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INTRODUCTION

There is considerable research on sensitivity analysis for some operations research and management

science models such as linear programming and investment analysis.  For example, in a sensitivity analysis

approach for linear programming, Wendel (1992) utilized a tolerance approach to handle variations in the

parameters of more than one term (in the LP sense) at a time.  Furthermore, that type of sensitivity

analysis is considered as a post-optimality step.  That is, the analysis is done after the optimal decision is

determined.  However, research on sensitivity analysis in deterministic multi-criteria decision making

(MCDM) models is limited.

Myers and Alpert (1968) first introduced the notion of the determinant attributes in choice theory

and consumer behavior.  In that development Myers and Alpert focused on consumer and behavioral

aspects of buyers.  Later, Alpert (1971) compared several determinant analysis techniques and found

significant support for using the direct dual questioning determinant attribute (DQDA) approach.  That

made DQDA popular for marketing applications (see, for instance, Anderson, Cox, and Fulcher, 1976;

Martin and Winteregg, 1989; and Sinclair and Stalling, 1990).

Barron and Schmidt (1988) recommended two procedures to accomplish a sensitivity analysis in

multi-attribute value models.  These are an entropy based procedure and a least squares procedure.  For

the entropy based procedure they assumed nearly equal weights.  However, the least squares procedure

required a set of arbitrary weights for the attributes.  These procedures calculate for a given pair of

alternatives, one of which is the best alternative, the closest set of weights that equates their  ranking. The

procedures can also calculate the nearly-equal weights that promote the second best alternative by a specific

amount to exceed the optimal alternative by a predetermined amount.  One of their findings is that in

additive models, the weights do matter, that is, for a small change in the weights the optimal alternative

may change.  Watson and Buede (1987) illustrated sensitivity analysis in a decision modeling strategy. 

Von Winterfeldt and Edwards (1986) covered sensitivity analysis in the traditional way for those

problems which can be approached by using multi-attribute utility theory (MAUT) or a Bayesian model.

They defined the  Flat Maxima Principle  for MAUT problems, which states that the existence of

dominance makes sensitivity analysis almost unnecessary.  Furthermore, they advice against an over-
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generalization of flat maxima, which is applicable exclusively to the expected value and value functions

defined on prior probabilities and weights only.  One interesting point of the Von Winterfeldt and Edwards

approach is the idea of switchover or break-even points.  A switchover point is the point at which the

parameters produce the break-even utility.  Switchovers are important because they guide further modeling

and elicitation.  If the circumstances of the problem imply that both the analysis and the parameters one

is using are remote from switchover points, then the decision maker can be confident of the validity of the

current results. 

Evans (1984) investigated linear programming-like sensitivity analysis in decision theory.  His

approach is based on the geometric characteristics of optimal decision regions in the probability space.

Evans made an analysis on the sensitivity of the optimal decision to changes on probabilities of the states

of nature.  Also, in Triantaphyllou (1992) a sensitivity analysis approach is described for a class of

inventory models.  A methodology for sensitivity analysis in multi-objective decision making is described

in Ríos Insua (1990).  That treatment introduced a general framework for sensitivity analysis which

expanded results of the traditional Bayesian approach to decision making.  Emphasis is given to cases

which use partial  and/or doubtful data.  Also that work contains an analysis of why the flat maxima

principle is not valid.  The Ríos Insua (1990) book also includes the description of SENSATO; a prototype

library of a sensitivity analysis package for decision aids.  However, the present paper assumes that the

data are not stochastic and it focuses on the issue of sensitivity analysis on the weights of the decision

criteria and the performance measures of the alternatives in deterministic environments.

Samson (1988) presented a whole new approach to sensitivity analysis.  He proposed that

sensitivity analysis should be part of the decision analysis process thinking in real time.  That is, it should

be integrated into every step of the decision analysis.  Samson noted that sensitivity analysis can be a most

useful tool when it is embedded into a continuous cycle process during which at each stage of the decision

process the analysis can go back to previous stages to check, add, or modify parts of the problem. 

French (1986), (1989) emphasized the role of sensitivity analysis on decision making.  He

performed an analysis of the use of interactive decision aids to overcome some of the difficulties in

modeling judgments.  The models examined were mostly stochastic as opposed to deterministic.
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Furthermore, he stressed the importance of having better and more general sensitivity analysis tools.

Also, French and Ríos Insua (1989) used a distance minimization approach to determine competitors to

a current optimal solution.  Some other related sensitivity analysis studies are reported in Alexander

(1989); Hartog, Hinloopen and Nijkamp (1989); and Weber, Eisenfuhr and Von Winterfeldt (1988). 

A recent development in sensitivity analysis when the analytic hierarchy process (AHP) (see Saaty,

1980, 1994) is used is due to Masuda (1990).  In that work Masuda studied the effect of changes on entire

vectors of the decision matrix may have on the ranking of the alternatives.  That author considered

multiple levels of hierarchies.  However, he did not offer a procedure for performing a sensitivity analysis

on changes on an individual piece of data of a given problem (i.e., on a single criterion weight or the

performance value of an alternatives in terms of a given criterion).  The proposed sensitivity analysis is

complementary to the one developed by Masuda and the two approaches can be used together (since the

proposed approach can focus on individual judgments while the Masuda approach considers a single vector

at a time).  Also, Armacost and Hosseini (1994) presented a procedure for determining the most critical

criterion for a single level hierarchy AHP problem.  However, the latter work does not explicitly

determine what is the smallest change on the current weight of a criterion, such that the existing ranking

of the alternatives will change.

As a related comment it should also be stated here that Expert Choice (1990), a software package

on the AHP, performs a type of elementary sensitivity analysis.  The user has the option to graphically

alter the weights of the decision criteria and see on the screen how the rankings of the  alternatives will

change.  However, the issue of criteria sensitivity analysis is not studied systematically.  Moreover, Expert

Choice does not offer any means for studying the effects of changes on the measures of performance of

the alternatives (which is part of the proposed methodology in this paper).

In decision making the weights assigned to the decision criteria attempt to represent the genuine

importance of the criteria.  When criteria cannot be expressed in quantitative terms (such as cost, weight,

volume, etc.), then it is difficult to represent accurately the importance of these criteria.  In a situation like

this, the decision making process can be improved considerably by identifying the critical criteria (the

formal definition is given later) and then re-evaluate more accurately the weights of these criteria.  The
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intuitive belief is that the criterion with the highest weight is the most critical one (Winston, 1991, p. 754).

This may not always be true and in some instances the criterion with the lowest weight may be the most

critical one.

The decision maker can make better decisions if he/she can determine how  critical each criterion

is.  In other words, how sensitive the actual ranking of the alternatives is to changes on the current weights

of the decision criteria.  In this paper we examine two closely related sensitivity analysis problems.  In

the first problem we determine how critical each criterion is, by performing a sensitivity  analysis on the

weights of the criteria.  This sensitivity analysis approach determines what is the smallest change in the

current weights of the criteria, which can alter the existing ranking of the alternatives.  In the second

problem, we use a similar concept to determine how critical the various performance measures of the

alternatives (in terms of a single decision criterion at a time) are in the ranking of the alternatives. These

two types of sensitivity analysis problems will be explored in latter sections.  

The next section briefly describes the MCDM methods considered in this paper.  The third section

presents the formal definitions of the two sensitivity problems analyzed in this study.  The related concepts

and methods are further illustrated in terms of some demonstration examples.  Computational experiments

were also performed in order to increase the insight of these sensitivity issues.  Finally, the last section

presents the main conclusions of the proposed methodology. 

SOME MULTI-CRITERIA DECISION MAKING METHODS

There are three main steps in utilizing a decision making technique involving numerical analysis of a set

of discrete alternatives:

1. Determining the relevant criteria and alternatives.

2. Attaching numerical measures to the relative importance (i.e., weights) of the criteria and

to the impacts (i.e, the measures of performance) of the alternatives in terms of these

criteria.

3. Processing the numerical values to determine a ranking of each alternative.
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In this paper we are interested in a sensitivity analysis on the data described in step 2, above.  

Consider a decision making problem with M alternatives and N criteria.  In this paper alternatives

will be denoted as Ai (for i = 1,2,3,...,M) and criteria as Cj (for j = 1,2,3,...,N).  We assume that for

each criterion Cj the decision maker has determined its importance, or weight, Wj.  It is also assumed that

the following relationship is always true:

(1)j
N

j'1

Wj ' 1.

Furthermore, it is also assumed that the decision maker has determined aij  (for i = 1,2,3,...,M

and j = 1,2,3,...,N); the importance (or measure of performance) of alternative Ai in terms of criterion

Cj.  Then, the core of the typical MCDM problem examined in this paper can be represented by the

following decision matrix as seen in Table 1.

Table 1:  Decision matrix.
Criterion

C1 C2   C3  ... CN

        Alt. W1   W2   W3    ... WN 
_______________________________________
A1   a11 a12 a13   ... a1N

A2   a21  a22  a23   ... a2N

A3    a31 a32 a33   ... a3N
 .  .  .  .  .  .
 .  .  .  .  .  .
 .  .  .  .  .  .

AM    aM1  aM2 aM3   ... aMN

Some decision methods (for instance, the AHP) require that the aij values represent relative importance.

