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Abstract

In many decision problems the focus is on ranking a set of m alternatives in terms of a number, say n, of decision
criteria. Given are the performance values of the alternatives for each one of the criteria and the weights of importance
of the criteria. This paper demonstrates that if one assumes that the criteria weights are changeable, then the number of
all possible rankings may be significantly less than the upper limit of m!. As a matter of fact, this paper demonstrates
that the number of possible rankings is a function of the number of alternatives and the number of criteria. These
findings are important from a sensitivity analysis point of view or when a group decision making environment is
considered. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper considers a deterministic decision
making problem with m alternatives, denoted as
A1, A5, A3, ..., A,, to be evaluated in terms of n
decision criteria, denoted as C,, (5, C;, ..., C,. Itis
also assumed that the decision maker(s) knows the
performance values ag;; (for i=1,2,3,...,m and
j=1,2,3,...,n) of each one of the alternatives in
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terms of each one of the decision criteria. Fur-
thermore, we assume that for each decision crite-
rion the decision maker(s) can determine its weight
of importance, denoted as w; (for j=1,2,3,
...,n). It is further assumed that the weights of
importance of the » criteria satisfy the following
normalization constraint:

Sw L. 1)

Often, this kind of problem is difficult from the
standpoint that the pertinent data are difficult to
be quantified. However, among the previous a;;
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and w; values, one can assert that the most difficult
data to be estimated are the weights of the decision
criteria (i.e., the w; values). If one assumes that
both the a;; and w; values are changeable, then it is
easy to realize that the number of all possible
rankings of the m alternatives is equal to m! (be-
cause this is the number of all possible permuta-
tions of m objects). However, the number of all
possible rankings is different when one considers
changes only in the w; values. This paper investi-
gates this issue and it demonstrates that the
number of all possible rankings, when the a;, val-
ues are kept constant and the w; values are allowed
to change, may be significantly less than m!.

Some popular methods which examine how one
can rank alternatives include the weighted sum
model (WSM) (Fishburn, 1967) and the analytic
hierarchy process (AHP) (Saaty, 1994). The in-
terested reader may want to consult with the sur-
veys reported in Triantaphyllou and Mann (1989)
and Chen and Hwang (1992) for additional details.
These methods essentially propose to calculate the
performance of the alternatives by using an addi-
tive function of the following form:

P=> ayw; fori=1273, . m, (2)

J=1

where P; is the preference value of alternative A,
when all the criteria are considered simultaneously.
It should also be stated here that we are dealing
with cardinal preference values and not preemptive
or noncommensurable ones. Then, in the maxi-
mization case, the alternatives can be ranked in
terms of the previous preference values. Given the
ordering

Ph2Py 2Pz - 2Py,

where {),0»,i3,...,i, are the indexes of the m al-
ternatives, the ranking of the m alternatives is

Anzdn 2452 - 2 A,

where *“ > * stands for “better than or equal to”.
In many real world decision making problems,

it is even more difficult for the decision maker(s) to

determine the criteria weights than the perfor-

mance values. For example, consider a simplified

decision making problem of buying a car. The al-
ternatives (e.g., the different kinds of cars) could be
evaluated under two criteria: the gasoline mileage
(in miles/gallon) of the cars and the number of
years in the initial warranty. Obviously, the
performance values of the cars under these two
criteria are rather objective and are easy to
determine. However, the relative importance of the
two criteria can be very subjective and different
decision makers may assign totally different values
to the criteria weights. Thus, it can be assumed
that in this decision matrix the performance values
a; (for i=1,23... mandj=1,2,3,...,n) are
fixed and only the criteria weights w; (for
j=1,2,3,...,n) are changeable. From Eq. (1) it
can be seen that there are infinitely many different
combinations of the w; values which can satisfy the
normalization condition. For each such combina-
tion of the w; values and by using Eq. (2), a dif-
ferent set of performance values P; can be derived.
Next, each such set of P, values corresponds to a
ranking (not necessary unique) of the alternatives.

In the previous example of buying a car, assume
that the gasoline mileage and the number of years
in the initial warranty for each car are as given in
Table 1.

Since there are two decision criteria of hetero-
geneous units in this problem, first the actual
performance values have to be turned into relative
values. For instance, if one wishes to use the AHP
method, the actual performance values have to be
normalized by dividing them by their corre-
sponding sums. For example, the sum of the actual
performance values under the first decision crite-
rion is: 20 + 35 + 30 = 85 (miles/gallon). So the
relative performance value of Car A, under the
first criterion is: 20/85 = 0.24. Onge all the actual
performance values have been normalized, the

Table 1
Data for the car selection problem

Alts. Decision criteria

Mileage (miles/gallon)  Number of years

in initial warranty

wi w2
Car A4, 20 5
Car A, 35 3
Car 4, 30 2
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decision matrix of this problem becomes as shown
in Table 2.

