20.38 29.51  35.6 86.42 6.49 11 9 11.89 18.69  20.93 68.6 3.87 

13  3  22.43 33.56  42.07 93.58 6.52 13 9 13.62 21.82  24.98 80.94 3.88 

15  3  23.83 37.31  48.53 97.39 6.53 15 9 14.64 24.74  29.04 89.05 3.90 

17  3  26.11 40.61  55.1 98.93 6.46 17 9 15.65 27.38  32.63 93.91 3.87 

19  3  27.63 43.84  61.49 99.68 6.52 19 9 17.66 30  36.79 96.91 3.87 

21  3  28.24 46.46  67.35 99.87 6.53 21 9 18.15 32.22  40.33 98.59 3.86 

3  5  4.56 6.06  6.15 9 4.37 3 11 2.76 3.76  3.79 5.62 2.92 

5  5  7.93 11.19  11.74 25.9 4.74 5 11 5.79 7.7  7.94 18.28 3.24 

7  5  10.43 15.87  17.25 46.18 4.88 7 11 7.44 11.03  11.62 34.04 3.38 

9  5  13.57 20.13  22.58 64.16 5.07 9 11 9.26 13.83  14.97 49.14 3.51 

11  5  15.77 23.98  27.86 78.43 5.14 11 11 11.04 17.13  18.94 64.95 3.52 

13  5  18.53 27.87  33.38 88.68 5.14 13 11 12.32 20.07  22.64 77.47 3.50 

15  5  19.53 30.79  37.96 94.33 5.10 15 11 14.08 22.82  26.11 86.39 3.54 

17  5  21 34.01  43.15 97.52 5.16 17 11 14.61 25.15  29.62 92.18 3.52 

19  5  22.41 36.97  48.29 99.01 5.12 19 11 15.6 27.48  32.96 96.03 3.51 

21  5  23.6 39.64  53.34 99.66 5.09 21 11 17.03 30.09  37.12 98.01 3.51 

3  7  3.71 4.88  4.98 7.23 3.85 3 13 2.63 3.51  3.55 5.24 2.80 

5  7  6.78 9.37  9.78 22.03 4.14 5 13 4.59 6.93  7.1 16.66 2.96 

7  7  9.23 13.47  14.46 40.51 4.27 7 13 6.75 9.96  10.45 31.14 3.12 

9  7  11.4 17.15  18.97 57.9 4.28 9 13 9.13 13.51  14.55 48.48 3.08 

11  7  13.9 20.79  23.61 72.8 4.34 11 13 9.66 15.86  17.42 62.34 3.21 

13  7  15.24 23.82  27.82 83.82 4.38 13 13 11.16 18.9  21.15 74.98 3.21 

15  7  17 27.36  32.74 91.69 4.42 15 13 12.25 21.2  24.25 84.14 3.23 

17  7  18.33 30.31  36.94 95.88 4.42 17 13 13.29 23.56  27.46 90.6 3.22 

19  7  19.12 32.71  41.11 98.04 4.34 19 13 14.54 25.99  30.88 95 3.26 

21  7  20.04 35.37  45.66 99.22 4.34 21 13 15.37 27.78  33.54 97.28 3.23 
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Table I (part b):   Computational Results for the WSM Model. 

Size of Problem Differences in Rankings Size of Problem Differences in Rankings 

Alts. 
 

Crit. Rate 1 Rate 2 Rate 3 Rate 4 Rate 5 Alts. Crit. Rate 1 Rate 2 Rate 3 Rate 4 Rate 5 

