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Abstract—This paper deals with the issue of question asking strategies in expert systems with
Horn clause rule bases. A good strategy would ask as few questions as possible to reach a conclusion.
This paper describes the development of an efficient and effective heuristic approach which is an
extension of the strategy developed by Wang and Vande Vate [1]. Similar to the original strategy, the
proposed approach is also organized into two phases. In the first phase, a set of candidate questions
is formed as in the original strategy. In the second phase, a question is selected from the previous
set. A new question selection rule is used in the proposed strategy. This rule is optimal, given a set
of candidate questions. Furthermore, computational results indicate that the new question asking
strategy is a highly effective and efficient practical approach.

Keywords—Question asking strategies, Horn clauses, Inference engine, Backward chaining, Ex-
pert systems, Set cover problem, Heuristic approaches.

1. INTRODUCTION

In a rule based expert system, the user sets a final goal to be proved or he may supply the system
with a set of initial data (or facts), and then ask the system to derive all possible conclusions. If
the given set of data is insufficient to reach the final conclusion, then the inference engine of the
system asks the user (or retrieves the information from sensors) to supply additional information.
One of the main objectives of a successful expert system is to be able to reach a conclusion (goal)
by asking a small number of questions. This objective becomes more urgent when the rule base
involves a vast number of rules.

When the number of rules in the system is very large, the number of questions posed by the
system may become too large. If the number of questions increases, so does the possibility of
entering wrong answers to some of these questions. Furthermore, even if the user provides the
system with only correct answers, still a very large number of questions may make certain appli-
cations infeasible because it would take too much time to reach the final conclusion. The above
observations indicate that one of the most crucial issues in designing an efficient and effective
inference engine is the use of a question asking strategy which yields a small (hopefully near
minimum) number of questions. This paper presents an efficient and effective question
asking strategy for rule based expert systems which use Horn clauses.
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A problem related to the need of using the minimum number of questions is examined in
designing fault diagnostic systems of electrical circuits. The behavior discrepancy of an electrical
circuit between the observed and predicted performances indicates malfunctioning of the circuit.
When behavior discrepancies are observed, one wants to identify the causes of the discrepancies.
In [2], a general minimum entropy technique is presented which examines the differences between
a model of an artifact and the artifact itself.

That technique was used to select the best measurement (test) to make next. The required
data for this technique are failure probabilities for the components of the artifact. In a later
development, de Kleer [3] proposed an efficient measurement selection strategy which uses the
assumption that all components of a device fail independently with very small and equal prob-
ability. This approach can also be used to test the integrity of a Horn system (i.e., to examine
whether there are incorrect rules). This is possible because a Horn system can also be approached
as a logic circuit with “AND” and “OR” gates.

The problem examined in this paper is different from the one examined in building efficient
diagnostic systems. In this paper, all rules are assumed to be correct and there is no issue of
questioning the integrity of the rule base. The main concern is the development of an efficient
and effective question asking strategy for expert systems which use Horn clauses as their rules.

The present paper concentrates on Horn clause systems because these systems have been widely
accepted in many real life applications of expert systems technology. In particular, Jeroslow
(4, p. 97] states: “recall that only Horn clauses are permitted in expert systems.” Hooker [5]
points to the same issue by observing that Horn clauses have been used in such systems such
as MYCIN [6,7], CADUCEUS [7], and XCON (R1) [8,9], and the logical programming language
PROLOG [10].

Usually, expert systems use backward and/or forward chaining for the inference process. Typ-
ically these systems select goals and questions contingently. That is, a tentative top level conclu-
sion is chosen arbitrarily and then the system poses questions about any unconfirmed observable
assertions encountered in the process of backward chaining [6].

Some of the early applications of experts systems consider the issue of question asking strategies.
For instance, the system EXPERT, described in [11], uses pre-ordered lists of rules and questions.
Also the system PROSPECT [12], which tries to determine the class of ore deposits from geological
survey data, uses a scoring function in implementing a question asking strategy. Another question
asking strategy, called “Alpha-Beta pruning,” was introduced by Mellish [13] for acyclic inference
nets. In that strategy, irrelevant questions are dropped from consideration.