Furthermore, let us assume that the decision
maker regards these two criteria as equally im-
portant, so w; = w, = 0.5. Then from Eq. (2), it
can be derived that P, =0.37, P, =0.36 and
P, =0.28. Thus, the ranking of the three
alternatives is: 4, > 4> > A:. However, if the de-
cision maker believes that the first criterion
(mileage) is much more important than the second
criterion (warranty), he/she may set different val-
ues to the criteria weights, say w; = 0.8 and
wy = 0.2. Accordingly, the preference values will
now change as follows: P, =0.29, P, = 0.39, and
P; =0.32. That is, now we have 4, > A3 > 4,
which is different from the first ranking.

Recall that a ranking is a permutation on the
order of the alternatives. Therefore, for m alter-
natives there are m! possible different rankings. As
there are theoretically infinitely many possible
combinations of the w; values, it is quite natural to
ask if all m! different rankings are feasible when
one considers only changes on the criteria weights.
Back to the example of buying a car, here m is
equal to 3, so there are 3! = 6 different rankings.
Namely the following:

A, >A2 >A3,
Ay > Az > Ay,

Al > Az > Ax, Ay > Ay > As,
Az > A > A5, and Az > 4> > A,.

For this particular illustrative example it can be
observed that the preference values of alternative
A, are larger than those of alternative 45 in terms
of both criteria. That is, alternative 4, dominates
alternative A;. Hence, the two rankings A4; >
A; > A4, and A4; > A; > A, are infeasible in this
particular example. That is, not all rankings are
feasible.

Table 2
Decision matrix for illustrative example
Alts. Decision criteria
Mileage Warranty
W, wa
Car 4, 0.24 0.50
Car 4, 0.41 0.30
Car A, 0.35 0.20

The case of observing the role of dominated
alternatives on the maximum number of rankings
may be a trivial one. However, it provides the first
motivation that not all m! rankings may be feasible
when the w; values can change while the a;; values
are fixed. Similar situations may occur even when
no dominated alternatives are present. Thus, the
research question examined in this paper is: when
changing the criteria weights arbitrarily, at most
how many different rankings of the alternatives can
be derived?

In this paper it is shown that the maximum
number of all feasible rankings is a function of
both the number of alternatives m and the number
of criteria n. Even more surprisingly, this maxi-
mum number may be significantly smaller than m!.
The next sections demonstrate how to calculate
this maximum number under different values of m
and n.

2. A geometric representation of the maximum
number of feasible rankings

2.1. Pairwise comparisons of the alternatives

The ranking of the alternatives can be deter-
mined by comparing the preference values of
the alternatives two at a time. For example, for
three alternatives 4,, A, and A;, one can first
compare P, with P, and then P, with P;. Next, he/
she needs to compare P, with P;. Assume that
P >P, P>P, and P, > Ps, then 4, > A, > 4.
From Eq. (2) we get

P —P/ = Z(aik - a,‘k)Wh
=1
fori,j=1,2,3,...,m and i # ;. (3)

If P, —P; > 0, then 4, is preferred to 4;and vice
versa. If P, — P, = 0, then A4, is as preferable as 4;
for the decision maker. Let ; be the ith row vector
of the decision matrix (i.e., a; = (an,an, ..., ).
Let W be the weight vector of the decision criteria.
That is, W = (wy,ws,...,w,). Then Eq. (3) can be
rewritten as follows:
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P — P = (a;—a)W",
fori,j—=1,2,3,....,m and i # j. )

For P, — P, =0, we have
(a,‘ — a/') WT =0. (5)

Recall that the a; values are fixed and the w;
values are changeable, so this problem may be
considered geometrically in the space (denoted as
E") of the n criteria weights. In the E" space,
each configuration of the criteria weights
(wy, w2, ...,w,) represents a distinct point. For the
convenience of discussion, the set of points which
satisfy the normalization condition will be called
the base-plane of the decision problem:

Definition 1. The (n — 1)-dimension hyperplane
which is defined by Eq. (1) and the nonnegativity
constraints w; > 0 is called the base-plane of a
problem with n decision criteria.

Essentially, the base-plane is an (n — 1)-dimen-
sion hyperplane with the property that each point
on that plane satisfies Eq. (1). If there are only two
decision criteria, then this is a line segment (seg-
ment AB in Fig. 1). If there are three decision
criteria, then this is the area of a 2-dimension (2-D)
plane (plane area ABC in Fig. 2).

A W,
Region Il: 4; > 4;

b

L,‘j.' 4, = A}

/

RegionI: 4, < 4;

~

B

Fig. 1. Bipartition of a base-plane in the 2-D space.

w, A

IC

Region Il 4, > 4, /
© Lij: 4, — 4,

RegionI: 4; < 4,
‘Fig. 2. Bipartition of a base-plane in the 3-D space.

Similarly, the (n — 1)-dimension hyperplane of
the pairwise comparison between alternatives A,
and A; is defined by Eq. (5). On this plane 4, is
equal to A4;in preference value. As the condition
of normalization has to be satisfied, one can get
from Eqgs. (5) and (1), and the nonnegativity
constraints

(@i —a)WT=0
W’|+W2+W3+"'+W":1 s (6)
Wiy Wo, W3, .oy Wy 20

where i, =1,2,3,...,mand i # J.