3  15  2.6 3.45  3.48 5.13 2.48 3 19 2.07 2.8  2.83 4.17 2.23 

5  15  4.8 6.78  7 16.22 2.73 5 19 4.15 5.82  5.97 14.01 2.37 

7  15  6.25 9.42  9.86 29.61 2.91 7 19 5.48 8.27  8.61 26.09 2.63 

9  15  7.62 11.9  12.68 43.65 2.99 9 19 7.55 11.07  11.78 41.28 2.60 

11  15  9.61 15.05  16.38 59.96 2.95 11 19 8.57 13.53  14.63 56.03 2.65 

13  15  10.84 17.24  19.22 71.98 3.01 13 19 10.04 15.86  17.42 68.39 2.69 

15  15  11.93 19.89  22.61 81.9 3.00 15 19 10.42 18.06  20.16 78.66 2.71 

17  15  12.33 22.46  25.92 89.49 2.99 17 19 10.88 20.12  22.78 86.39 2.71 

19  15  13.12 24.36  28.49 93.81 3.03 19 19 11.55 22.35  25.82 91.69 2.70 

21  15  14.69 26.61  31.81 96.84 3.02 21 19 12.12 24.05  28.24 94.96 2.70 

3  17  2.31 3.05  3.07 4.54 2.36 3 21 2.43 2.96  3 4.41 2.02 

5  17  4.04 6.12  6.23 14.7 2.64 5 21 3.73 5.44  5.58 13.05 2.38 

7  17  6.29 9.12  9.53 28.65 2.69 7 21 5.41 8.26  8.62 26.1 2.44 

9  17  7.25 11.29  12.04 42.06 2.80 9 21 6.66 10.64  11.25 40.07 2.45 

11  17  8.9 14.09  15.29 56.94 2.84 11 21 7.81 13.01  13.95 54.3 2.55 

13  17  9.99 16.56  18.36 69.8 2.87 13 21 9.66 15.31  16.67 67.27 2.52 

15  17  10.88 19.08  21.47 80.66 2.88 15 21 9.82 17.26  19.13 76.2 2.55 

17  17  12.31 21.2  24.21 87.35 2.84 17 21 11.11 19.2  21.63 84.07 2.58 

19  17  12.56 23.19  26.95 92.39 2.87 19 21 12.06 21.56  24.71 90.51 2.57 

21  17  13.22 25.11  29.6 95.69 2.84 21 21 11.84 23.16  26.88 94.26 2.57 
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4 Computational Experiments 
   A computer program was written in FORTRAN in order to generate simulated decision problems. 
 As data we used random numbers in the range 9 to 1 in order to be consistent with the basic scale used by 
AHP which assumes any two performance values to be in the interval [9,  1/9].  The number of 
alternatives was equal to 3, 5, 7, ..., 21.  The number of the benefit and cost criteria (within each group) 
was also equal to 3, 5, 7, ..., 21.  That is we consider the problems to have the same number of benefit and 
cost criteria.  We did not consider cases with different numbers of benefit and cost criteria because that 
would have dramatically increased the number of the test problem cases by introducing more problem 
parameters.  However, some pilot tests indicate that the contradiction rates (which as described in the 
following section are rather high) would be even higher when the numbers of cost and benefit criteria are 
not equal with each other.   
 With our experimental design approach we captured a rather wide range of sizes of MCDA 
problems.  In some actual problems sizes might be outside this range (i.e., of higher value since the 
number of criteria cannot be less than 3), but it is believed that the trends revealed in this extensive 
simulation study will hold true as well.  These ranges have also been used in all the computational 
experiments run by the first author and his research associates (see, for instance, [Triantaphyllou, 
Lootsma, Pardalos, and Mann, 1994], [Triantaphyllou, and Mann, 1994a; and 1994b], and 
[Triantaphyllou, 2000]).  Thus each test problem had the same number of benefit and cost criteria.  
Therefore, the total number of criteria was equal to 6, 10, 14, ..., 42.  Each test problem was examined by 
applying the WSM, the AHP, and the revised AHP as was the case in the illustrative examples described 
in the previous section.  Since the multiplicative AHP is perfectly consistent under both criteria 
aggregation approaches, this method was not considered in this empirical study. 
 Since we had ten cases of different numbers of criteria and alternatives, we considered 100 (i.e., 
10x10) different combinations.  For each such combination we run 10,000 random replications and each 
problem was solved by using the previous three MCDA methods as in the previous illustrative examples. 
The sample size of 10,000 was large enough to ensure statistically significant results. Some of the 
computational results are presented as Table I (parts a and b).  The rest of the computation results are 
available to interested readers from the first author.  
 For each test problem, the two rankings derived by using the benefit to cost and benefit minus 
cost approach were analyzed in five different ways.  The first way was to see whether the two rankings 
agreed in the indication of the best alternative (since in many MCDA problems the interest is in the 
identification of the best alternative only).  The percentage of times the two approaches yielded a different 
indication of the best alternative is denoted as "Rate 1" in Table I (parts a and b).  For instance, in Table I 
(part a) when the WSM method is used and the number of criteria and alternatives are equal to 3 and 13, 
respectively, "Rate 1" is equal to 2.63.  This means that 2.63% of the test problems with 3 cost and 3 
benefit criteria and 13 alternatives resulted in a different indication of the best alternative when the two 
ranking approaches were combined with the WSM method. 
 The second way of comparing the two rankings was the number of different rankings divided by 
the corresponding number of alternatives.  This is indicated as "Rate 2" in Table I.  As with the previous 
case, for test problems with the number of cost (or benefit) criteria and alternatives equal to 3 and 13, 
respectively, "Rate 2" is equal to 3.51.  This means that, on the average, the two rankings were different 
by 3.51 when the difference was measured as the number of cases the two rankings were different from 
each other and then by dividing by the number of alternatives.  For instance, suppose that five alternatives 
were evaluated and one ranking was equal to (1, 2, 3, 4, 5) while the second ranking was equal to (1, 2, 5, 
4, 3).  Then the value recorded was equal to: (1 + 1) / 5 = 0.40 (since these two rankings differ in two 
ranks only).  
 The third way was to calculate the sum of the absolute differences of the two rankings.  This was 
recorded as "Rate 3" in Table I.  For instance, for the previous illustrative example with the two rankings 
of (1, 2, 3, 4, 5) and (1, 2, 5, 4, 3), the corresponding value is:  (0 + 0 + |3-5| + 0 + |5-3|) / 5 = 0.80. 
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 The fourth way (denoted as “Rate 4” in Table I) was to record the number of times the two 
rankings were different from each other, without considering the magnitude of the individual differences. 
 That is, when two rankings are evaluated, this rate would be equal to 0 if the two rankings are identical or 
equal to 1, otherwise (i.e., it is binary valued).  For instance, for the pair of rankings (1,2,3,4,5) and 
(1,2,5,4,3) the rate is equal to 1.  Similarly with above, for test problems with 3 cost and 3 benefit criteria 
and 13 alternatives this rate is equal to 5.24% when the WSM method is used.   

