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A Minimization Approach to Membership Evaluation
in Fuzzy Sets and Error Analysis

E. TRIANTAPHYLLOU,' P. M. PARDALOS,> AND S. H. MANN’

Communicated by R. E. Kalaba

Abstract. Evaluation of the degree of membership in fuzzy sets is a
fundamental topic in fuzzy set theory. Saaty (Ref. 1) proposes a method
for solving this problem that has been widely accepted. In this paper,
we examine the problem from an error minimization point of view that
attempts to reflect the real intentions of the decision maker. When this
approach is used, the findings reveal that fuzzy sets of different car-
dinalities have dramatically different requirements in the consistency
jevel of the input data as far as the error minimization criterion is
concerned.
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1. Introduction

Values between 0 and 1 are used to determine the degree of membership
of the elements of a fuzzy set. The degrees of membership are supposed to
be a good model of the way people perceive categories (Ref. 2j. Usually,
the most representative members in a fuzzy set are assigned to the value of
1.00 and nonmembers to the value of 0.00. Then, the main problem is to
determine the degree of membership (i.e., a number between 0 and 1) of
the between members. Psychologists (Ref. 3) have found that people can
easily identify representative members in a fuzzy set, while they have
difficulties in identifying the other members. The importance of evaluating
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the membership degrees in applications of fuzzy set theory in engines
and scientific fields is best illustrated in the 1,800 references given by Gy
et al. (Ref. 4). :
Saaty (Refs. 1 and 5) has suggested a possible solution to the members:
ship evaluation problem based on eigenvalue theory. In both Chy e;a’i‘t‘
(Ref. 6) and Federov er al. (Ref. 7), Saaty’s method has been viewed a“a
modified least-square problem. In this paper, a least-square approach il"
used on the data derived from the pairwise comparisons as proposed b"
Saaty. However, the present approach uses an error minimization funcuon.
that attempts to reflect the real intentions of the decision maker wh,],
making the pairwise comparisons. The findings of this paper demonstrate:
that the number of elements in a fuzzy set is very critical in determmmz%
the impact of the consistency of the pairwise comparisons.

2. Literature Review

LetA,, A,,..., A, be the members of a fuzzy set. We are interested i m.
evaluating the membershlp values of the above members. Saaty (Refs.q %
and 5) proposes to use a matrix A of rational numbers taken from the set
{1/9,1/8,1/7,. -7,8,9}. Each entry of the above matrix A rep¥:
resents a pairwise Judgement Specifically, the entry a; denotes the numbef, ”g
that estimates the relative membershxp of element A; when it is compared
with element A,. Obviously, a =1/a; and a; =1. That is, the matrix 1s§~
reciprocal one. g

Let us first examine the case in which it is possible to have perfe_d‘
values a;;. In this case, it is a; = W,/ W, (W, denotes the actual value ofthe‘ '
element s) and the previous rec1procal matrix A is consistent, that is, '

a; = a,ay;, Lj,k=1,2,3 ... (l)

where n is the number of elements in the fuzzy set.

It can be proved that A has rank 1, with A =n to be its nonze
eigenvalue. Then, we have

Ax = nx, (2,
where x is an eigenvector. From the fact that a; =W,/ W, the followip

relations are obtained:

):a,,w S W=nw, i=1,2,3,...,n

j= Jj=1

or

AW=nW,
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.quation (4) states that n is'an eigenvalue of A with W a corresponding
cigenvector- The same equation also states that, in the perfectly consistent
case (i€, a; = axay;), the vector W, with the membership values of the
clements 1,2,3,...,n, is the principal right-eigenvector (after normaliz-
Jtion) of matrix A.