From the geometric point of view the set of
solutions to Eq. (6) is an (n — 2)-dimension hy-
perplane which is the intersection of the base-plane
and the hyperplane of the pairwise comparison. If
this set of solutions is nonempty, we call it the
separating plane between alternatives A; and A,
and it will be denoted as L. Therefore, the L;
plane will divide the base-plane into distinct re-
gions. In one region (say region I) 4; is always
better than A4; while in the opposite region (say
region II) A, is always worse than 4; and on the
boundary of these two regions (i.e., on L;) 4, is
equal to 4; in preference value. The geometrical
representation of the pairwise comparison between
two alternatives 4, and A, is depicted in Figs. 1
and 2, where decision problems with two and three
criteria are considered, respectively.
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If there is no feasible solution to Eq. (6), then
there will not be any intersection of the pairwise
comparison plane and the base-plane. As a result,
L;; will not exist. In this situation the base-plane is
on one side of the pairwise comparison plane and
thus either 4; is always better than 4, or 4; is al-
ways better than A;.

2.2. Geometric representation of rankings

To determine the complete ranking of the
m alternatives, the final preference values of the
alternatives have to be compared in a pair-
wise manner by performing the following set of
pairwise comparisons: (P; with P;) for i=
1,2,3,....m—1, j=1,23,...,m, and i < j.

There are k = m(m — 1)/2 such pairwise com-
parisons. Since each pairwise comparison corre-
sponds to a separating plane, there are at most
k separating planes denoted as L, (for i,j=
1,2,...,m and i < j) as defined by Eq. (6). These
separating planes intersect with the base-plane.
Thus, the separating planes will divide the base-
plane into several sub-regions. The following three
lemmas follow easily from the previous definitions
and thus are stated without the proofs.

Lemma 1. Any point on the base-plane corresponds
to a ranking of the alternatives.

Lemma 2. The points in the same sub-region of the
base-plane correspond to the same ranking of the
alternatives, and vice versa.

Lemma 3. Points in different sub-regions correspond
to different rankings of the alternatives.

From these lemmas it follows that there is an
one-to-one mapping from the sub-regions on the
base-plane to the rankings of the alternatives. We
call these sub-regions the ranking regions of the
decision problem. Therefore, the number of all
possible rankings of the m alternatives is equal to
the number of the ranking regions on the base-
plane. Hence, the problem can be changed into the
geometrical problem of finding how many ranking

regions a base-plane can be divided into by the
separating planes.

2.3. Partition of the weight space

From the previous discussion it follows that
geometrically speaking the partition of the base-
plane by the k separating planes is the same
problem as the partition of an (n — 1)-dimension
hyperplane by k hyperplanes of (1 — 2)-dimension
each. Note that for a specific decision matrix, the
number of separating planes may be less than
k(= m(m — 1)/2). In this paper the objective is to
investigate, for a given decision matrix, the
maximum number of rankings (which also cor-
responds to the maximum number of ranking
regions on the base-plane). Therefore, the goal is
to try to divide the base-plane into as many
ranking regions as possible. The more separating
planes there are, the more regions these planes
can divide the base-plane into. Hence, only those
decision matrices with all the m(m — 1)/2 sepa-
rating planes have the opportunity to yield the
maximum number of rankings when the criteria
weights can change.

The number of ranking regions also depends on
the relative positions of these separating planes on
the base-plane. For example, two parallel lines can
only divide a plane into three regions while two
intersecting lines can divide a plane into four re-
gions. From a pure geometrical point of view, the
more intersections these separating planes have
with each other, the more ranking regions they can
divide the base-plane into. In Brualdi (1979) the
concept of general position is defined to describe
the positions among k hyperplanes of dimension n
each.

Definition 2. A set of k& hyperplanes of dimension #
is said to be in the general position, if every two of
them meet at an (n — 1)-dimension hyperplane but
no three of them meet at such an (» — 1)-dimen-
sion hyperplane.

For illustrative purposes one may consider the
lines in Figs. 3 and 4. These lines are 1-D planes
and they can represent the separating planes of a
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Base-Plane
L,

y .

Ljs

Fig. 3. Lines in general position.

Fig. 4. Lines not in general position.

decision problem with three alternatives. Each
figure also depicts the base-plane. The lines
(separating planes) in Fig. 3 are in the general
position, while the ones in Fig. 4 are not in the
general position. Furthermore, it can be shown
that the situation depicted in Fig. 3 is infeasible
in decision problems. This is formally stated in
Theorem 1.

Theorem 1. The separating planes of a multi-criteria
decision making problem can never be in the general
position.

Proof. We will use the approach of logical con-
tradiction. Suppose that in some problem the
separating planes are in the general position.
Consider a set of three alternatives. Without loss
of generality, we call these alternatives A;, 4,,
and A;. By Definition 2, the separating planes
(denoted as Ly, L3, and L) for these al-
ternatives intersect with each other but do not
cross through the same point. Consider the
point of intersection of any two of them, say
separating planes L, and L;; By using the defi-
nition of a separating plane, it can be easily de-
rived that at that point the following is true:
A = A> and A4, = A4;. Therefore, we should also
have A, = 4;. Thus, the third separating plane,
L,;, should be crossing through the same inter-
section point. However, this is in direct con-
tradiction with the initial assumption that all the
separating planes are in the general position.
Thus, the separating planes can never be in the
general position and thus Theorem 1 has been
proved. O

The base-plane in Fig. 4 is divided into six
ranking regions each of which corresponds to one
of the six possible rankings of the three alterna-
tives. Namely:

Ay > 4> >A3, Ay > Az > A>, Ay > A > A;,

Ay > A3 > A4, A >A2>A|, Az > A > A>.