Given the above data and a decision making method, the objective of the decision maker is to find the best

(i.e., the most preferred) alternative or to rank the entire set of alternatives. 

Let Pi (for i = 1,2,3,...,M) represent the final preference of alternative Ai  when all decision

criteria are considered.  Different decision methods apply different procedures in calculating the values

Pi. Without loss of generality, it can be assumed (by a simple rearrangement of the indexes) that the M

alternatives are arranged in such a way that the following relation (ranking) is satisfied (that is, the first

alternative is always the best alternative and so on):

(2)P1 $ P2 $ P3 ...$ PM.
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The next subsections briefly describe the three MCDM methods and one variant to be considered in this

paper.  For an evaluation of these methods the interested reader may want to consult with the analyses

reported in Triantaphyllou (1989, 1994).

The Weighted Sum Model

Probably the simplest and still the widest used MCDM method is the weighted sum model (WSM).

The preference Pi of alternative Ai (i = 1,2,3,...,M) is calculated according to the following formula

(Fishburn, 1967):

(3)Pi ' j
N

j'1
ai,j Wj, for i ' 1,2,3,...,M.

Therefore, in the maximization case, the best alternative is the one which corresponds to the largest

preference value.  The supposition which governs this model is the  additive utility assumption. However,

the WSM should be used only when the decision criteria can be expressed in identical units of measure

(e.g., only dollars, or only pounds, or only seconds, etc.).

The Weighted Product Model

The weighted product model (WPM) is very similar to the WSM.  The main difference is that

instead of addition in the model there is multiplication.  Each alternative is compared with the others by

multiplying a number of ratios, one for each criterion.  Each ratio is raised to the power equivalent to the

relative weight of the corresponding criterion.  In general, in order to compare alternatives Ap and Aq

(where M $ p,q $ 1) the following product (Bridgman, 1922; Miller and Starr, 1969; Chen and Hwang,

1992) has to be calculated:

(4)R
Ap

Aq

' k
N

j'1

ap j

aq j

Wj

.

If the ratio  R(Ap/Aq) is greater than or equal to one, then the conclusion is that alternative Ap is

more desirable than alternative Aq (for the maximization case).  The best alternative is the one which is

better than or at least equal to all other alternatives.  The WPM is sometimes called dimensionless

analysis because its structure eliminates any units of measure.  Thus, the WPM can be used in single and
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multi-dimensional decision making problems.

The Analytic Hierarchy Process

Part of the analytic hierarchy process (AHP) (Saaty, 1980, 1994) deals with the structure of an

M×N matrix.  This matrix, say matrix A, is constructed using the relative importance of the alternatives

in terms of each criterion.  The vector (ai,1, ai,2, ai,3, ...,ai,N), for each i=1,2,...,M, in this matrix is the

principal eigenvector of an N×N reciprocal matrix which is determined by pairwise comparisons of the

impact of the M alternatives on the i-th criterion.  Some evidence is presented in Saaty (1980) which

supports the technique for eliciting numerical evaluations of qualitative phenomena from experts and

decision makers.  For a critical evaluation of the eigenvector approach and the AHP the interested reader

can consult with the investigations reported by Triantaphyllou, Pardalos and Mann, 1990a, 1990b; and

Triantaphyllou and Mann, 1990.

According to AHP the final preference, Pi, of alternative Ai is also given by formula (3). However,

now the aij value expresses the relative performance value of alternative Ai when it is examined with the

rest of the other alternatives in terms of criterion Cj.  In the maximization case, the best alternative is the

one which corresponds to the highest Pi value. The similarity between the WSM and the AHP is clear. The

AHP uses relative values instead of absolute measures of performance (which may or may not be readily

available).  In the original version of the AHP the performance values aij are normalized so they sum up

to one.  That is, the following relation is always true in the AHP case:

(5)j
M

i'1
ai,j ' 1, for any j ' 1,2,3,...,N.

Thus, it can be used in single or multi-dimensional decision making problems.

Belton and Gear (1983) proposed a revised version of the AHP model.  They demonstrated that

an unacceptable rank reversal may occur when the AHP is used.  Instead of having the relative values of

the alternatives A1, A2, A3, ..., AM sum up to one (e.g. equation (5) to hold),  they propose to divide each

relative value by the maximum quantity of the relative values in each column of the M×N matrix A.

Later, Saaty (1994) accepted the previous notion as a variant of the original AHP and now he calls it the



8

ideal mode AHP.

DESCRIPTION OF THE TWO MAJOR SENSITIVITY ANALYSIS PROBLEMS

The structure of the typical decision problem considered in this paper consists of a number, say M, of

alternatives and a number, say N, of decision criteria.  Then, the pertinent data form a decision matrix as

described earlier at the beginning of the second section of this paper.  Given such a decision matrix, the

decision problem considered in this paper is how to determine which is the best alternative or rank the

entire set of alternatives.  

In a simple MCDM situation, all criteria are expressed in terms of the same unit (e.g., dollars).

However, in many real life MCDM problems different criteria may be expressed in different dimensions

(units).  Examples of such dimensions include dollar figures, weight, time, political impact, environmental

impact, etc.  It is this issue of multiple dimensions which makes the typical MCDM problem to be a

complex one.

Given the above data, the objective of the decision maker is to rank the alternatives.  The

alternatives are ranked according to their final preferences Pi (i=1,2,3,...,M).  Recall that the Pi values

are calculated according to formulas (3), (4) and (5). 

The first major problem which is examined in this paper is how to determine the most critical

criterion in the previous decision making problem.  Intuitively, one may think that the  most critical

criterion is the criterion which corresponds to the highest weight Wj.  However, this notion of criticality

may be misleading.  In this paper, the most critical criterion is defined in two alternative ways.  In the first

way the interest is on whether the indication of the best (top) alternative changes or not.  On the second

definition the interest is on changes on the ranking of any alternative.  These definitions are given formally

in the next section.

In the previous notion of criticality, the term smallest change can be defined in two different ways.

The first way is to define smallest change in absolute terms.  The second way is to define smallest change

in relative terms.  For instance, suppose that the two criteria C1 and C2 have weights W1 = 0.30 and W2
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= 0.50, respectively.  Furthermore, suppose that when the first weight becomes W /
1 = 0.35, then the

existing ranking of the alternatives changes.  Similarly, suppose that when the second weight becomes W

/
2 = 0.57, then the existing ranking of the alternatives changes.  In absolute terms for both criteria, the

first criterion is the most critical criterion.  This is true since the change of the weights for C1 is: *W1 -

W /
1* = 0.05, while for C2 it is: *W2 - W /

2* = 0.07.  That is, for the first criterion the critical change is

smaller than for the second criterion.

However, when one considers relative terms, then the previous picture changes.  In relative terms,

the change of the weights for C1 is: *W1 - W /
1*×100/W1 = 16.67, while for C2 it is: *W2 - W /

2*×100/W2

= 14.00.  That is, for the second criterion the relative change is smaller than for the first criterion.

Therefore, when the relative changes are considered, then the most critical criterion is C2.

It can be observed that regarding changes on the ranking of the alternatives one may view them

from two different perspectives as follows.  First, one might be interested to see when a change in the

current data causes any two alternatives to reverse their existing ranking.  However, it is also possible one

to be interested only when the best (top) alternative changes.  

Therefore, a total of four alternative definitions can be considered.  These are coded as  Absolute

Any (AA), Absolute Top (AT), Percent Any (PA), and Percent Top (PT).  This approach, however, might

be misleading.  After all, a change, say by 0.03, does not mean much unless someone is also given the

original value.  A change of 0.03 is very different if the original value was 0.08 or 0.80.  That is, it is

more meaningful to use relative changes.  Therefore, in this paper the emphasis will be on relative

(percent) changes and thus all developments are based on relative changes.  However, the proposed

methodology and illustrative numerical examples presented later, do present how one can also derive

changes in absolute terms.  It can be noticed that in order for one to derive changes in relative terms,

changes in absolute terms need to be calculated first. 

The above notion of critical change is used to determine both the most critical criterion (problem

1) and the most critical aij performance measure (problem 2).  As an extension of determining the most

critical criterion (or aij performance measure), the notion of critical change is used to determine how
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critical each criterion weight Wi and performance measure aij is.  These two problems are examined in

more detail in the subsequent sections.

PROBLEM 1: DETERMINING THE MOST CRITICAL CRITERION

Definitions and Terminology

First we consider the case of changes in the current weights of the decision criteria.   

DEFINITION 1:   Let *k,i,j (1 # i < j # M and 1 # k # N) denote the minimum change in the

current weight Wk of criterion Ck such that the ranking of alternatives Ai and Aj will be reversed.

 

Also, define as:

*/
k,i,j  =  *k,i,j × 100/Wk,   for any 1 # i < j # M and 1 # k # N. (6)

That is, */
k,i,j expresses changes in relative terms.  As it will be shown later (in Theorem 1) it is possible

for a given pair of alternatives and a decision criterion, the critical change to be infeasible.

The most critical criterion is defined in two possible ways (recall that from relations (2) alternative

A1 is always assumed to be the best alternative).  The first of these two definitions (i.e., definition 2)

applies when one is interested only in changes in the best alternative, while the second definition (i.e.,

definition 3) applies when one is interested in changes in the ranking of any alternative.  Recall that *s*

stands for the absolute value function (e.g., *-5* = +5).