In a general rule base (i.e., not necessarily a Horn clause base), it is an NP-complete problem
to determine which assertions are not true under a given set of data (see, for example, [14,15]).
However, for Horn clause systems, deduction can be carried out in linear time [16]. Furthermore,
Jeroslow and Wang in [15] showed that one can determine how an assertion is proved in a Horn
system by solving an associated dynamic program or a linear program. They also demonstrated
that inference in a Horn clause system can be represented by a Leontief flow problem which can
provide information on the proof structure. Moreover, the problem of defining a strategy which
can reach a given goal by asking the minimum number of questions is NP-hard for both the
general case and Horn clause systems {1,17].

In [1] the structure of an efficient (it takes log-linear time) question asking strategy is proposed.
That approach is based on two phases. In the first phase, a set of candidate questions is selected.
Each such question refers to a variable with unknown value. This set of questions is such that
if all the corresponding variables have true value, then the current goal would be proven true as
well. In the second phase, a question from the previous set is randomly selected.

In this paper, it is assumed that the probability that a given variable has true value is known
a priori and that these probabilities are independent from each other. This paper introduces
an efficient variable selection rule to be used during the second phase of the question asking
strategy developed by Wang and Vande Vate [1]. Suppose that a set of candidate questions has
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been determined during the first phase of the original question asking strategy described in [1].
Then, according to this rule, we should first ask about the value (true or false) of the variable
which is least likely to be true. This variable selection rule makes the original strategy complete.
Furthermore, computer experiments on seven different strategies indicate that the new approach
is a highly effective and efficient practical question asking strategy.

2. SOME BACKGROUND INFORMATION

An assertion in a rule base can be viewed as a binary variable with value either true or false.
In this paper, the terms assertion and variable are used to denote the same concept. An assertion
is observable if its value can be obtained directly from the user without applying any rules in the
rule base. Otherwise, it is called a nonobservable assertion (variable). An observable assertion is
called unconfirmed if its value has not yet been deduced or given by the user.

Usually, the process of choosing the next question is divided into two steps [11]: goal selec-
tion and question selection. In the goal selection step, the system chooses a tentative top level
conclusion to pursue. In the question selection step, the system selects an unconfirmed observ-
able variable (assertion), whose confirmation will help reach the selected conclusion, and asks a
question about it.

A Horn clause is a disjunctive clause with all but at most one literal negated. In other words,
a Horn clause is an “IF ... THEN ... ” rule in which a finite set of positive assertions (also
called the antecedent part) implies at most one positive conclusion (i.e., at most one assertion).
A group of Horn clauses is called a Horn clause system. The following example presents such a
Horn clause system.

EXAMPLE 1. Consider the following 6 clauses which are defined on the 9 variables V; (i =
1,2,3,...,9):

CLAUSE 1:  If (V3 is TRUE and V4 is TRUE), then (Vi is TRUE);

CLAUSE 2:  If (Vs is TRUE and Vg is TRUE and V7 is TRUE), then (V4 is TRUE);

CLAUSE 3:  If (Vs is TRUE and Vs is TRUE and Vy is TRUE and Ve is TRUE), then (V4 is TRUE);
CLAUSE 4:  If (Vs is TRUE), then (Vs is TRUE);

CLAUSE 5:  If (Vs is TRUE), then (Vs is TRUE);

CLAUSE 6:  If (Vs is TRUE), then (V4 is TRUE);

Given these clauses, then it can be easily verified that the variables V3, Vy, Vg, and Vg are
observable, while Vi, Va, Vs, Vs, and V7 are nonobservable variables.

For every Horn clause system it is possible to construct a directed graph associated with it [1].
In this graph, each assertion and each clause correspond to a node. There is an arc from a clause
node to an assertion node exactly if the assertion is the conclusion of the clause. There is an arc
from an assertion node to a clause node exactly if the assertion is in the antecedent part of the
clause. The directed graph which corresponds to the previous example is depicted in Figure 1.
This directed graph will also be used in the proposed strategy.