In the nonconsistent case (which is the most common), the pairwise
comparisons are not perfect, that is, the entry a; might deviate from the
real ratio W,/ W, (i.e., from the ratio of the real membership values W, and
W). In this case, the previous expression (1) does not hold for all the
p055ible combinations. Now, the new matrix A can be considered as a
pcnurbation of the previous consistent case. When the entries a; change
slightly, then the eigenvalues change in a similar fashion (Ref. 5). Moreover,
the maximum eigenvalue is close to n (greater than n), while the remaining
cigenvalues are close to zero. Thus, in order to find the membership values
in the nonconsistent cases, one should find an eigenvector that corresponds
(o the maximum eigenvalue A ... That is to say, one should find the principal
right-eigenvector W that satisfies

AW=2A_.. W, where Ap..=n

Saaty estimates the reciprocal right-eigenvector W by multiplying the
entries in each row of the matrix A together and taking the nth root (n is
the number of the elements in the fuzzy set). Since we desire to have values
that add up to 1.00, we normalize the previously found vector by the sum
of the above values. If we want to have the element with the highest value
to have a membership value equal to 1.00, we divide the previously found
vector by the highest value.

Under the assumption of total consistency, if the judgments are gamma
distributed (something that Saaty claims is the case), the principal right-
cigenvector of the resultant reciprocal matrix A is Dirichlet distributed. If
the assumption of total consistency is relaxed, then Vargas (Ref. 8) proves
that the hypothesis that the principal right-eigenvector follows a Dirichlet
distribution is accepted if the consistency ratio is 0.10 or less.

The consistency ratio (CR) is obtained by first estimating A ... Saaty
estimates A, by adding the columns of matrix A and then multiplying the
fesulting vector with the vector W. Then, he uses what he calls the consistency
Index (CI) of the matrix A. He defines CI as follows:

Cl=(Amax—n)/(n—=1).
Then, the consistency ratio CR is obtained by dividing the CI by the random
Consistency index (RCI) as given in Table 1.
Each RCI is an average random consistency index derived from a

;ample of size 500 of randomly generated reciprocal matrices with entries
rom the set {1/9, 1/8,1/7,...,1,2,...,7,8,9} tosee if its CI is 0.10 or less.
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Table 1. RCI values of sets of different order n.

n 1 2 3 4 5 6 7

RClH 0 0 0.58 0.90 1.12 1.24 1.32

If the previous approach yields a CR greater than 0.10, then a reexamm
ation of the pairwise judgments is recommended until a CR less than or
equal to 0.10 is achieved.

Chu et al. (Ref. 6) observed that, given the data a;, the values W,to
be estimated are desired to have the following property:

a;= W,/ W, ‘7(5)

This is true, since a,; is meant to be the estimate of the ratio W,/ W,. Then,
in order to get the estimates for the W, given the data a,, they propose the
following constrainted optimization problem:

minS=3Y ¥ (a;W,- W)’ [(J]
i=1j=1
st. Yy W,=1,
i=1 :f{“
W,>0, i=1,23,. W

They also give an alternative expression S, that is more difficult to solve
numerically. That is,

Si=3 T (a;= W/ W)~ ()

i=1j=1

In Federov er al. (Ref. 7), a variation of the above least-square formuls-

tion is proposed. For the case of only one decision maker, they recommend
the following models: e

log a;=log W, —log W, +¥,(W,, W)e; ' ®

and - L
Sy

a;= W,/ W+, (W, W)e,, Q)

where W, and W, are the true (and unknown) membership values; ¥,(X;% Z

and ¥,(X, Z) are given positive functions (when X, Z>0). The randQ :
errors ¢; are assumed independent with zero mean and unit variance. USi
these two assumptions, they are able to calculate the variance of eﬂi
individual estimated membership value. However, they fail to give 8
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of selecting the appropriate positive functions. In Example 3.2, presented
|ater, a sample problem that originates in Ref. 1 and later in Ref. 7 is solved
for different functions ¥,, ¥, using the Federov method.

3. Considering the Human Rationality Factor

According to the human rationality assumption, the decision maker is
a rational person. Rational persons are defined here as individuals who try
(o minimize their regret (Ref. 9), to minimize losses, or to maximize profit
(Ref. 10). In the membership evaluation problem, minimization of regret,
losses, or maximation of profit could be interpreted as the effort of the
decision maker to minimize the errors involved in the pairwise comparisons.