2.4. A theoretical analysis of the number of feasible
rankings

The number of feasible rankings for an MCDM
problem has an interesting property: if the number
of decision criteria (n) is greater than or equal to
the number of alternatives (m), then we can always
find a decision matrix (not necessarily unique)
such that by changing the weights of the decision
criteria arbitrarily while keeping the performance
values fixed, we can get all the m! rankings of the
alternatives. However, if m > n then it is impossi-
ble to get all the m! rankings by simply changing
the weights of the decision criteria. This property
is formally stated in Theorems 2 and 3. Before
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these theorems are stated, we introduce some rel-
evant lemmas:

Lemmad. Let Ay 2 Apn = - Z A4y 2 Aijyy = -
2 Apmand Ay 2 Ap 2 Ay 2452 - 2 Aim
be two feasible rankings which differ by only one
pair of alternatives (i.e., A;; and A;;11)). Then there
exists at least one point on the base-plane such that
Ay z2A4p 2 - Z Ay =A== - = A (for
il,iz,...,im = 1,2,3,...,”’!).

Proof. Without loss of generality, let 4, > 4, =

24,2442 - 24, and 4, 24> -
>Adjy 24,2 - =24, be the two feasible
rankings on the base-plane. These two rankings
correspond to two ranking regions separated by
separating plane L;;, ). Since the points along this
plane correspond to 4; = 4., it is concluded
that the point(s) which lay on the separating plane
L;;+1) and are adjacent to these two ranking re-
gions possess the desirable property. O

Lemma 5. If all the m! rankings are feasible, then
there must exist at least one point on the base-plane
such thalA] :Ag :A3 = :Am

Proof. Since all the rankings are feasible, the fol-
lowing two rankings Ry = {4, 24,2 4= - =
Antand Ry = {4y 24, 2 Ay = -+ = A,} are also
feasible, since R, and R, differ by only one pair of
alternatives (i.e., 4, and 4;). Thus, from Lemma
4, the ranking R, = {41 =422 4; = - = A4,}
is feasible as well. Also, the rankings
Ri={4324,24,>2 - 2A4,}and R, ={4; >
A=A, =2 -+ 2 A,} are feasible. Similarly, from
Lemma 4, the ranking R, = {ds =4, =24, > ---
> A4,} is also feasible. As both rankings R, and
R, are feasible, then from Lemma 4 it can be
concluded that the ranking R; = {4, =4, =
Ay = -+ = A,} is also feasible. Thus, working as
in the above procedure, finally we can get that the
following ranking: R ={4) =4, = A3 = --- = 4,,}
is also feasible. Hence, Lemma 5 has been
proved. [

Lemma 6. Let o; (i = 1,2,...,m) be the i-th row of
a decision matrix. If (a; — o) can be represented as
a linear combination of some vectors (o, — o),

(0t — 0g2), - . ., (0 — ), Where ki ks, ...k, are in-
dices of alternatives and ki, ky, ...  k,#1i,j, then
some of the rankings will be infeasible.

Proof. Assume that all the rankings are feasible.
Then this will lead into a logical contradiction.
Since {o; — ;) can be represented as a linear
combination of (a; — a1 ), (% — o), ..., (0 — %),
we get

(o — o) = c1(% — o) + ca(o — oya) + -+

+ cp(a — o), (i)
where ki, k, ...k, are indices between 1 and m
and ki, ky,...,k, #i,j and ¢i,cy,...,c, are non-
zero coefficients. From Eq. (4) we get:

P — P = (o, —a;)WT. By post multiplying both
sides of (i) by W7, we get
P =P =ci(P—Py)+cry(P—Pa)+
+cp(B = Piy). (i)
Since it was assumed that all the rankings are

feasible, then we can always find a weight vector
W* such that:

P’ <P’ and
P> P, if ¢; >0,
P <P, if ¢; <0,

where /=1,2,3,...,p and P is the preference
value of alternative A4; under the criteria weights in
vector W*.

Therefore, when the weight vector W~ is used,
then the right-hand side of Eq. (ii) will be positive
while its left-hand side will be negative. This is a
logical contradiction. Hence, the assumption that
all the rankings are feasible is not valid and
Lemma 6 has been proved. O

Lemma 6 is further illustrated with the example
given in Table 3 which has 3 alternatives and 3
criteria.

From Table 3 it follows that: o = (3,4,5),
o =(6,1,2) and o3 = (4,3,4). Thus we have
(O!l - OCQ_) = (—3,3,3) and ((Z] — 0(3) = —(—1, 1, 1)
Therefore, (a; — o) = 3(ot; — a3). Since P, = 3w, +
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Table 3
An example of some dependent preference values
Alts. Decision criteria
Cl Cg Cx
W Wa Wi
A, 3 4 5
A 6 1 2
A; 4 3 4

4W3+5W1,P2=6W1+W2+2W3 and P3:4W1+
3W3 + 4W3, it follows that: P1 —Pg = 3(P| —Pg).
From Lemma 6, it can be seen that the ranking
A> > A, > Ay is infeasible because whenever
A, > Az, then we also have 4, > 4,.