The fifth way is to consider a weighted measure for expressing differences in ranking 
discrepancies.  In this paper we call it “Rate 5”.  According to this measure one may wish to assign more 
significance to discrepancies on top rankings and less significance to discrepancies on lower rankings.  
Although one may use any kind of weights to achieve the previous intentions, in [Ray and Triantaphyllou, 
1998] it was suggested to use the weights (n, n-1, n-2, …, 2, 1).  For instance, if the two rankings are (3, 
2, 1, 5, 4) and (1, 2, 3, 4, 5) then the weighted absolute differences are: 5|3-1| + 4|2-2| + 3|1-3| + 2|5-4| + 
1|4-5| = 20. That is, the following formula is used to express this weighted difference of two rankings 
denoted as Rank(1) and Rank(2) : 
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Next one may wish to normalize this sum with the largest possible value it can have.  The largest 
such value is when the two ranking vectors are opposite of each other.  Thus, the maximum sum is equal 
to: 
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For the previous example that maximum value will be equal to:  
5|5-1| + 4|4-2| + 3|3-3| + 2|2-4| + 1|1-5| = 36. 

 
Therefore, the mathematical formula for the fifth rate is the ratio of the previous two formulas: 
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Thus, for this illustrative example the value is equal to 20/36 = 0.556.  Finally, it should be stated here 
that some theoretical results on the domain values the above discrepancy measures may assume, are 
discussed in [Ray and Triantaphyllou, 1999]. 
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Figure 1: Rate the two rankings point to different alternative as being the best one (i.e., "Rate 1").  

The WSM case.  The different curves represent cases where the number of alternatives is 
equal to 3, 5, 7, 9, …, 17, 19, and 21 from the bottom and up in that order. 
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Figure 2: Rate the two rankings point to different alternative as being the best one (i.e., "Rate 1").  