As it is stated in previous paragraphs, in the inconsistent case, the entry
a, of the matrix A is an estimate of the real ratio W,/ W,. Since it is an
estimate, the following is true:

a,=(W,/W,))d Lj=1,2,3,...,n (10)
In the above relation, d;; denotes the deviation of a; from being an' accurate
judgment. Obviously, if d; =1, then the a; was perfectly estimated. From
the previous formulation, we conclude that the errors involved in these
pairwise comparisons are given by ‘

ijs

f,j = dl_/ e 1.00,
or using (10) above,
€; = a,;( W,/ W,) = 1.00. (11)

When a fuzzy set contains n elements, then Saaty’s method requires
the estimation of the following n{n—1)/2 pairwise comparisons:

Wo/ Wy, Wi/ W, W/ W, ..., W, /W, (12-1)
W,/ Wy, W/ W, ..., W,/ W, (12-2)
W/ W,,..., Wa Wi, (12-3)
W,/ W, (12-n)
The corresponding n(n —1)/2 errors are [using relations (11) and (12)]:
€; = a;(W;/ W;)-1.00, ij=1,2,...,nj>1 (13)

Since the W,’s are degrees of membership that add up to 1.00, the following
relation should also be satisfied:

)'f W, =1.00. ’ (14)
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Apparently, since the W,’s represent degrees of membership, we alsé‘

3

w>03 i=1,2,3,...’n. —.,.;'d

Relations (13) and (14), when the data are consistent (i.e., all the e:i'io“

equal to zero), can be written as follows:

g
e

(13)
The vector b has zero entries everywhere, except that the last one is equtl
to 1.00; the matrix B has the following form (blank entries represent zerog),

BW=1p,

1 2 3 4 s 6 7 . .- n h
-1 a, 1
-1 a)s 2
-1 A 3
al,n—l e
-1 a,, n-1
-1 a3 l
-1 as 4 2
B= _'1 a- s 3
al’_n—l
-1 a,, n-2f
_l an—l,n l ’:
| 1 1 1 1 1 1 1 s e 1 1

The error minimization issue is interpreted in many cases (regressig :
analysis, linear least-square problem) as the minimization of the sum Ofg; X
squares of the residual vector r = b — BW (Ref. 11). In terms of the formula-i&
tion (15), this means that, in a real-life situation (i.e., errors are not zerogs
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ny more), the real intention of the decision maker is to minimize the
‘ b

,;prcssion
SAx)=|b-BW|3, (16)
which is a typical linear least-square problem.

If we use the notation degribed previously, then the quantity (6) that
,» minimized in Ref. 6 becomes

n n n
§=Y ¥ (W, - W) = Y Y (W),
i=1j=1 i=1j=1
and the alternative expression (7} becomes
n n

Si= T T (a,=W/Wr =T T (W/ W)

i=1j=1 i=1j=1

Clearly, both expressions are too complicated to reflect in a reasonable way
the intentions of the decision maker.

The models proposed by Federov er al. (Ref. 7) are closer to the one
developed under the human rationality assumption. The only difference is
that, instead of the relations

log a; =log W, —log W, + ¥ ,(W,, W))e;
and
a; = W,/ W+ ¥, (W, We,,
the following simpler expression is used:
ay=(W,/ W))d,
or
a; = (W,/ W,))(e; +1.00). 17)

However, as Example 3.2 illustrates, the performance of this method is
greatly dependent on the selection of the functions ¥,(X, Z) or ¥,(X, Z)
and now these functions are further modified by (17).

Example3.1. Let us assume that the following is the matrix of pairwise
comparisons for a set of four elements: :

1 2/1 1/5 1/9
1/2 1 1/8 1/9
s/1 8/1 1 1/4
9/1 9/1 4/1 1
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Using the methods presented in previous sections, we can see that
Amax =4.226,
Cl=(4.226 —4)/(4-1)= 0.0753,
CR=C1/0.90=0.0837 < 0.10.

The formulation (15) that corresponds to this example is

[—1 2/1 00 07 [0]
-1 00 1/5 ¢ v 0
=1 00 0 1/9 v 0 el
0.0 -1 1/8 o vz =10
00 -1 0 1/9 v3 0 :
0.0 00 -1 /4L 0

L1 o1 1 10

The vector V that solves the above least-square problem is calculated to be .