Theorem 2. Let F,(m) be the maximum number of
the ranking regions on the base-plane. If m > n, then
E,(m) < m!.

Proof. Consider the following system of linear
equations and the nonnegativity constraints

(al —az)WTZO\
(611 —a3)WT=0
: ; ()
(@ —a)WT =0
W1+W2+W3+"'+Wn=1
Wi, Wa, Wiy .., Wy >O

where o is the ith row of the decision matrix and
W = (wi,wy,ws,...,w,) is the vector with the cri-
teria weights. Equation (o, — o)W =0 defines
the separating plane L); (for i = 2,3,...,m) of al-
ternatives 4; and A,. Since (o) — 02), ..., (01 — %)
are row vectors of dimension » and m > n, there
are at most n of them that can be linearly inde-
pendent (Roman, 1987). Since m > n, then
m — 1 = n. If among these (m — 1) vectors, we can
find exactly n vectors that are linearly independent,
then there will be no solution to system (7). Geo-
metrically, this means that there is no point on the
base-plane such that all the alternatives are equal
to each other. From Lemma 35, it can be seen that
in this situation, one can never get all the m! pos-
sible rankings of the m alternatives. Thus,
F,(m) < ml.

If there are less than n vectors that are linearly
independent, then system (7) can have feasible
solutions. Without loss of generality, we assume
that (o) — o), (o — o3),...,(ay —o4yq) {(where
k < n) are linearly independent. Therefore, each
one of the row vectors (o — o42), (6 — %.3)y .-+,
{oy — @) can be represented as a linear combina-
tion of the wvectors (o —on), (o —a3),...,
(oy — a4, 1). By Lemma 6, one can conclude that
some rankings will be infeasible and hence F,(m)
will be less than m!. Thus Theorem 2 has been
proved. O

If m < n, then system (7) always has a solution
but it is not necessarily feasible for a particular
decision matrix (i.e., the nonnegativity constraints
w; 2 0 may not be satisfied). However, for any
given m and n values, one can always find such a
decision matrix for which system (7) will have fea-
sible solutions. This is formally stated in Lemma 7.

Lemma 7. If m<n, then there exists a decision
matrix A such that: (1) rank(4) = m and (i1) system
(7) has a feasible solution.

Proof. Let W™ = (wj,wi,...,w!) be a criteria
weight vector such that wj+wj;+---+wi=1
and w; 2 0. Lemma 7 can be proved by con-
structing a decision matrix A4 such that: (1) its rank
is m1; (11) the solution to system (7) is #~.

Next we consider a vector §in E" such that

W =0, (8)

Here W* is known and f is unknown. Clearly,
there are infinitely many vectors S which can
satisfy Eq. (8). However, since rank (W*) =1,
among these vectors, there are (n — 1) and only
(n — 1) of them that can be linearly independent
with each other (Roman, 1987). As m<n, one
can always pick up (m — 1) such vectors. Let
B2, B3, - - -, By be these vectors so that "] =0
(for i = 2,3,...,m) and they are linearly indepen-
dent with each other. Recall that there are at most
n independent n-dimension vectors in the E” space.
Since m < n and f§; (for i =2,3,...,m) are vectors
in the E" space, we can always find another
n-dimension row vector «) such that o, §,, 55, .. .,
p,, are also linearly independent with each other.
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Next, we construct the decision matrix A4
by using vectors o), f,,fBs,..., B, Let o (i=
1,2,...,m) be the ith row of decision matrix A.
Then oy = o), to =a} — f,...,05= o, = B, ...,
and o, = o}, —B,,. Since o}, f,, B;,..., and B, are
linearly independent, o, o, ...,a,, are also lin-
early independent. Therefore, rank (4) =m and
condition (iv) is satisfied. Also, (o — o;) = f; (for
i=2,3,...,m) and W*B =0, hence the newly
constructed decision matrix " is a feasible solu-
tion to system (7) and condition (8) is satisfied.
Thus, Lemma 7 has been proved. U

Now we consider an example with m = 3 and
n = 4. One can arbitrarily select a weight vector,
say W* = (0.25,0.25,0.25,0.25). Next we con-
struct a decision matrix A such that 4 can yield a
feasible solution to system (7) equal to W*. Since
W*ﬁl.T =0 (fori=2,3,...,m), we have

0.25B,, + 0.258,, + 0.25B,; + 0.258,, = 0. (9)

Among the pf; vectors which satisfy Eq. (9),
we select (m — 1 =2) of them which are linearly
independent. Let 8, and 3 be such two vectors.
For instance, let: f,=(1,1,1,-3), and B, =
(1,-3,1,1). Next, we find another vector «; that
is linearly independent with S, and f;. Let
oy =(2,2,2,2). Finally, we construct the de-
cision matrix A4 such that: o =a) =(2,2,2,2),
dzzaq—ﬁzz(l,l,l,S) and 053:()(,1—-0(3:
(1,5,1,1). Hence, the decision matrix is as in
Table 4.