The AHP case.  The different curves represent cases where the number of alternatives is 
equal to 3, 5, 7, 9, …, 17, 19, and 21 from the bottom and up in that order. 
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Figure 3:  Rate the two rankings point to different alternative as being the best one (i.e., "Rate 1").  

The revised AHP case.  The different curves represent cases where the number of 
alternatives is equal to 3, 5, 7, 9, …, 17, 19, and 21 from the bottom and up in that order. 
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Figure 4:  Comparison of the three MCDA Methods in terms of Rate 1 when a problem has 11 

alternatives. 
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Figure 5:  Number of differences in the two rankings (i.e., "Rate 2").  The AHP case.  The different 

curves represent cases where the number of alternatives is equal to 3, 5, 7, 9, …, 17, 19, 
and 21 from the bottom and up in that order. 
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Figure 6:  Absolute differences in the two rankings (i.e., "Rate 3").  The AHP case.  The different 

curves represent cases where the number of alternatives is equal to 3, 5, 7, 9, …, 17, 19, 
and 21 from the bottom and up in that order. 
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Figure 7:  Number of times the two rankings differ with each other (i.e., "Rate 4").  The AHP case. 

The different curves represent cases where the number of alternatives is equal to 3, 5, 7, 
9, …, 17, 19, and 21 from the bottom and up in that order. 
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Figure 8:  Weighted differences in the two rankings (i.e., "Rate 5").  The AHP case.  The different 

curves represent cases where the number of alternatives is equal to 3, 5, 7, 9, …, 17, 19, 
and 21 from the bottom and up in that order. 
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Figure 9:  Comparison of the three MCDA Methods in terms of Rate 2 when a problem has 11 

alternatives. 
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Figure 10:  Comparison of the three MCDA Methods in terms of Rate 3 when a problem has 11 

alternatives. 
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Figure 11:  Comparison of the three MCDA Methods in terms of Rate 4 when a problem has 11 

alternatives. 
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Figure 12:  Comparison of the three MCDA Methods in terms of Rate 5 when a problem has 11 

alternatives. 
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5 Analysis of the Computational Results 
 The computational results also suggest that the three methods (i.e., the WSM, the AHP, and the 
revised AHP) performed almost identically with each other.  This is graphically illustrated in Figures 1, 2, 
3, and 4.  The patterns exhibited in these three figures are almost the same, although they correspond to 
different MCDA methods.  The results in these four figures describe the contradiction rates when the 
focus is on the indication of the best alternative (i.e., “Rate 1”). 
 A similar situation holds true for the other remaining four contradiction rates.  For reason of 
simplicity, plots are presented only for the AHP case, since the patterns for the WSM and the revised 
AHP are very similar with those for the AHP.  This is evident in Figure 4 which is representative of all 
cases.  Detailed results are presented as Figures 5, 6, 7, and 8.  In all these figures the top curve 
corresponds to problems with 21 alternatives while each one successively lower curve corresponds to 
problems with 19, 17, 15, etc. alternatives.  Thus, the bottom curve corresponds to problems with 3 
alternatives.   
 A closer examination of these figures reveals a number of interesting points.  First, with reference 
to Rate 1, the following observations can be made (see also Figures 1, 2, 3, and 4).  These contradiction 
rates range from 3% to 30%.  The higher the number of the alternatives, the higher is the percentage of 
different indications of the best alternative.  This was anticipated because the more the alternatives are, 
the more likely is for the ranking procedures to disagree in the indication of the best alternative.  
 However, the opposite is true with the number of decision criteria in  an  MCDA problem. This 
likely happens because with a greater number of criteria and uniformly distributed input data in the 
interval [9, 1], the best alternatives tend to assume similar values.  Thus, the same alternative is likely to 
be identified as the best when both ranking approaches are used and the number of criteria is high.   
 The above situation also holds true when differences in the entire ranking (i.e., "Rate 2") are 
concerned (see also Figure 5).  A similar situation also occurs with the results for "Rate 3" (see also 
Figure 6).  Only the intensities of the previous contradictions differ.  
 Please recall that the case of "Rate 4" (i.e., the number of times the two ranking approaches 
yielded different rankings) is depicted in Figure 7.  This figure reveals that these contradiction rates are 
very dramatic.  For instance, for test problems with 9 alternatives, the contradiction rates ranged from 
70% (when the number of cost or benefit criteria is equal to 3) to almost 50% (when the number of 
criteria is equal to 21). For test problems with more than 11 alternatives the contradiction rates are 
between 100% and 50%, while for test problems with more than 19 alternatives the contradiction rates are 
always above 90%. The same results also indicate that the numbers of alternatives and criteria in a test 
problem play a similar role as in the previous results.   
 Figure 8 describes the results for the weighted measure given as “Rate 5”.  Please recall that this 
measure has been normalized by dividing the individual results by the maximum possible value for that 
case (see also the formulas at the end of Section 4 describing this weighted measure).  
 The computational results in this study strongly suggest that the two conflicting criteria 
aggregation approaches can make a substantial difference on the way the alternatives in an MCDA 
problem are ranked.  The more the alternatives in a problem are, the higher is the possibility to have a 
significant discrepancy between the two rankings.  For the case of "Rate 4" these differences can be 
profoundly dramatic.  
 Finally, Figures 9, 10, 11, and 12 present results when all the three additive MCDA methods (i.e., 
the WSM, revised AHP, and the original AHP) are compared with each other.  These figures are similar 
to Figure 4 which presents comparative results regarding Rate 1.  In all these figures the number of 
alternatives was kept equal to 11 while the number of criteria was equal to 3, 5, 7, …, 21.  These figures 
demonstrate that in our computational experiments the three additive MCDA models (i.e., the WSM, the 
revised AHP and the original AHP) performed in almost the same manner.  One may observe that in these 
last four figures it appears that the WSM performed slightly worse than the revised AHP which, in turn, 
performed slightly worse than the original AHP.   The differences are statistically very small to have any 
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real practical significance.   
On the other hand, the multiplicative AHP would always generate contradiction rates equal to 