Let V; be an unconfirmed nonobservable variable. Then we define an unconfirmed observable
set (or UOV set) of the variable V; as a set of unconfirmed variables such that if all were confirmed
true then V; would be proved true, but if any one were false, then V; could not be concluded
from the others. Let P, represent the probability that the variable V; has “true” value. These
probabilities may be estimated directly by experts or by analyzing historic data. It is assumed
that these probabilities are independent from each other. Among all the UOV sets of a goal
(and thus, nonobservable) variable in a Horn system, there is one UOV set, say S, such that the
product []y,cg P is maximum. This UOV set is called the most promising set (or MP set).

The motivation for this term is based on the observation that the variables in the MP set of
a goal (nonobservable) variable have the largest combined probability to prove the goal. The
notion of the MP set was introduced in [1] in order to derive a special class of question asking
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Figure 1. The directed graph for Example 1.

strategies called sub-effective strategies. Furthermore, it was proved that to find an MP set of
a given goal is an NP-hard problem. Therefore, sub-effective strategies are not computationally
efficient since they are NP-hard.

As an alternative to an MP set, they also proposed an approach for calculating a sub-most-
promising set (or SMP set) of a nonobservable variable. In order to define SMP sets, some
additional terminology needs to be introduced. Let V; and Vi be two variables of some Horn
clause system. The usage of V; on Vi, denoted as u;x, is the number of different paths from Vj
to V; in the directed graph associated with the Horn clause system. An SMP set of a variable V;
is defined to be a UOV set of V; such that the product

H P is maximum, (where u;; is the usage of the variable V; on V;).
V€S

SMP sets can be viewed as an approzimation of MP sets. In [1] a labeling algorithm is proposed
which can determine an SMP set in log-linear time. Question asking strategies which are based
on the use of SMP sets are called SMP strategies. The strategy proposed in this paper is an SMP
strategy. The above terms and definitions are further illustrated in the following example.

ExAMPLE 2. Consider the Horn clause system presented in Example 1. Recall that the observable
variables are: V3, V4, Vs and Vj, while the nonobservable variables are: Vi, Vo, Vs, Vg, and V7. At
this point, assume that the probabilities associated with the observable variables are as follows:
P; =0.70, Py = 0.50, Ps = 0.60, and Py = 0.40. It can be easily verified from Figure 1, that for
the variable V) there are two UOV sets. These are the sets {V3, V4} and {Vi}. The variable V;
has only one UOV set: {V3, V5, V5}. In the directed graph in Figure 1 there are 3 paths from
the nonobservable variable V] to the observable variable V3. These paths are: (Vi-V5-V3), (Vi-
Ve—Vz), and (Vi-V;7-V3). Therefore, the usage of Vg on V; is 3. Similarly with the above, it can
be shown that the usage of V4 on V; is 1, the usage of V3 on V5 is 2, and the usage of V5 on V)
is 1.

It should be stated here that, in general, UOV sets and usages cannot be determined efficiently.
Next, consider the variable V3. The corresponding MP set is: {V3}. This can be easily verified
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with an exhaustive enumeration in this example because the products which correspond to the two
UOV sets {V3, V4} and {V3} have product values equal to 0.35 and 0.60, respectively. Regarding
the SMP set of the variable V;, the two related products are as follows:

for the set {V3, V3}:  0.70' x 0.50' = 0.35.
for the set {V3}: 0.60° = 0.22.

Therefore, the corresponding SMP set is {V3, V4} (which is different than the MP set identified
above). An efficient way to determine an SMP set is to use a labeling algorithm as follows (see
also Figure 2).

Figure 2. The labels for the graph of Example 1.

According to that algorithm, we start from the nodes which correspond to observable variables.
These nodes are given labels equal to the corresponding probabilities. For instance, the node of
variable V3 is given the label 0.70 because P3 = 0.70. Next, the label of a clause node equals to
the product of the labels of its associated variables. For instance, the node for clause C) is given
the label 0.35 because 0.70 x 0.50 = 0.35. The label of a nonobservable variable is the mazimum
of the labels of the clauses which have that variable as their conclusion. For instance, the label
for the variable V; is 0.35 because MAX {0.35, 0.22} = 0.35.