V =(0.065841, 0.039398, 0.18692¢, 0.704808);

the sum of squares of the residual vector components is 0.003030. The
average squared residual for this problem is 0.003030/((4 x (4-1)/2)+1=
0.000433; that is, the average residual is \/(0.000433) =0.020806.

(1) 1 4 9 6 6 5 5
2) 1/4 1 7 5 5 3 4
(3) 1/9 1/7 1 1/5 1/5 1/7 1/5
(4) 1/6 1/5 5 1 1 1/3 1/3
(5) 1/6 1/5 5 1 1 1/3 1/3
(6) 1/5 1/3 7 3 3, 1 2
7 1/5 1/4 5 3 3 1/2 1
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Table 3. Comparison of the membership values for the Data in Table 2.

o —
Element in set

Average
\fethod used n (2) (3) (4) (5) (6) (n residual
saaty’s eigenvector
method 0429 0.231 0.021 0.053 0.053 0.119 0.095 0.134
power method
cigenvector 0.427 0.230 0.021 0.052 0.052 0.123 0.094 0.135
(hu's method 0.487 0.175 0.030 0.059 0.059 0.104 0.085 0.097
J-ederov Model 1 with
¥, =1 0.422  0.232 0.021 0.052 0.052 0.127 0.094 0.138
j ederov Model 2 with
W= 0.386 0.287 0.042 0.061 0.061 0.088 0.075 0.161
tederov Model 2 with
W= W= W 0.383 0.262 0.032 0.059 0.059 0.122 0.083 0.152
federov Model 2 with
W, =W,/ W) 0.047 0.229 0.021 0.051 0.051 0.120 0.081 0.130

| cast-square method
under HR assumption 0.408 0.147 0.037 0.054 0.054 0080 0.066 0.082

et al. (Ref. 12). The last row of Table 3 shows the results obtained by using
the least-square method under the human rationality assumption (HR).

As is shown in the last column of Table 3, the performance of each
method is very different as far the mean residual is concerned. The results
also illustrate how critical is the role of the functions ¥,(X, Z) and ¥.(X, Z)
in the Federov er al. method. The mean residual obtained by using the
least-square method under the human rationality assumption is the smallest
one by 16%.

4. Average Error per Comparison for Fuzzy Sets of Different Order

In this section, we generate random reciprocal matrices of pairwise
comparisons of different order and consistency index (CI). For each test
problem, the least-square problem, as derived under the human rationality
assumption, is solved and the average residual is recorded. The same
problem is also solved by using the eigenvalue method. The average residual
Is considered here as an indicator of the effectiveness in estimating success-
f.“")’ membership degrees from a set of pairwise comparisons. The simula-
lion program was written in FORTRAN and the resulting least-square
problems were solved using the appropriate IMSL subroutines. The results
are presented in Table 4 and depicted in Figs. 1 and 2.
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Table 4. Average residual and CI versus order of fuzzy set and CR wheé
human rationality assumption (HR) and the eigenvalue metho (EMJ;"

used; results correspond to one hundred observations. .
£ 3

Corresponding CR coefficient L
Order —_—
of set 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