It is easy to verify that this matrix is of rank 3
and the solution of system (7) is W*=
(0.25,0.25,0.25,0.25). Next, we prove that for
such a decision matrix all the m! rankings are
feasible.

Table 4
Sample decision matrix satisfying the conditions of Lemma 7
Alts. Decision criteria
C C, G Cy
w1 wa Wi Wy
A 2 2 2 2
A> t 1 i 5
A; 1 5 1 1

Table 5

Different criteria weights and corresponding rankings
Criteria weights (w|, wa, w3, ws) Rankings
(0.5,0.3,0.1,0.1) Ay > A > 4>
(05, 0.2,0.1, 01) A > A3 > A
(0.2,04, 0.1, 0.3) Ay > 4> > 4,
(0.4, 0.1, 0.3, 0.2) Ay > Ar > A
(0.2,0.2,0.3,0.3) As > A4, > As
0.2,0.2,0.1, 0.4) Ay > Ay > A,

Theorem 3. If m < n, then one can always find a
decision matrix for which all the m! rankings are
feasible and F,(m) = m!.

Proof. Consider a decision matrix which satisfies
the following two conditions: (i) its row vectors «;
(for i = 1,2,...,m) are linearly independent, and
(ii) system (7) has feasible solutions. Recall that
from Lemma 7 it is always possible to find such a
decision matrix. By Lemma 5, the second condi-
tion is necessary for the decision matrix to have m!
feasible rankings. The first condition guarantees
that all the separating planes are linearly inde-
pendent and hence the difference between the
preference values of alternatives 4; and A, (for
j=23,4,...,m and j#1i) are also indepen-
dent of each other. From Lemma 6 it can be seen
that in this situation all the m! rankings are feasible
for this decision matrix. Thus Theorem 3 has been
proved. O

The decision matrix in Table 4 has three inde-
pendent rows and it can yield a feasible solution
(W+* =(0.25,0.25,0.25,0.25)) to system (7). By
Theorem 3, all the 3! = 6 rankings are feasible for
this decision matrix. In Table 5, the six possible
rankings of the decision making problem depicted
in Table 4 are listed when different values are as-
signed to the criteria weights.

3. A decomposition method for calculating (1)

3.1. Partition of a space by hyperplanes in the
general position

As it has been proved in Theorem 2, if n < m,
then F,(m) will be less than m!. Since the maximum
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number of feasible rankings is equal to the
maximum number of ranking regions that the
separating planes can divide a base-plane into,
the value of F,(m) can be calculated by properly
utilizing its geometrical interpretation.

First, let us consider the special case of the
space partition problem, where all the separating
planes are assumed to be in the general position. In
this special case, the maximum number of sub-
spaces that the separating planes divide the base-
plane into can be calculated analytically. We first
need to study this special case in order to develop
some formulas that will be used next for the actual
case which requires that the separating planes not
to be in the general position (Theorem 1). The
following discussion is a brief introduction of
Brualdi’s (1979) solution to this problem.

Let g (where ¢ = 1,2,3,...) be the number of
(i — 1)-dimension separating hyperplanes all of
which are in the general position. Let A;{q) (for
i=1,2,3,...,m) be the maximum number of sub-
spaces that these separating planes can divide the
i~-dimension space into.

For i =1, h{q) is simply the number of seg-
ments into which a line is divided by ¢ distinct
points. Thus, we have 4,(0) = 1 and &, (1) = 2. Let
g = 1, and consider a line divided into 4,(¢ — 1)
segments by ¢ — | points. If the gth point is in-
serted on the line, then one of the existing seg-
ments is divided into two segments. Hence

h(q) =hi(qg—1)+1 (10)

For i = 2, a plane is divided into 4,{(q — 1) regions
by g — 1 lines in the general position. Now we in-
sert the gth line in the plane so that the ¢ lines are
in the general position. The first ¢ — 1 lines inter-
sect with the gth line in ¢ — 1 distinct points which
divide the line into 4;(g - 1) segments. Each one
of these segments of the gth line divides an existing
region of the plane into two regions. Hence

hy(q) = ha(qg — 1) + hi(g — 1). (11)

The results can be generalized to higher dimen-
sions. Thus, for i > 1 we have

hi(g) = hi(g — 1) + hi (g — 1). (12)

In Brualdi (1979) there is a detailed description of
how to solve this recurrent function. In this pa-
per we just omit the procedure for solving this
recurrent function and provide the final solution

=9+ (1)) oo

Therefore, if the separating planes are in the
general position, then for the (# — 1)-dimension
space with & (n — 2)-dimension separating planes
the maximum number of sub-spaces can be cal-
culated as follows:

(k) = (’5) + (’f) bt <nf1> (14)

3.2. Partition of the base-plane by separating planes
when n < 3

As it has been discussed in Section 2.3, to divide
the base-plane into more sub-regions, there should
be more intersections among these separating
planes. It is obvious that if these separating planes
could be in the general position, then they would
have the maximum number of distinctive inter-
sections and hence could divide the base-plane into
the maximum number of sub-regions. For the de-
cision making model assumed in this paper, as
there are n decision criteria, the base-plane is of
(n — 1) dimension and the separating planes are of
(n —2) dimension. In this situation, Eq. (14) can
be applied directly and the problem is trivial.
However, by Theorem 1, the separating planes of
an MCDM problem can never be in the general
position. Therefore, Eq. (14) cannot be applied di-
rectly and some other method has to be found to
calculate F,(m).