DEFINITION 2:   The Percent-Top (or PT) critical criterion is the criterion which corresponds

to the smallest **/
k,1,j* ( 1 # j # M and 1 # k # N) value.

DEFINITION 3:   The Percent-Any (or PA) critical criterion is the criterion which corresponds

to the smallest **/
k,i,j* (1 # i < j # M  and 1 # k # N) value.

It can be recalled that in this paper we adopt the definitions which correspond to relative changes.  The

following two definitions express how critical a given decision criterion is.
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DEFINITION 4:   The criticality degree of criterion Ck, denoted as D /
k, is the smallest percent

amount by which the current value of Wk must change, such that the existing ranking of the

alternatives will change.  That is, the following relation is true: 

D
/
k ' min

1#i<j#M
* */

k, i, j * , for all N $ k $ 1.

DEFINITION 5:   The sensitivity coefficient of criterion Ck, denoted as sens(Ck ), is the

reciprocal of its criticality degree.  That is, the following relation is true: 

sens(Ckk) '
1

D
/
k

, for any N $ k $ 1.

If the criticality degree is infeasible (i.e., impossible to change any alternative rank with any

weight change), then the sensitivity coefficient is set equal to zero. 

The previous two definitions 4 and 5 are based on changes on the ranking of any alternative.

However, one may be interested only in changes on the ranking of the best (top) alternative.  For instance,

in a problem involving the purchase of a house, the focus is on the best house and the ranking of all

alternative houses may be of secondary interest.  In cases like the above, one may want to use

modifications of the criticality degree and sensitivity coefficient concepts in which changes are only defined

on the ranking of the best alternative.  Also observe that since D /
k is always less than 1.00, it follows that

the value of sens(Ck) is always greater than or equal to 1.00.

Some Theoretical Results in Determining the Most Critical Criteria 

Case (i): Using the WSM or the AHP Method

Now it is assumed that a decision maker uses the WSM or the AHP method and he/she wishes to alter the

existing ranking of alternatives A1 and A2 by modifying only the current weight W1 of criterion C1.

Currently, the following relation is true (as it was assumed in (2)):  P1 $ P2.  In the Appendix it is shown

that the minimum quantity *1,1,2, needed to reverse the current ranking of alternatives A1 and A2, should

satisfy the following relation:
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(7a)

*1,1,2 <
(P2 & P1)

(a21 & a11)
, if (a21 > a11), or :

*1,1,2 >
(P2 & P1)

(a21 & a11)
, if (a21 < a11).

Furthermore, the following condition should also be satisfied for the new weight W*
1 = W1 - *1,1,2  to be

feasible:

(7b)
0 # W

(

1 , which implies

0 # W1 & *1,1,2, which implies

*1,1,2 # W1.

In these developments it is not required to have W*
i # 1 because these weights are re-normalized to add

up to one.   

From relations (7a) and (7b), above, it can be seen that sometimes the value *1,1,2 may not have

a feasible value.  In other words, it may be impossible to reverse the existing ranking of the alternative

A1 and A2 by making changes on the current weight of criterion C1.  This situation occurs when the value

of the ratio:

( P2 & P1 )

(a21 & a11)

is greater than W1. 

The previous considerations can be generalized easily and thus lead to the proof of the following

theorem which covers the general case  (recall that currently the following relation is assumed to be true

from (2):  Pi $ Pj,  for all  1 # i # j # M).

THEOREM 1:   When the WSM,  AHP, or ideal mode AHP  methods are used,  the  quantity

** /
k,i,j (1 # i < j # M and 1 # k # N), by which the current weight Wk of criterion Ck needs to be

modified (after normalization) so that the ranking of the alternatives Ai and Aj will be reversed,

is given as follows:

(8a)

*/
k,i,j <

(Pj & Pi)

(ajk & aik)
×

100

Wk

, if (ajk > aik) or :

*/
k,i,j >

(Pj & Pi)

(ajk & aik)
×

100

Wk

, if (ajk < aik).

Furthermore, the following condition should also be satisfied for the value of **  /
k,i,j to be feasible:

(8b)
(Pj& Pi)

(ajk& aik)
# Wk.
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 From the previous considerations it can be seen that if alternative Ai dominates alternative Aj

(i.e., aik $ ajk,  for all k =1, 2, ..., N) then, it is impossible to make alternative Aj more preferred than

alternative Ai by changing the weights of the criteria.  Also, a criterion Ck is a  robust criterion  if  all

* /
k,i,j (for 1 # i < j  # M and 1 # k # N) quantities associated with it are infeasible.  In other words, if

equation (8b) is violated for all i,j = 1,2,3,...,M, for some criterion Ck then, any change on the weight

of that criterion does not affect the existing ranking of any of the alternatives and thus this criterion is a

robust one and consequently it can be dropped from further consideration.

Therefore, if one is interested in determining the  most critical criterion, then all possible * /
k,i,j

(1 # i < j # M and 1 # k # N) values need to be calculated.  Observe that there are N×(M(M-1))/2 such

possible * /
k,i,j quantities.  This issue is further illustrated in the following numerical example.

A Numerical Example for the WSM Case

Consider a decision making problem with the four alternatives A1, A2, A3, and A4 and the four decision

criteria C1, C2, C3, and C4.  Suppose that the following Table 2 is its corresponding decision matrix when

the WSM (or the AHP with one hierarchical level) is used.  Note that the data were normalized to add up

to one, although this is not required by WSM (however, it is required by the AHP).

Table 2:  Decision Matrix for the numerical example on the WSM.

Criterion
C1 C2   C3 C4

        Alt. 0.3277 0.3058 0.2876 0.0790
____________________________________________________
A1 0.3088 0.2897 0.3867 0.1922
A2 0.2163 0.3458 0.1755 0.6288
A3 0.4509 0.2473 0.1194 0.0575
A4 0.0240 0.1172 0.3184 0.1215

Suppose that we want to apply the WSM (the case of the AHP is identical since the data are already

normalized).  Then, by using formula(3)) the final preferences and ranking of the four alternatives are as

shown in Table 3.
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Table 3:   Current final preferences.

Alternative Preference  (Pj) Ranking

A1 0.3162 1*

A2 0.2768 2

A3 0.2621 3

A4 0.1449 4

  Note: * indicates the most preferred (best) alternative.

Therefore, the relation  P1 $ P2 $ P3 $ P4 holds and as result the most preferred alternative is A1.

Observe that according to the weights of the four criteria, criterion  C1  appears to be the most important

one.  The minimum change *1,1,3 needed to alter the current weight W1 so that the current ranking of the

two alternatives A1 and A3 will be reversed, can be found by using relation (8a) of Theorem 1 as follows:

*1,1,3 <
(0.2621 & 0.3162)

(0.4509 & 0.3088)
, or

*1,1,3 < & 0.3807.

The quantity  -0.3807 satisfies (8b), as it is less than W1 (= 0.3277).  Thus, the modified weight W*
1 of

the first criterion (before normalization) for this case is: 

W*
1  = [ 0.3277 - (-0.3807)] = 0.7084.

Working as above for all possible combinations of criteria and pairs of alternatives,  Table 4 is derived.

Table 5 depicts the changes in relative terms (that is, the  */
k,i,j values as computed by using relation (8a)

of Theorem 1).  Observe that negative changes in Table 4 indicate increases, while positive changes

indicate decreases.  Also note that the changes (either percentages or in absolute terms) are before

normalization.  The boldfaced numbers in either table indicate minimum critical changes (as explained in

the next paragraphs).

The Percent-Top (PT) critical criterion can be found by looking for the smallest relative value

of all rows which are related to alternative A1 (i.e., the best alternative) in Table 5.  The smallest such

percentage (i.e., 64.8818%) corresponds to criterion C3 when the pair of alternatives A1 and A2 is

considered.  For criterion C3 a reduction of its current weight by 64.8818% will make A2 the most

preferred alternative and A1 will not be the best alternative any more.



15

    Table 4:  All possible *k,i,j values (absolute change in criteria weights).

Pair of C r i t e r i o n 

Alternatives C1 C2 C3 C4

A1 - A2 N/F -0.7023 0.1866 -0.0902

A1 - A3 -0.3807 N/F 0.2024 N/F

A1 - A4 N/F N/F N/F N/F

A2 - A3 -0.0627 0.1492 0.0262 0.0257

A2 - A4 N/F N/F  -0.9230 N/F

A3 - A4 0.2745 N/F -0.5890 -1.8313

Note: N/F stands for Non-Feasible.  That is, the corresponding ** value does not
satisfy relation (8b). 

The Percent-Any (PA) critical criterion can be found by looking for the smallest relative  */
k,i,j

value in the entire Table 5.  Such smallest value is */
3,2,3 = 9.1099%  and it (again) corresponds to

criterion C3.  Therefore, the PA critical criterion is C3.  Finally, observe that it is a coincidence that both

definitions of the most critical criterion indicate the same criterion (i.e., criterion C3) in this numerical

example.

At this point it should be stated that if a decision maker wishes to define the most critical criterion

in absolute changes, then the previous two definitions of Percent-Top (PT) and Percent-Any (PA) critical

criterion correspond to Absolute-Top (AT) and Absolute-Any (AA) critical criterion, respectively.  From

Table 4 it can be easily verified that the AT criterion is C4 and also, by coincidence, the AA criterion is

C4 (the corresponding minimum changes are boldfaced).  Later, some computational results indicate how

frequently various alternative definitions of the most critical criterion may point out to the same criterion.