zero, as it is proven theoretically that it is always consistent and the two criteria aggregation methods 
always generate identical rankings of the alternatives.  Please recall that in previous studies (i.e., in 
[Triantaphyllou, 2000; and 2001]) by the first author it was found that these three MCDA methods 
generated considerable ranking reversals under certain ranking reversal tests, while the multiplicative 
AHP was always perfectly consistent in terms of those ranking reversal tests. 
  
6  Concluding Remarks 
 This paper does not claim that the process of dividing the criteria into two groups (“benefit” and 
“cost”) is good or bad.  It simply uses this grouping to derive two aggregated measures of performance of 
the alternatives.  One measure is based on all the “benefit” criteria while the other is based on all the 
“cost” criteria.  Next the two measures are processed according to the two approaches and the overall 
rankings of the alternatives are derived.  This study found that this might yield contradictory results when 
a number of MCDA methods are used.  This implies that the two criteria aggregation approaches, when 
benefit and cost criteria are simultaneously present in an MCDA problem, are indeed questionable when 
they are used with some additive MCDA methods.   

Other MCDA methods, such as the ELECTRE and TOPSIS, were not examined because their 
structure dictates only a single way for aggregating criteria into the two categories.  Some previous 
studies [Triantaphyllou, 2000; and 2001], [Wang and Triantaphyllou, 2004] have found that these 
methods suffer from certain ranking irregularities.  Another group of methods, namely the PROMETHEE 
methods, have not been examined in this paper.  However, since all these methods also use additive 
formulas, we believe that they too would exhibit ranking irregularities. 

All the MCDA methods that suffer of the various ranking irregularities do so because of two 
factors.  First, they somehow normalize the data when new alternatives are considered or existing ones are 
eliminated or modified and secondly, they use additive formulas in their computations. Such 
mathematical operations may alter the relative strength of some of the alternatives and thus alter their 
ranking.    