For n = 1, clearly there will be only one ranking
sequence available. For n = 2, the value of F,(m)
can be calculated directly from its geometric
meaning as depicted in Fig. 5. The separating
planes Ly, L3, ..., L1y, divide the base-plane:
wy +w, =100 into (k+1) segments, where
k=m(m—1)/2. Hence

A = () +1. (15)
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Fig. 5. The case of m alternatives with 2 criteria.

For n =3, F,(m) is equal to the maximum
number of ranking regions that k lines can divide a
2-D plane into. Since we cannot use Eq. (14) di-
rectly, a decomposition method is proposed to
calculate the value of F,(m). Thus, instead of
placing all the separating planes onto the base-
plane and investigating how many ranking regions
they can divide the base-plane into, we will de-
compose the dividing process of the base-plane
by these separating planes into k (where k=
m(m — 1)/2) steps and at each step, only one sep-
arating plane will be added onto the base-plane.
Also when a new separating plane is added onto
the base-plane, it should intersect with all the ex-
isting planes on the base-plane and have as many
distinct intersections with the existing planes as
possible. In this way, when all the separating
planes are added onto the base-plane, the base-
plane is divided into the maximum number of
ranking regions.

Each time a new separating plane is added we
calculate how many more ranking regions can this
plane divide the base-plane into. Finally, when all
the separating planes are added onto the base-
plane, the number of ranking regions that the
base-plane is divided into is the sum of the number
of new regions that are obtained at each step. It is
obvious that the value of F,(m) obtained from this
process should be the same as if one counts the

number of ranking regions when all the & planes
are already located on the base-plane.

The k separating planes will be placed onto the
base-plane in the sequence: (Li2,Li3,Li4y ..., Lin),
(L23,L24, e ,Lzm), (L34,L35, .. ,L},n), ey and L(m~l)m-
Let K;; be the number of separating planes that
are already on the base-plane before L; is
added. Then, when all the separating planes are
added onto the base-plane, the maximum number
F3(m) of ranking regions can be calculated as
follows:

Fy(m) = hy(m — 1) +ZZh —i+1). (16)

i=2 j=i+l

Eq. (16) can be further reduced to the following
equation:

o (8) () () (5)

where k=m(m —1)/2. The detailed proofs of
Egs. (16) and (17) are omitted in this paper but
are available from the first author.

3.3. An example with 4 alternatives and 3 criteria

Now we consider an example with 4 alterna-
tives and 3 criteria. Fig. 6 depicts the division of
the base-plane by the separating planes which
yields the maximum number of feasible rankings.
There are six separating planes which are labeled
as: L», Lz, Ly, Lyy, Los, and Ls,. First Lys, Lis,
and L4 are added onto the base-plane. Since these
three lines are in the general position, the base-
plane is divided into seven regions. Next, L3 is
placed onto the base-plane. It can be seen that
L>y must cross the intersection of L, and L.
Hence, L,; can only divide the base-plane into
three new regions. Similarly, L,4 can only divide
the base-plane into four new regions. Finally,
when L;4 is added, it must cross both the inter-
sections of L3, L4, and Ls3, L»4. Hence it can only
divide the base-plane into four new regions. When
all the separating planes are added onto the base-
plane, it is divided into (7+3+4+4=18)
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L3 Ly L2

Fig. 6. Division of the base-plane with 3 criteria and 4 alter-
natives.

ranking regions. This is exactly the same number
obtained from Eq. (17).

3.4. Partition of spaces when n=4

In order to calculate the value of F,(m) when
n = 4 we follow exactly the same procedure pro-
posed in the previous sub-section. All the k sepa-
rating planes will be added onto the base-plane
one by one according to the sequence:
(Liay Lis, Liay oo - Liw)y (Lo3, Loay - - - Low), (L3a, Lss,
e ,L;m), e ,L(,,,A”,,,. When L,',- (l = 2, 3, B (e 1
and j=i+1,i+2,...,m) is placed onto the
base-plane, the “old” separating planes that are
already on the base-plane will cross the newly
added separating plane at (K;; — (i — 1)) intersec-
tions. These intersections are (n — 3)-dimensional
hyperplanes.

For n = 3, these intersections are points and
points are always in the general position. However,
as the dimension of the space increases, the problem
becomes more complex. For n = 4, these intersec-
tion hyperplanes can no longer be in the general
position on L; (This has been proved by the
authors but is omitted in this paper.) Therefore
Eq. (16) cannot be used to calculate F,(m) when
n = 4 and there is no closed-form formula for F,(m)
if n = 4. Thus, in order to calculate the value of
F,(m), some recursive functions have been derived.