  When definition 4 is used, then from Table 5 it follows that the criticality degrees of the four

criteria are: D/
1 = *-19.1334* = 19.1334,  D/

2 =  48.7901,  D/
3 = 9.1099,  and  D/

4 = 32.5317.

Therefore, the sensitivity coefficients of the four decision criteria (according to definition 5) are:  sens(C1)

= 0.0523, sens(C2) = 0.0205, sens(C3) = 0.1098, and sens(C4) = 0.0307.  That is, the most sensitive

decision criterion is C3, followed by C1, C4, and C2.
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    Table 5:  All possible  * /
k,i,j values (percent change in criteria weights).

Pair of C r i t e r i o n

Alternatives C1 C2 C3 C4

A1 - A2 N/F -229.7 64.8818 -114.1772

A1 - A3 -116.1733 N/F 70.3755 N/F

A1 - A4 N/F N/F N/F N/F

A2 - A3 -19.1334 48.7901 9.1099 32.5317

A2 - A4 N/F N/F -320.9 N/F

A3 - A4 83.7656 N/F -204.8 -2,318.10

Case (ii): Using the WPM Method

Suppose that we are interested in determining the quantity  *1,1,2  when the WPM method is used.  Recall

that according to relation (4) alternative A1 is more preferred than alternative A2 when the following ratio

is greater than or equal to one:

(9)R
A1

A2

' k
N

j'1

a1j

a2j

W j

.

Furthermore, according to (2), it is currently assumed that  P1 $ P2.  Let P1
/ and P2

/ denote the new

preferences of the two alternatives.  Then, when the ranking of these two alternatives is reversed, the

relation on the preferences becomes: P1
/ < P2

/.  In the Appendix it is shown that the quantity  *1,1,2  must

satisfy the following condition:

(10)*1,1,2 >

log k
N

y ' 1

a1y

a2y

Wy

log
a11

a21

.

The last relationship gives the minimum quantity needed to modify the current weight W1 of

criterion C1 such that alternative A2 will become more preferred than alternative A1 (in the maximization

case).  Similarly as in the previous subsection, this quantity needs to satisfy condition (7b).  The previous

considerations can be easily generalized and thus lead to the proof of the following theorem: 
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THEOREM 2:  When the WPM method is used, the critical quantity ** /
k,i,j (1 # i < j # M and 1

# k # N), by which the current weight Wk of criterion Ck needs to be modified (after normalization)

so that the ranking of the alternatives Ai and Aj will be reversed, is given as follows:

*/
k,i,j > K, if K $ 0, or:

*/
k,i,j < K, otherwise.

where K is defined as:

(11a)K '

log k
N

y ' 1

aiy

ajy

Wy

log
aik

ajk

×
100

Wk

.

Furthermore, the following constraint should also be satisfied:

(11b)*/
k,i,j # 100.

Similarly to Theorem 1, in order to determine the most critical criterion a total of 2 (N × M(M - 1)/2)

critical changes (i.e., */
k,i,j values) need to be calculated.  All previous theoretical considerations for the

WPM model are further illustrated in the following numerical example.

A  Numerical Example for the WPM Case

Consider a decision making problem with the four alternatives A1, A2, A3, and A4 and the four decision

criteria C1, C2, C3, and C4.  Please note that this numerical example is different than the first one (and the

two examples which follow), in order to provide a wider exposure of numerical scenarios.  Also, the

decision matrices are square (i.e., M = N) of mere coincidence.  The proposed procedures can be applied

to any size of decision matrix without any modification at all.  Next, suppose that Table 6 depicts the

decision matrix for this numerical example.
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Table 6:  Decision matrix for the numerical example on the WPM.

Criterion
C1 C2   C3 C4

        Alt. 0.4504 0.1231 0.0848 0.3417
____________________________________________________
A1 0.9381 0.3501 0.8811 0.5646
A2 0.7691 0.4812 0.1679 0.9336
A3 0.9445 0.1138 0.2219 0.0135
A4 0.1768 0.0221 0.9462 0.1024

Then, by applying the WPM approach (that is, by using formula (4)) the ranking of the four

alternatives is as shown in Table 7.  The product expressed by (4) for alternative A1 is greater than one

for all possible combinations which include  A1, thus,  the most preferred alternative is A1.  Also,

according to the weights of the four criteria, criterion C1 appears to be the most important one, because

this is the criterion with the highest weight. 

 

Table 7:  Current ranking.

Pair of
Alternatives  Ai - Aj

(Ai / Aj)  Ratio Ranking

A1 - A2 1.0192  A1  1*

A1 - A3 4.6082 A2  2

A1 - A4 5.3062 A3  3

A2 - A3 4.5216 A4  4

A2 - A4 5.2065

A3 - A4 1.1515
Note: * indicates the most preferred alternative (in the maximization case).

Consider, the minimum quantity needed to alter the current weight W4, so that the current ranking of

the two alternatives A1 and A2 will be reversed.  This quantity (expressed as %) can be found by using relation

(11a) of Theorem 2 as follows:

K '

log
0.9381

0.7692

0.4504 0.3501

0.4812

0.1231 0.8811

0.1679

0.0848 0.5646

0.9336

0.3417

log
0.5646

0.9336

×
100

0.3417
' & 11.04,
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therefore, the value of  * /
4,1,2 should be smaller than K =  - 11.04.  Note that this is a feasible value since

it can easily be verified that it satisfies the constraint given as (11b).  In a similar manner, all possible

K  values can be determined.  These values are depicted in Table 8 (the boldfaced number corresponds to

the minimum change).

It is interesting to observe that the PT, and PA critical criteria happened to point to the same

criterion, (i.e., criterion C4).  However, the criterion with the highest weight is criterion C1.  Clearly, this

is a counter-intuitive conclusion.  Also, when definition 4 is used, then from Table 8 it follows that the

criticality degrees of the four criteria are: D/
1 = 18.69,  D/

2 = *-48.44* = 48.44,  D/
3 = 13.50,  and  D/

4

= *-11.04* = 11.04.  Therefore, the sensitivity coefficients of the four decision criteria (according to

definition 5) are:  sens(C1) = 0.0535, sens(C2) = 0.0206, sens(C3) = 0.0741, and sens(C4) = 0.0906.

That is, the most sensitive decision criterion is C4, followed by C3, C1, and C2.

Table 8:  All possible K values for WPM example.

Pair of C r i t e r i o n

Alternatives C1 C2 C3 C4

A1 - A2 21.21 -48.44 13.50 -11.04

A1 - A3 N/F N/F N/F N/F

A1 - A4 N/F N/F N/F N/F

A2 - A3 N/F N/F N/F N/F

A2 - A4 N/F N/F N/F N/F

A3 - A4 18.69 69.97 -114.72 -20.37

Note: N/F stands for non-feasible, i.e., the corresponding value does not satisfy constraint (13b).

SOME COMPUTATIONAL EXPERIMENTS

A computational study was undertaken to study how often the PT and PA critical criteria were the criteria

with the highest or with the lowest weight.  For that reason, random decision problems were generated

and the PT and PA critical criteria were determined.  For the AHP case (only) the data for these problems

were generated in a manner similar to the procedure used in Triantaphyllou, Pardalos and Mann (1990a),
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Triantaphyllou, Lootsma, Pardalos and Mann (1994);  and Triantaphyllou and Mann (1990). This manner

ensures that the problems are generated completely randomly.  For the WPM and WSM cases the data

were generated randomly from the uniform distribution in the interval [1, 9].

According to the test problem generation approach described in Triantaphyllou, Lootsma, Pardalos

and Mann (1994) the data were generated as follows.  First a random weight vector W was generated such

that the ratio of the largest to the smallest element was less than 9 (in order to comply with the values in

the Saaty scale).  From these weights the entries of the matrix with the actual pairwise comparisons were

determined by using the relationship aij = wi/wj.  It is assumed that the decision maker does not know

these values.  This matrix is called in Triantaphyllou, Lootsma, Pardalos and Mann (1994) the Real and

Continuous Pairwise (RCP) matrix. However, it is assumed that the decision maker is capable of

estimating the entries of the RCP matrix by forming a matrix in which each entry in the RCP matrix is

replaced by a number which is as close as possible to the values allowed in the traditional Saaty scale (i.e.,

the numbers from the set  {9, ..., 1, 1/2, ..., 1/9}).  This is called the Closest and Discrete Pairwise

(CDP) matrix.  Next, the eigenvector of the CDP matrix is estimated and the corresponding vector of the

decision matrix is formed.

For instance, if the real (and hence unknown) performance values of three alternatives in terms

of a single criterion are: (0.77348, 0.23804, 0.23848), then, the (1,3) element of the corresponding RCP

matrix is equal to 3.24342 (= 0.77348/0.23848).  Thus, the corresponding CDP element will be equal

to 3 (because this value is the closest one from the Saaty scale values: {9, ..., 1, 1/2, ..., 1/9}).  More on

this approach and some interesting properties of the CDP matrices can be found in Triantaphyllou,

Lootsma, Pardalos and Mann (1994).