In this paper we also demonstrated theoretically that the above problems with the two criteria 
aggregation methods, when benefit and cost criteria are simultaneously present in an MCDA problem, do 
not occur when two multiplicative MCDA methods are used.  These methods are the WPM and the 
multiplicative AHP.  We also note that this does not prove that these two methods are “perfect”, but this 
consistency in their rankings is to their credit.  
 The above theoretical analyses and empirical results revealed that the two conflicting criteria 
aggregation approaches described in this paper may yield dramatically different rankings in many test 
MCDA problems.  If for a given MCDA problem, the two rankings are identical, then the decision maker 
may feel more comfortable with it.  This may be more the case if the corresponding final preference 
values (i.e., the Pi values) strongly discriminate among the alternatives.  Otherwise, any results must be 
taken with some degree of skepticism.  Finally, it should be stated at this point that the criteria 
aggregation approaches should be applied when criteria of both types (i.e., benefit and cost type) are 
present simultaneously in an MCDA problem.  This is true regardless of the number of criteria, as long as 
criteria from both types are present.  
 The previous analyses reinforce the conclusions of previous studies which strongly support the 
use of the multiplicative AHP method.  It should be stated here that either one of the two aggregation 
methods is applicable when the multiplicative AHP is used (as, according to this study, both methods are 
equivalent to each other under this particular MCDA method).  The multiplicative AHP was also perfectly 
consistent when it was examined in terms of some ranking tests as reported in [Triantaphyllou, 2000; and 
2001]. The investigation in [Triantaphyllou, 2001] also revealed cases with ranking irregularities (ranking 
reversals) when the WSM, AHP, and the revised AHP are used on simulated test problems or on some 



 
 

 24

real-life MCDA problems.  
 Although the WPM and the multiplicative AHP are perfectly consistent in terms of the two 
ranking approaches analyzed in the present study or the ranking studies reported in [Triantaphyllou, 
2001], these methods may still fail.  When one considers problems in which all the criteria can be 
expressed in the same unit of measurement (say in U.S. dollars), then the results derived with the 
application of the WSM are the most widely accepted ones.  However, when the WSM and the WPM 
(which can be viewed as an early version of the multiplicative AHP) are tested under the assumption of 
having the same unit of measurement, then in [Triantaphyllou and Mann, 1989] it was shown that these 
two methods may yield very different rankings.   

 Another alternative aggregation approach might be to compare each one of the “benefit” 
criteria with each one of the “cost” criteria and derive relative weights between the two types of criteria. 
Such an approach would certainly give the decision analyst the opportunity to incorporate more 
information into the decision-making process.  It is noticeable that a similar approach plays a key role in 
the Analytic Hierarchy Process (AHP).  However, that may introduce some additional challenges.  For 
example, what happens if individual pairwise comparisons are inconsistent with each other?  How to 
combine the individual comparisons into a unified result on the weights of the criteria?  How to deal with 
the potentially high (actually, quadratic) number of comparisons?   
 
In summary, the main findings of this study are as follows: 

(1) For the decision problem of selecting the best alternative or ranking the alternatives when 
conflicting (i.e., “benefit” and “cost”) criteria are present, it could make the difference which 
criteria aggregation method (i.e., the ratio of benefit to cost or the difference of benefit minus 
cost) one uses and which is the MCDA method used.  In particular, if the original or the revised 
AHP are used, then the two criteria aggregation methods may yield significantly different results. 

(2) The contradiction rates between the two rankings are more dramatic for problems with many 
alternatives but a few criteria. 

(3) The three additive MCDA methods (i.e., the WSM, the revised AHP and the original AHP) 
performed almost the same way with the original AHP slightly better than the other two and the 
WSM slightly worse than the other two. 

(4) There is no way to know which is the “right” ranking and which is not. 
(5) The multiplicative AHP (and the WPM; an early version of the multiplicative AHP) is immune to 

any ranking reversals as both criteria aggregation methods always yield identical results.  It is 
proved theoretically that these two criteria aggregation methods are perfectly consistent in terms 
of the ranking tests performed in this study.  This result reinforces the merit of using the 
multiplicative AHP and it further supports similar results reported in [Triantaphyllou, 2000; and 
2001] where some additive versions of the AHP and the WSM methods were tested for ranking 
reversals.  In those studies all the criteria were considered to be either of the benefit or the cost 
type.   

 
 The first three comments are supported by the empirical results derived in this study, while the 
last two ones are supported by the theoretical issues discussed in this paper.  This study further promotes 
the use of the multiplicative AHP versus the additive versions of the AHP and the WSM method.  The 
findings of this paper reinforce the belief that the results of MCDA methods should not be taken literally 
but should be dealt with as decision support tools.  Clearly, more research in this area is required. 
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