Let Z; be the number of hyperplanes that
cannot be in the general position among the

(K;; —(i—1)) intersections on L; Let X, =
K,;—i+1—2Z; From the definition of Z,;, the
variable X;; denotes the number of hyperplanes
that could be in the general position among these
(Ki; —i+1) hyperplanes. Let f,_(x,») be the
number of regions that x (n — 1)-dimension hy-
perplanes can divide an n-dimension base-plane
into. We also define that among the x hyperplanes,
y of them cannot be in the general position on the
base-plane. Thus, for » > 4, the following func-
tions have been derived (details of how these
equations are derived is available from the first
author):

F;l(m) = hn—l(m - 1)
m—1 m

+ZZﬁ,,2(K,1,—i+l, Zy), (18)

=2 j=i+l

foaKyy =i+ 1, Zy)

= ha(X,) + Zf(x —it LD, (19)
where .
HK 1) = h(K),
Xy =K;—i+1-2;,
and
In(K,0) = hy(K). (20)

In Eqs. (18) and (19) the values of different Z;; can
be obtained (see also Table 6) by observing the
intersections of L, and those separating planes
that are added onto the base-plane before L;;.

Please note that Eq. (19) denotes a recursive
function. When this equation is solved, the value
of the function f,_»(K, —i+1,Z;) is obtained.
Next, Eq. (18) can be applied to calculate F,(m). In
this way, one can calculate the maximum number
of ranking sequences in an MCDM problem with
m alternatives and » criteria. Table 7 lists some of
the values of F,(m) for different m and » values.
These results demonstrate an interesting property
of the MCDM problems. That is, the number of
decision criteria may greatly influence the number
of feasible rankings in an MCDM problem.
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Table 6
Values of Z; for different i and j(=1i,i +1,...,m) values
i Values
1 2 3 m—1
i Z; i Z;; i Z; Z,; i Z;;
2 0 3 0 4 m—3 2m -7 m (m—~2)(m—3)/2
3 0 4 1 5 m-—2 2m— 6
0
m 0 m m—3 m 2m—17 m 3m— 12
Table 7
Some values of F,(m) (maximum number of feasible rankings) for different n and m values
No. of Alts, m Number of criteria, n
1 2 3 4 S 6 7
1 1 1 1 1 1 1 1
2 1 2 2 2 2 2 2
3 1 4 6 6 6 6 6
4 1 7 18 24 24 24 24
5 1 11 46 94 120 120 120
6 1 16 101 338 681 720 720
7 1 22 197 980 3047 3833 5040

4. Some application issues

This paper demonstrates that when the number
of criteria is less than the number of alternatives,
we can never get all the possible rankings of the
alternatives simply by changing the criteria
weights. What is more, the possible number of
rankings that can be generated may be significantly
less than its upper bound: the factorial of the
number of the alternatives. Let R be defined as the
ratio F,(m)/m!. To compare this maximum number
of possible ranking sequences for different numbers
of alternatives, the ratio R is used as the measure of
the relative value of this maximum number of
feasible rankings. Fig. 7 depicts for each specific
number of alternatives how this ratio R changes in
terms of the number of criteria. These results were
derived from the results given in Table 7.

In Fig. 7, for a given number of decision cri-
teria, the smaller the number of alternatives is, the
higher the value of R is. As the number of alter-
natives increases, the value of R drops dramati-
cally. Also, for a given number of alternatives, as
the number of decision criteria increases, the value
of R increases with it until the number of criteria is

iys=1 Altg =2

¥ § 2 | S
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o 04 - s .
- / e
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FORTL S -
0.0 eciancs

Number of Criteria

Fig. 7. Relative value of the maximum number of feasible
ranking sequences.

equal to the number of alternatives, in which case
R reaches its maximum value of 1. After this point,
the values of R will not change any more even if
the number of criteria still increases. When the
number of criteria increases, the smaller the
number of alternatives is, the faster the value of R
increases.

Fig. 7 indicates the relationship between the
number of decision criteria, the number of alter-
natives and the maximum number of feasible
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rankings of the decision making model. This
finding can make contributions to both the theory
and application of multi criteria decision making.
One of the most important tasks in MCDM is the
choice of the criteria. Keeney and Raiffa (1976)
stated that the desirable properties of a set of cri-
teria should be: (i) completeness; (ii) operational;
(iii) decomposable; (iv) non-redundancy; and (v)
to be of minimum size. The study of the maximum
number of feasible rankings suggests that the ratio
R may serve as a quantitative measure of whether
a given number of criteria is discriminating enough
among the alternatives.

5. Conclusions

This paper discussed the problem of at most
how many different ranking sequences can exist for
a given deterministic MCDM problem. This study
showed that the maximum number of feasible
ranking sequences for a deterministic MCDM
problem is a function of both the number of al-
ternatives and the number of criteria. When there
are less criteria than alternatives, then this maxi-
mum number can be much smaller than the fac-
torial of the alternatives.

For decision matrices with less than four crite-
ria, there exists a closed-form formula of this
maximum number of terms of the number of cri-
teria and the number of alternatives. For a prob-
lem with more than four criteria, however, such a
closed-form formula does not exist. Instead, a
decomposition method is developed to calculate
this number. The results of this research may
provide a theoretical foundation for a decision
maker to measure the completeness of his/her
choice of the set of criteria.
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