Two parameters were considered in these test problems.  The first parameter was the number of

decision criteria.  The second parameter was the number of alternatives.  The number of decision criteria

was equal to  3, 5, 7, ..., 21.  Similarly, the number of alternatives was equal to  3, 5, 7, ..., 21.  In this

way we formed 100 different combinations of numbers of criteria and alternatives and 1,000 random test

problems were generated for each such combination.  This simulation program was written in Fortran,

using the IMSL library of subroutines for generating random numbers.  These results are depicted in

Figures 1 to 12.

For each test problem we examined whether the PA or the PT critical criterion was the criterion

with the highest or the criterion with the lowest weight.  The results of the computational experiments,

when the relative (percent) changes are considered, are depicted in Figures 1 to 4.  Figures 5 to 8 illustrate

the same concepts but when changes are expressed in absolute terms.  Finally, Figure 9 depicts some

specific results when the WPM is used.  In the present study, we solved each problem using the WSM,
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WPM, AHP and ideal mode AHP method.   

The four curves in each figure represent the results from each one of the three different MCDM

methods used plus one curve for the ideal mode AHP.  The most profound observation is that all MCDM

methods generated almost identical results.  This is indicated by the fact that their curves in Figures 1

to 8 are very close to each other.

Figures 1 to 8 indicate that it makes a significant difference whether critical changes are expressed

as percent (i.e., in relative terms) or in absolute terms.  When changes are expressed as percentages, then

more frequently the criterion with the highest weight is the most critical criterion.  This is true both when

the concept of the critical criterion is defined in terms of changes on the ranking of the top alternative or

in terms of changes on the ranking of any alternative.  This is evident when one compares Figure 1 with

Figure 2 and Figure 3 with Figure 4.  The reverse situation occurs when one defines change in absolute

changes.  That is, now more frequently the most critical criterion is the criterion with the lowest weight.

Figures 5 to 8 depict the corresponding results. 

As anticipated, the sensitivity importance of any weight (including highest or lowest) reduces

gradually as the number of decision criteria in a problem increases.  In a matter of fact, when changes are

measured in relative terms (i.e., as a percentage), then the lowest weight is hardly ever sensitive in

problems with more than 10 criteria (see also Figures 2 and 4).  On the other hand, the number of

alternatives has only a minor practical influence.  This is indicated in Figures 11 and 12 in which the

bottom curve corresponds to problems with 3 alternatives and the top curve to problems with 21

alternatives. 

 The question which is raised at this point is what kind of changes a decision maker should

consider: The ones defined as percentages or the ones defined in absolute terms?  One may argue here

that percentage changes are the most meaningful.  After all, a change, say of 0.03, does not mean much

unless one also considers what was the initial value (for instance, was the initial value equal to 0.95 or to

0.05?).

Figure 9 depicts how frequently the AT and PT definitions pointed out to the same criterion.

Please recall that this situation also occurred in some of the illustrative examples analyzed earlier.

Similarly, Figure 10 depicts how frequently the AA and PA definitions pointed out to the same criterion.

As expected, the frequency of matching the top rank is always higher than matching all ranks.  Moreover,

this distinction fades away as the number of criteria in a problem increases.  Finally, Figure 11 depicts

how frequently all alternative definitions (i.e., AT, PT, AA, and PA) pointed out to the same criterion

when the WSM model was used (the other models yielded similar results).  
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These computational results indicate that the previous coincidence rates are rather high (around

70 to 50 or 40 %) when the number of decision criteria in a problem is rather small (less than 7 or 9).

Therefore, if the number of decision criteria is small, one may not have to be concerned on which

definition to use.  Finally, notice that the number of alternatives in a test problem did not seem to be

important.  This is indicated by the closeness of the curves (which correspond to problems with different

numbers of alternatives) in Figure 12 (which shows a particular set of results when the WPM is used, the

other methods yielded similar patterns).

PROBLEM 2:  

DETERMINING THE MOST CRITICAL aij MEASURE OF PERFORMANCE

Definitions and Terminology

The second major problem examined in this paper is  how to determine the most critical aij measure

of performance when the WSM, AHP, or the WPM method is used.  The following definitions are

pertinent to this problem.

  DEFINITION 6:   Let JJi,j,k (1 # i < k # M and 1 # j # N) denote the  threshold value of aij, which

is the minimum change which has to occur on the current value of aij such that the current ranking

between alternatives Ai and Ak will change. 

Since there are M alternatives, each aij performance measure is associated with a total of (M-1)

such threshold values.  In a similar way as earlier regarding the definition of the */
k,i,j values, one can also

consider threshold values expressed in relative terms.  We denote these relative term threshold values as

J /
i,j,k.  That is:  

J /
i,j,k  = Ji,j,k × 100/aij,   for any 1 # i, k # M,  and 1 # j # N. (12)

For the reasons explained earlier, when we consider threshold values we will mean the ones defined in

relative terms (i.e., the J /
i,j,k values).  Given the previous notion of threshold value, we define as the most

sensitive alternative the one which is associated with the smallest threshold value.  Also as before, one

may be interested in changes of the ranking of (only) the best alternative, or in changes in the ranking of

any alternative.     

  As it was mentioned in a previous paragraph, there are (M-1) possible threshold values J /
i,j,k (i…k,

1 # i, k # M,  and 1 # j # N) for any aij measure of performance (how to calculate these threshold values
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is given later in theorems 3, 4, and 5).  The following three definitions are related to the previous notion

of threshold values  J /
i,j,k.  It can be noticed that analogous definitions are possible if one is interested in

changes only on the top alternative (as was the case earlier with definitions 4 and 5).

DEFINITION 7:   The criticality degree of alternative Ai, denoted as ) /
ij, in terms of criterion

Cj is the smallest amount (%) by which the current value of aij must change, such that the existing

ranking of alternative Ai will change.  That is, the following relation is true: 

(13))/
i,j ' min

k…i
* J/

i, j,k * , for all M $ i $ 1, and N $ j $ 1.

DEFINITION 8:   Alternative AL is the most critical alternative if it is associated with the

smallest criticality degree.  That is, if and only if the following relation is true:

(14))/
Lk ' min

M$i$1
min
N$j$1

)/
i j , for some N $ k $ 1.

DEFINITION 9:   The sensitivity coefficient of alternative Ai in terms of criterion Cj, denoted

as sens(aij), is the reciprocal of its criticality degree.  That is, the following condition is true: 

(15)sens(aij) '
1

)/
ij

, for any M $ i $ 1, and N $ j $ 1.

If the criticality degree is infeasible, then the sensitivity coefficient is set equal to zero. 

From definition 7 it follows that the smaller the criticality degree  ) /
ij is, the easier the ranking

of alternative Ai can change.  Alternatively, definition 9 indicates that ranking changes are easier, as the

sensitivity coefficients sens(aij) are higher.  Finally, definition 8, when combined with definitions 7 and

9, indicates that the most sensitive alternative is the one with the highest sensitivity coefficient.  How to

calculate the previous terms is the subject of the next section.

Determining the Threshold Values JJ /
i,j,k

Case (i): When Using the WSM or the AHP Method

The Appendix presents the highlights for a proof for Theorem 3.  This theorem provides the main formula

used to calculate the threshold values  J /
i,j,k and it is stated next.
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THEOREM 3:  When the WSM method is used, the threshold value J /
i,j,k (in %) by which the

performance measure of alternative Ai in terms of criterion Cj, denoted as ai,j, needs to be modified

so that the ranking of the alternatives Ai and Ak will be reversed, is given as follows:

(16a)
J /

i,j,k < R, when i < k or :

J /
i,j,k > R, when i > k .

where  R  is defined as:

R '
(Pi & Pk)

Wj

×
100

aij

.

Furthermore, the following condition should also be satisfied for the threshold value to be feasible:

(16b)J /
i,j,k # 100.

Relation (16b) must hold because from:  0 # aij - Ji,j,k  the new condition 0 # aij - aij×Ji,j,k/100  is derived

which next leads to relation (16b).  For the case of the AHP method it can be easily shown (see also the

Appendix) that the corresponding theorem is as follows:

THEOREM 4:   When the AHP method is used, the threshold value J /
i,j,k (in %) by which the

measure of performance of alternative Ai in terms of criterion Cj needs to be modified so that the

ranking of alternatives Ai and Ak will change, is given as follows:

(17a)J /
i,j,k '

( Pi & Pk )

Pi & Pk % Wj akj & aij % 1
×

100

aij

.

Furthermore, the following condition should also be satisfied for the threshold value to be feasible:

(17b)J/
i,j,k # 100.

The sensitivity analysis of the aij values, when the WSM model is used, is next demonstrated in terms of

a numerical example.   
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A Numerical Example for the WSM Case

Consider the decision matrix depicted in Table 9 (along with the corresponding final preferences Pi) of an

application of the WSM model (that is, the problem has five alternatives and five decision criteria).  The

AHP case can be developed in an analogous fashion.

Table 9:  Decision matrix and initial preferences for numerical example. 