7 CI 00264 0.0396 0.0528 0.0660 0.0792 0.0924 0.1056 0.1188 0.13}@
EM (*) (*) () () 0.6446 0.6674 0.8497 0.8930 0.9414
HR (%) (*) (*) (*}  0.5094 0.5279 0.5560 0.6024 0.6112
6 Cl 0.0248 0.0372 0.0496 0.0620 0.0744 0.0868 0.0992 0.1116 0.124¢
EM 04049 0.5546 0.6336 0.7100 0.7798 0.8369 0.9347 0.9681 1.0554
HR  0.2982 0.4035 0.4467 0.4615 0.5240 0.5506 0.5956 0.6127 0.6503
5 Cl 0.0224 0.0336 0.0448 0.0560 0.0672 0.0784 0.0896 0.1008 0.1120
EM 04957 0.6192 0.7598 0.7927 0.8682 09769 1.0303 1.0984 1.2097
HR 03382 04276 04912 04934 0.5575 0.6030 0.6334 0.6742 0.6913
4 CI 00180 0.0270 0.0360 0.0450 0.0540 0.0630 0.0720 0.0810 0.0900
EM  0.5420 0.6629 0.7787 0.8534 09779 1.0696 1.1388 1.2451 1.2759
HR 03309 04193 0.4883 0.5284 0.5777 0.6323 0.6807 0.7252 0.7340
3 Cl 0.0116 00174 0.0232 0.0290 00348 0.0406 0.0464 0.0522 0.0580
EM 0.5005 0.6690 0.7847 0.8196 0.9979 1.0486 1.1012 1.2225 1.3060
HR 0.2869 0.3554 0.3836 0.4785 0.4998 0.5535 0.6190 0.6215 0.6449

(*) Values were not found for these cells due to the expensive requirement for CPU time.

For each case, the number of the generated random matrices was
varying but large enough to ensure that the means converged to within a
small error tolerance. It was observed that, for large matrices with small
CI values, the sample size could be small (less than 100) and still achieve
this similar convergence. However, the opposite is true for small matrices
with large CI values. In Figs. 1 and 2, the vertical axis represents the average
residual, while the horizontal one represents the consistency index (ci.
The CI was selected such that the CR would be 0.02, 0.03, 0.04,...,0.10.
Due to the difficulty in obtaining large random matrices when the CI (or
the corresponding CR) is very small, the supercomputer facilities at Comp!l
University were used. Figure 1 depicts average residuals when the humag
rationality assumption is used, while Fig. 2 depicts residuals when the
eigenvector method is used. )

As the plots in Figs. 1 and 2 illustrate, the average residual is a functiof
of both the consistency index of the data as well as the order of the inpﬁE
matrix (i.e., the number of elements in the fuzzy set under consideratidngi
Regression analyses suggest that, for fuzzy sets of a given order, the averagl
residual is linearly related to the consistency index. As the CI of the dats;
decreases, so does the average residual. This is expected because, as the € »
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Averoce

Residual

0.0 . . .

0.00 0.03 0.06 0.09 0.12 0.15
Cl Value

Fig. 1. Average residual and CI versus order of fuzzy set when the human raticnality
assumption is used; results correspond to one hundred observations.

reaches zero, the input data tend to be perfectly consistent. From these
results, it can be seen that the average residuals are significantly smaller
when the method that is based on the human rationality assumption is used.
The same plots also illustrate the importance of the order of a fuzzy set.
For small sets, the CI has to be small in order to keep the average error at
a low level. However, as the size of fuzzy sets increases, the CI can be
relatively larger and still achieve small average error per comparison. That
is, the input data in the case of large fuzzy sets can be more inconsistent
?han in the case of smaller fuzzy sets, with respect to the error per comparison
issue.

S. Conclusions

The Saaty method of evaluating the membership degrees in fuzzy sets
has captured the interest of many researchers. This is mainly due to the
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Fig. 2. Average residual and CI versus order of fuzzy set when the eigenvalue method is
used; results correspond to one hundred observations.

mathematical properties of the method and the fact that the input data are_
rather easy to obtain.

However, as the findings of the present paper demonstrate, the analysis
of the errors reveals a new dimension of the membership value problem.”
Although the CR value can be kept to less than 0.10 (and hence ensure;
satisfaction of the Dirichlet distribution criterion as described prevnously),-
the mean residual can vary significantly. The results demonstrate that, even
with data that yield CR less than 0.10, the CR (or the correspodning cl): ]
has to be kept at low levels for small fuzzy sets and at somewhat highef"
levels for large fuzzy sets, even when the method that is based on the human &
rationality assumption is used. As is demonatrated by Triantaphyliou ef al
(Ref. 13), small changes in the membership values can mean the dlffert’.n'ﬁe
between selecting one alternative instead of another in many decision-g
making problems. Since the role of membership values is crucial in many}
real-life problems, further understanding of these fuzzy set problems lS
critical.
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