Criterion
  C1 C2 C3 C4 C5

Alt. 0.4146 0.0129 0.2958 0.0604 0.2164 Pi

_________________________________________________________________
A1 0.3576 0.2483 0.2899 0.2961 0.3202 0.3244
A2 0.3603 0.2836 0.0407 0.0939 0.0172 0.1745
A3 0.0255 0.1745 0.2895 0.2212 0.2641 0.1690
A4 0.1609 0.2008 0.2960 0.0716 0.0315 0.1680
A5 0.0957 0.0928 0.0839 0.3172 0.3670 0.1643

Then, when Theorem 4 is used the corresponding  J /
i,j,k threshold values are as in Table 10.  The boldfaced

entries in Table 10 correspond to the criticality degrees ) /
ij (i.e., the smallest entry per column in each row

section, as given in definition 7).  The criticality degrees are best summarized in Table 11.

To help interpret the entries in Table 10, consider any one of them, say entry (3,1) (i.e., 89.3).

This entry indicates that  J /
1,1,4 = 89.3%.  That is, the measure of performance a11 must be decreased by

89.3% from its current value (i.e., 0.3576) to (1 - 0.893)×0.3576, in order for alternative A4 (which is

shown on the left right column in this table) to become more preferred than alternative A1 (note that

currently A1 is more preferred than A4).  A similar interpretation holds for the rest of the entries.  Note

that some of the entries in the previous table are marked as N/F, because they correspond to infeasible

values (i.e., condition (17b) in Theorem 4 is violated). 

It can be noticed that in Table 10 entries are greater than 100 only when the sign is negative.

Recall that negative changes in reality mean increases.  If a rating becomes greater than 100, that is all

right.  In the case of criteria weights the numbers will be re-normalized to add up to 1.00.  In the case of

the aij performance measures, the numbers may be re-normalized (for instance, in the AHP model) or may

become greater than 1.00 (for instance, in the WPM or WSM models).  The boldfaced numbers indicate

minimum values.

From Table 11 it follows that the most critical alternatives (according to definition 8) are

alternatives A3 and A4.  This is true because these alternatives correspond to the minimum criticality
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degrees (equal to 1.1) among all values in Table 11.  It can be noticed that the corresponding alternatives

from the right column in Table 10 are now within the parentheses in the entries in Table 11.  As before,

boldfaced numbers represent corresponding minimum values.  Finally, Table 12 presents the various

sensitivity coefficients (as given in definition 9).   Note that if in Table 11 was an infeasible entry (denoted

by the "___" symbol), then the corresponding sensitivity coefficient in Table 12 is defined to be equal to

0. 

Table 10:   Threshold values J /
i,j,k (%) in relative terms for Numerical Example.

Criterion  Cj

Alt.
Ak

Alt. (Ai) C1 C2 C3 C4 C5

A1 74.1 N/F N/F N/F N/F A2

A1 N/F N/F N/F N/F N/F A3

A1 89.3 N/F N/F N/F N/F A4

A1 96.1 N/F N/F N/F N/F A5

A2 -157.9 N/F -1,677.6 N/F N/F A1

A2 5.4 N/F 35.9 79.4 N/F A3

A2 5.3 N/F 41.9 N/F N/F A4

A2 8.9 N/F 78.4 N/F N/F A5

A3 -1,535.7 N/F N/F N/F N/F A1

A3 -39.3 -355.2 -8.7 -52.5 -13.2 A2

A3 8.0 38.9 1.1 8.3 2.2 A4

A3 41.1 N/F 6.8 29.9 7.3 A5

A4 -286.1 N/F N/F N/F N/F A1

A4 -8.2 N/F -10.2 -163.0 -98.9 A2

A4 -1.7 -41.4 -1.1 -19.7 -11.5 A3

A4 5.9 N/F 5.3 65.9 40.4 A5

A5 -460.8 N/F -970.6 N/F N/F A1

A5 -20.7 N/F -44.4 -87.4 -21.2 A2

A5 -12.8 -544.7 -15.9 -29.7 -6.7 A3

A5 10.0 N/F 18.7 14.9 3.5 A4
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Table 11:  Criticality degrees ) /
ij (%) for each aij performance measure.

Alt.(Ai)

Criterion  Cj

C1 C2 C3 C4 C5

A1 74.1(A2) ___ ___ ___ ___

A2 5.3(A4) ___ 35.9(A3) 79.4(A3) ___

A3 8.0(A4) 38.9(A4) 1.1(A4) 8.3(A4) 2.2(A4)

A4 1.7(A3) 41.4(A3) -1.1(A3) 19.7(A3) 11.5(A3)

A5 10.0(A4) 544.8(A3) 15.9(A3) 14.9(A4) 3.5(A4)

 Table 12:  Sensitivity coefficients sens(aij) for each aij performance measure in example.

Alt.(Ai)

Criterion  Cj

C1 C2 C3 C4 C5

A1 0.014(A2) 0 0 0 0

A2 0.189(A4) 0 0.028(A3) 0.013(A3) 0

A3 0.125(A4) 0.026(A4) 0.909(A4) 0.121(A4) 0.455(A4)

A4 0.588(A3) 0.024(A3) 0.909(A3) 0.051(A3) 0.087(A3)

A5 0.100(A4) 0.005(A3) 0.063(A3) 0.067(A4) 0.286(A4)

Case (ii): When Using the WPM Method

The Appendix also presents the highlights for a proof for Theorem 5.  This theorem provides the main

formula for calculating the threshold values  J /
i,j,k when the WPM method is used and it is stated next.

THEOREM 5:  When the WPM model is used, then the threshold value J /
i,j,k (in %) by which

the performance measure of alternative Ai in terms of criterion Cj, denoted as aij, needs to be

modified so that the ranking of the alternatives Ai and Ak will be reversed, is given as follows:

(18a)
J/

i,j,k > Q when i > k or :

J/
i,j,k < Q when i < k.

and Q is defined as:



33

Q ' 1 &

Wj

R
Ak

Ai

×100.

Furthermore, the following condition should also be satisfied for the value to be feasible:
J /

i,j,k  # 100. (18b)

The application of the previous theorem is also illustrated in the following numerical example.

A Numerical Example When the WPM Method is Used

Consider a decision problem which involves the five alternatives A1, A2, A3, A4 and A5 and the five decision

criteria C1, C2, C3, C4 and C5.  Suppose that Table 13 presents its corresponding decision matrix and the

WPM model is to be used:

Table 13:  Decision matrix for numerical example.

Criterion
C1 C2   C3 C4 C5

        Alt. 0.2363 0.1998 0.0491 0.2695 0.2453
_________________________________________________________________
A1 0.8366 0.5001 0.8179 0.8104 0.6951
A2 0.4307 0.4782 0.9407 0.2062 0.9259
A3 0.7755 0.5548 0.6380 0.3407 0.0514
A4 0.3727 0.7447 0.3214 0.3709 0.0550
A5 0.4259 0.7126 0.2195 0.0470 0.0014

Recall that in the WPM method normalization of the aij values is not required.  Then, by applying formula

(4), the current ranking of the alternatives is as shown in Table 14.

From Table 14 it follows that relation  P1 $ P2 $ P3 $ P4 $ P5  holds and as result the most

preferred alternative is A1.  When Theorem 5 (i.e., formulas (18a) and (18b)) is applied on the previous

data, then Table 15 with all possible threshold values J /
i,j,k is derived.  The entries in Table 15 have a

similar interpretation as the ones in Table 11.



34

Table 14:  Initial ranking.

Pair of 
Alternatives

Ratio Ranking

Ap - Aq Ap / Aq

A1 - A2 1.580 A1   1

A1 - A3 2.415 A2   2

A1 - A4 2.692 A3   3

A1 - A5 6.152 A4   4

A2 - A3 1.529 A5   5

A2 - A4 1.704

A2 - A5 3.893

A3 - A4 1.115

A3 - A5 2.547

A4 - A5 2.285

Table 15:  Threshold values J /
i,j,k (%) in relative terms for WPM example.

Alt(Ai)

Criterion  Cj
Alt. 
Ak

C1 C2 C3 C4 C5

A1 85.6 89.9 N/F 81.7 84.5 A2

A1 97.6 98.8 N/F 96.2 97.3 A3

A1 98.5 99.3 N/F 97.5 98.2 A4

A1 N/F N/F N/F N/F N/F A5

A2 -593 -887 -1E+06 -446 -546 A1

A2 83.4 88.0 N/F 79.3 82.3 A3

A2 89.5 93.0 N/F 86.2 88.6 A4

A2 99.7 99.9 N/F 99.4 99.6 A5

A3 -4,072 -8156 -6E+09 -2,538 -3,540 A1

A3 -502 -736 -6E+05 -383 -464 A2

A3 36.8 41.9 89.0 33.1 35.7 A4

A3 98.1 99.1 N/F 96.9 97.8 A5

A4 -6,501 -14,105 -6E+10 -3,844 -5,562 A1

A4 -853 -1,339 -5E+06 -622 -777 A2

A4 -58 -72 -811 -50 -56 A3

A4 97.0 98.4 N/F 95.3 96.6 A5

A5 -2E+05 -9E+05 -1E+18 -8E+04 -2E+05 A1

A5 -3E+04 -9E+04 -1E+14 -2E+04 -3E+04 A2

A5 -5,124 -10,672 -2E+10 -3,113 -4,420 A3

A5 -3,202 -6,161 -2E+09 -2,049 -2,805 A4
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Some entries in Table 15 are represented in standard exponential format.  This happens because

they correspond to very high (negative) values.  For instance, the entry (8,1), (i.e.,  -2E+05) actually

represents the value:  -2.0×105 = -200,000.  It can be argued here that very significant changes (such as

the ones represented in exponential format or those which measure in terms of thousands of % change)

are not realistic and practically can also be classified as "N/F" (e.g., non-feasible) cases.  Finally, observe

that the highlighted entries in Table 15 correspond to the criticality degrees ) /
ij (as given in definition 7).

The criticality degrees are best summarized in Table 16.

      Table 16:  Criticality degrees ) /
ij (in %) for each aij measure of performance.

Alt.(Ai)

Criterion  Cj

C1 C2 C3 C4 C5

A1 85.6(A2) 89.9(A2) ___ 81.7(A2) 84.5(A2)

A2 83.4(A3) 88.0(A3) ___ 79.3(A3) 82.3(A3)

A3 36.8(A4) 41.9(A4) 89.0(A4) 33.1(A4) 35.7(A4)

A4 58.0(A3) 72.0(A3) ___ 50.0(A3) 56.0(A3)

A5 ___ ___ ___ ___ ___

 Table 17:  Sensitivity coefficients sens(aij) for each aij measure of performance in example.

Alt.(Ai)

Criterion  Cj

C1 C2 C3 C4 C5

A1 0.012(A2) 0.011(A2) 0 0.012(A2) 0.012(A2)

A2 0.012(A3) 0.011(A3) 0 0.013(A3) 0.012(A3)

A3 0.027(A4) 0.024(A4) 0.011(A4) 0.030(A4) 0.028(A4)

A4 0.017(A3) 0.014(A3) 0 0.020(A3) 0.018(A3)

A5 0 0 0 0 0

From Table 16 it follows that the most critical alternative (according to definition 8)  is alternative

A3.  This is true because this alternative corresponds to the minimum criticality degree (e.g., 33.1) among
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all values in Table 16.  Table 17 presents the various sensitivity coefficients (as defined in definition 9).

Note that if in Table 16 was an infeasible entry (denoted by the "___" symbol),  then the corresponding

sensitivity coefficient in Table 17 is defined to be equal to 0.  A comparison of Tables 11 and 16 (or 12

and 17) indicates that the current WPM example is much more robust than the AHP example.  This is true

because the sensitivity coefficients in the WPM example are much smaller.  This is a consequence of the

specific data used in these two examples and the different nature of the AHP and WPM procedures. 

CONCLUDING REMARKS

The contributions of this paper are both theoretical and empirical.  This paper presented a unified approach

for a sensitivity analysis for three major (and a variant of one) MCDM methods.  These methods are: the

weighted sum model (WSM), the weighted product model (WPM), and the analytic hierarchy process

(AHP) (both in its original and in ideal mode).  The proposed sensitivity analysis examines the impact of

changes in the weights of importance of the decision criteria (i.e., the Wj values) and the measures of

performance of the alternatives in terms of a single decision criterion at a time (i.e., the aij values) on the

final ranking of the alternatives.  The theoretical contributions of this paper are best summarized in the

five theorems presented in the previous sections.

The empirical contributions are related to the sensitivity analysis of changes in the weights of the

decision criteria.  We did not cover changes on the aij values with an empirical study because that would

result in too many sensitivity scenarios under consideration for a given problem and thus divert the

attention from the central ideas.  Recall that for a problem with M alternatives and N criteria there are

M×N different aij values.

The two most important empirical conclusions of this study are: (i) the choice of the MCDM

method or number of alternatives has little influence on the sensitivity results; and (ii) the most sensitive

decision criterion is the one with the highest weight, if weight changes ar measured in relative terms (i.e.,

as a percentage), and it is the one with the lowest weight if changes are measured in absolute terms.

The main observation of the computational experiments is that the MCDM methods studied here,

perform in similar patterns.  These patterns refer to the frequency the criterion with the highest (lowest)

weight is also the most critical criterion, when changes are measured in percent (absolute) terms.
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Moreover, the same results seem to indicate that the number of decision criteria is more important than

the number of alternatives in a test problem.  

The proposed methodology can be used to carry out a standard sensitivity analysis when one of

the previous MCDM methods is used.  The benefit of doing a sensitivity analysis is too paramount to be

ignored in applications of MCDM techniques to real-life problems.  As Dantzig (1963, p. 32) stated it:

"Sensitivity analysis is a fundamental concept in the effective use and implementation of quantitative

decision models,  whose purpose is to assess the stability of an optimal solution under changes in the

parameters."  By knowing which data are more critical, the decision maker can more effectively focus

his/her attention to the most critical parts of a given MCDM problem. 

Another area of application is during the phase of gathering the data for a MCDM problem, given

a limited budget.  Often, in real-life applications of MCDM, data are changeable and cannot be precisely

determined.  In such cases it makes more sense to determine with higher accuracy the weights of the

criteria  (as well as the aij measures of performance) which are more critical and with less accuracy the

less critical weights.  A sensitivity analysis, contacted at an early stage, may reveal which Wj and aij values

have a tendency to be more critical to the final decisions.  Therefore, these data can be determined with

higher accuracy at a second stage.  Next, a new sensitivity analysis cycle can be initiated again.  This

process can be repeated, in this stepwise manner, for a number of times until the entire budget is used

or the decision maker is satisfied with the robustness of the results.  

The three (and a variant of one) MCDM methods examined in this paper have been fuzzified by

Triantaphyllou and Lin (1996).  Thus, a natural extension of this research is to develop a sensitivity

analysis approach for cases in which the data are fuzzy numbers.  An additional area of possible extension

is to extend these results to AHP problems with multiple hierarchies.
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APPENDIX

Calculation of the **1,1,2 Quantity when the AHP or the WSM Method is Used  

To help fix ideas suppose that we wish to determine the minimum change on the weight of importance W1

of criterion C1 so that the ranking of the two alternatives A1 and A2 will be reversed (recall that from (2)

currently it is: P1 $ P2).  As it was introduced in the main part of the paper,  *k,i,j (1 # i < j # M and 1 #

k # N) is the minimum change in the current weight of criterion Ck such that the ranking of alternatives

Ai and Aj will be reversed.  In the current setting we have: k=1, i=1 and j=2.  Therefore, the new (i.e.,

modified) weight, denoted as W*
1,  of the first criterion is:

(A1)W
(

1 ' W1 & *1,1,2.

To preserve property (1) it is necessary that all weights be normalized.  Therefore, the new

normalized weights, denoted as W /
i, will be as follows:

(A2)

W
/
1 '

W
(

1

W
(

1 % W2 % ... % Wn

W
/
2 '

W2

W
(

1 % W2 % ... % Wn

.

.

.

W
/
n '

Wn

W
(

1 % W2 % ... % Wn

.

Given the new weights W/
i (for i=1, 2, ..., N) it is necessary to express the conditions for the new

ranking.  Let P /
1 and P /

2 denote the new final preference values for the two alternatives A1 and A2,

respectively. Since it is desired that the new ranking of the previous two alternatives be reversed, the

following relation should be satisfied:

(A3)P
/
1 < P

/
2 .

By making use of the definitions of P /
1 and P /

2 (given as (3) or (5)) when the WSM or the AHP

are applied on (A3), the following relation is derived:
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P
/
1 ' j

N

j'1
(W

/
j a1j) < P

/
2 ' j

N

j'1
(W

/
j a2j), Y

W
(

1 a11

W
(

1 % j
N

j'2
Wj

%

j
N

j'2
Wj a1j

W
(

1 % j
N

j'2
Wj

<
W

(

1 a21

W
(

1 % j
N

j'2
Wj

%

j
N

j'2
Wj a2j

W
(

1 % j
N

j'2
Wj

, Y

(A4)W
(

1 a11 % j
N

j'2
(Wj a1j) < W

(

1 a21 % j
N

j'2
(Wj a2j).

If relations (A4) and (A1) are combined, then the following is derived: 

&*1,1,2 a11 % j
N

j'1
(Wj a1j) < &*1,1,2 a21 % j

N

j'1
(Wj a2j), Y

&*1,1,2 a11 % P1 < &*1,1,2 a21 % P2, Y

P1 & P2 < (a11 & a21) *1,1,2, Y

(A5)

*1,1,2 <
(P2 & P1)

(a21 & a11)
, if (a21 > a11) or :

*1,1,2 >
(P2 & P1)

(a21 & a11)
, if (a21 < a11).

The above derivations can easily be expanded and are generalized in Theorem 1.

Calculation of the **1,1,2 Quantity when the WPM Method is Used  

As in the previous subsection, suppose that we are interested in determining the quantity  *1,1,2  when the

WPM method is used.  Recall that from relation (4) alternative A1 is more preferred than alternative A2

when the following ratio is greater than or equal to one:

(A6)R
A1

A2

' k
N

j'1

a1j

a2j

W j

.

Furthermore, according to (2), it is currently assumed that  P1 $ P2.  Let P1
/ and P2

/ denote the new

preferences of the previous two alternatives.  Then, when the ranking of these two alternatives is reversed,

the relation on the preferences becomes:  P1
/ < P2

/.  Also observe that now the ratio defined in (A6)

should be strictly less than one.   

By substituting the new weights (i.e., the ones derived after the weight of the first criterion has

been modified) into (A6), then the following relations are derived: 
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(A7)

R )
A1

A2

'
a11

a21

W
)

1 a12

a22

W
)
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@@ @

a1N

a2N
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)

N
< 1, Y

R )
A1

A2

' r
W

)

1

1 r
W

)

2

2 . . . r
W

)

N

N < 1, where:

r1 '
a11

a12

, r2 '
a12

a22

, . . . , and rN '
a1N

a2N

.

In the previous relations the new normalized weights are as follows:

W
)

1 '
W

(

1

W ((
, W

)

2 '
W2

W ((
, . . . , W

)

N '
WN

W ((
,

where: W ((
' W

(

1 % W2 % @ @ @ % WN.

Therefore, relation (A7) yields:

(A8)r

W
(

1

W((

1 r

W2

W((

2 @ @ @ r

WN

W ((

N < 1.

Also note that:     Therefore, relation (A8) yields (since the right-hand-side isW
(

1 ' W1 & *1,1,2 .

greater than or equal to zero):

 *1,1,2 >
log (r

W1

1 r
W2

2 @ @ @ r
WN

N )

log r1

.

When (A7) is used on the previous expression, the following relation is obtained after some simple

algebraic manipulations:

(A8)*1,1,2 >

log k
N

y ' 1

a1y

a2y

Wy

log
a11

a21

.

The above derivations can easily be expanded and are generalized in Theorem 2.

Calculation of the JJ3,4,2 Quantity when the WSM is Used 

The WSM method is an additive multi-attribute model in which the final preference Pi of

alternative Ai is obtained according to relation (3).  Let P /
i denote the new preferences, that is, the ones

after the change on the aij measure of performance.  As before, let us assume that we are interested in



45

reversing the actual ranking between alternatives A2 and A3, which is currently from (2):  P2 $ P3.

Furthermore, to get that rank reversal one must find the threshold value J3,4,2 of the a34 measure of

performance required to get the following relation: 

P /
2 < P /

3. (A9)

When relation (3) is applied to (A9), one gets have the following:

   a21W1 % ... % a2NWN < a31W1 % ... % a
/
34W4 % ... % a3NWN, Y

(since a/
34 = a34 - J3,4,2)  P2 < -J3,4,2 W4 + P3.

Therefore, in order to reverse the ranking of alternatives A2 and A3 by modifying the a34 measure of

performance, the threshold value J3,4,2 should satisfy the following relation:

J3,4,2 <
(P3 & P2)

W4

.

Furthermore, the following condition should also be satisfied for the new a/
34 value to have a feasible

meaning:

0 # a
/
34, Y

0 # a34 & J3,4,2, Y

J3,4,2 # a34.

From the previous relations, it can be seen that the J3,4,2 value must be less than or equal to a34 in order

to have a feasible value.

Next, assume that the measure of performance to alter is again a34, but now we want to reverse

the ranking between alternatives A3 and A5 (observe that now: P3 $ P5 from (2)).  Then, by following an

approach similar to the previous one, we get that in order to reverse the current ranking of alternatives

A3 and A5 the threshold value J3,4,5 should satisfy the following relation:

J3,4,5 >
(P3 & P5)

W4

.

Moreover, the following condition should be satisfied for the new a/
34 value to have a feasible meaning:

J3,4,5 # a34.

The above derivations can easily be expanded and are generalized in Theorem 3.
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Calculation of the JJ /
i,j,k Quantity when the AHP is Used

Suppose that the interest is in reversing the ranking between alternatives Ai and Ak.  As it was stated in

definition 6, the threshold value Ji,j,k (i…k,  1 # i, k # M and 1 # j # N) is the minimum change in the

current value of the aij measure of performance, such that the ranking between alternatives Ai and Ak will

be reversed.  Let a*
i,j denote the modified aij measure of performance.  That is:

a*
ij = aij - Ji,j,k, (A10)

For an easy demonstration of the main ideas, suppose that we are interested in reversing the

current ranking between alternatives A2 and A3, (where P2 $ P3 from (2)) by altering the a34 value (only).

Therefore, it is necessary to determine the threshold value J3,4,2  required to get the following relation

(where  P /
2  and P /

3 denote the new final preference values of alternatives A2 and A3, respectively):

P /
2 < P /

3, (A11)

Recall that the AHP requires normalization of the aij.  Also note that a*
34 (= a34 -J3,4,2) denotes the altered

value of aij.  Therefore the new a/
ij values are as follows:

(A12)

a
)

14 '
a14

a14 % a24 % a
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34 % ... % aM4

a
)

24 '
a24

a14 % a24 % a
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34 % ... % aM4

a
)

34 '
a

(

34

a14 % a24 % a
(

34 % ... % aM4

!

a
)

M4 '
aM4

a14 % a24 % a
(

34 % ... % aM4

.

Furthermore, the denominator of relations (A12) can be simplified by using relation (A10) as follows:

a14 % a24 % a34 & J3,4,2 % a44 % ... % aM4 ' & J3,4,2 % a14 % ... % aM4.

The above expression can be further reduced to (A13):

(A13)1 & J3,4,2

Therefore, relations (A12) can be expressed as follows:
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(A14)
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a
)

24 '
a24

1 & J3,4,2

a
)

34 '
a

(

34

1 & J3,4,2

'
a34 & J3,4,2

1 & J3,4,2

, (from (A.10))

!

a
)

M4 '
aM4

1 & J3,4,2

.

Consequently, by applying relations (A14) and (2) on (A11) we have the following:

a21W1 % ... % a
)

24W4 % ... % a2NWN < a31W1 % ... % a
)

34W4 % ... % a3NWN, Y

a21W1 % ... % a
)

24W4 % (a24 & a24)W4 % ... % a2NWN <

a31W1 % ... % a
)

34W4 % (a34 & a34)W4 % ... % a3NWN, Y

a
)

24W4 & a24W4 % a21W4 % ... % a2NWN < a
)

34W4 & a34W4 % a31W4 % ... % a3NWN, Y

(A15)a
)

24W4 & a24W4 % P2 < a
)

34W4 & a34W4 % P3.

When we substitute relations (A14) on (A15) we get:

a24W4

(1 & J3,4,2)
& a24W4 % P2 <

(a34 & J3,4,2)W4

(1 & J3,4,2)
& a34W4 % P3,

which can be further reduced to (observe that the denominator on the right-hand-side is always a positive

number):

(A16)J3,4,2 <
P3 & P2

P3 & P2 % W4 a24 & a34 % 1
.

Furthermore, the following condition should also be satisfied for the new a/
34 value to have a feasible

meaning:

0 # a
)

34 # 1 or (from (A10)):

J3,4,2 # a34.

From the previous relations, it can be seen that the J3,4,2 quantity must be within the range [a34 - 1,  a34]

in order to have a feasible value.

Now assume that the measure of performance to alter is again a34, but now we want to reverse the
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ranking between alternatives A3 and A5 (note that from (2) now we have:  P3 $ P5).  Then, by following

a similar approach as previously one can get that in order to reverse the current ranking of alternatives A3

and A5, by modifying the a34 measure of performance, the minimum quantity J3,4,5 should satisfy the

following relation:

J3,4,5 >
P3 & P5

P3 & P5 % W4 a54 & a34 % 1
.

The following condition should also be satisfied for the new a/
34 value to have a feasible meaning:

J3,4,5 # a34 .

Theorem 4 presents a generalization of the previous considerations.

Using the WPM Method for Calculating  JJ3,4,2 

In this subsection we follow a similar approach as in the previous subsections.  In the WPM model

the ratio R(Ai/Ak) should be greater than or equal to 1.00 (according to relation (4)) in order for alternative

Ai to be more preferred than alternative Ak.  Let's denote as R/(Ai/Ak) the new ratio after the *i,j,k change

has occurred on the aij measure of performance.  The new ratio R/(Ai/Ak) should be strictly less than 1.00.

We want to find the threshold value J3,4,2 in order to get a rank reversal between alternatives A2 and A3.

In this case the new ratio R/(A2/A3) will be as follows:

(A17)

R /
A2

A3

'
a21

a31

W1

× ... ×
a24

a
)

34

W4

× ... ×
a2N

a3N

WN

< 1.00.

If we use the relation: a/
34 = a34 - J3,4,2  in (A17),  we get:

a21

a31

W1

× ... ×
a24

a34 & J3,4,2

W4

×
a34

a34

W4

× ... ×
a2N

a3N

WN

< 1.00,

or:

a34

a34 & J3,4,2

W4

× R
A2

A3

< 1.00.

After some simple algebraic manipulations we get:

(A18)J3,4,2 > a34 × 1 &

W4

R
A2

A3

.

Furthermore, the following condition should also be satisfied for the new a/
34 value to be feasible:



49

0 # a34, Y

0 # a34 & J3,4,2, Y

J3,4,2 # a34.

Now, assume that the measure of performance to alter is again a34, but now we want to reverse

the ranking between alternatives A3 and A5 (now: P3 $ P5 from (2)).  Then, by following an approach

similar to the previous one,  we get that in order to reverse the current ranking of alternatives A3 and A5,

the threshold value J3,4,5 should satisfy the following relation:

J3,4,5 < a34 × 1 &

W4

R
A5

A3

.

Similarly with above, the following condition should also be satisfied for the new a/
34 to have a feasible

meaning:

J3,4,5 # a34.

The above derivations can easily be expanded and are generalized in Theorem 5.
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