The above process needs to be continued until all the nodes in the graph are labeled (see also
Figure 2). The label of the goal variable V; is 0.35. This label is based on the part of the graph
which has as leaves the UOV set {V3, V4}. Therefore, the corresponding SMP set is {V3, V4}.
This is also the SMP set which was identified with the exhaustive enumeration.

In general, the directed graph which corresponds to a Horn clause system may have cycles.
For that reason, the ASSIGN procedure described in [1] needs to be used. Also, in systems with
cycles, it was shown that the labeling algorithm takes log-linear time.

There remain two issues which were unclear in the original SMP strategy:

(1) Given an SMP set, then in what order should we ask the questions from that SMP set?
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(2) The original SMP strategy was designed as an efficient (since it requires log-linear time
to determine an SMP set) heuristic strategy. How far is it from being a truly optimal
strategy?

For the first issue, an optimal rule for asking questions, given as SMP set, will be proposed in
the next section. Next, this rule will be added to the original SMP strategy. The new strategy
will be tested in random computational experiments in Section 4. These tests show that the new
SMP strategy is a good approximation of an optimal strategy (i.e., of a strategy which reaches a
conclusion by asking the minimum number of questions).

3. ASKING FIRST ABOUT THE
LEAST-LIKELY-TRUE VARIABLE

As it was mentioned earlier, the original SMP strategy follows a two phase approach. During
the first phase, a set of candidate questions (and hence variables) is determined in log-linear time.
This is an SMP set of the goal variable. In the second phase, the system randomly selects one
of the questions determined in the first phase and asks the user about its value. If the answer
is positive (i.e., the corresponding variable has “true” value), then the system randomly selects
another question from the same set of candidate questions. However, if the answer is “false,” then
the first phase is initiated again, and a new set of candidate questions needs to be determined.
The following theorem states an optimal rule for selecting the order of the questions from a given
UOV set.

THEOREM. If a question in proving a goal Vi, is to be selected from a given UOV set of V. in
a Horn clause system, then in order to minimize the expected number of questions within this
UOV set, the next question must be about the value of the variable which is least likely to be
true compared to the other variables in this UOV set.

PROOF. Suppose that there are t variables (denoted as V;, for ¢ = 1,2,3,...,t) in the given
UOV set of the target goal variable Vj,. Furthermore, suppose that these variables are selected
to be asked in the order of Vi, Vo, V3, ... , V;. Let P; denote the probability that variable V;
(for i =1,2,3,...,t) has true value . Then, E, the expected number of questions to ask is:

t—1
E=1+P +PiP+PPPs+--+][] P.
i=1

Next, it can easily be shown by contradiction that a necessary condition for E to be minimum is:
P = min{])j,Pj+1,Pj+2, e ,Pt}, for j =1,2,3,...,t - 1.

That is, the questions should be asked in ascending order of their corresponding probabilities.
This completes the proof of this theorem. 1

When an SMP set of the final goal variable Vj is determined by the original SMP strategy (in
log-linear time) this theorem establishes a rule for the question selection problem encountered
in the second phase. According to this rule, the system should first ask a question about the
value of the variable with the least probability to be true. The computer experiments in the next
section show that when an SMP set is given, then starting with the least-likely-true variable is
significantly more efficient than starting randomly or with the most-likely-true variable. Further-
more, the same experiments indicate that sub-effective strategies (which use MP sets) are only
slightly better than the corresponding SMP strategies.

Since a sub-effective strategy depends on finding an MP set, that is, a set § which maximizes
the product [],c¢ Pi (by solving an NP-hard problem), the test problems assumed that all the
UOV sets of the goal variable were known. Then, the MP and SMP sets can be found easily
by performing a simple examination on all the UOV sets of a test problem. These computer
experiments are described in more detail in the next section.
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4. COMPUTATIONAL EXPERIMENTS

The computational experiments compared seven question asking strategies on 64,000 randomly
generated problems. Each problem was assumed, without loss of generality, to have only one
potential goal to be proved. To see the generality of this assumption, consider a system in
which the variables V1, V;, V3, ..., Vi are its potential goals. This system can be converted into
an equivalent single goal system by adding one more variable, say V;, and the following & rules
(Horn clauses):

IF (V; is true), THEN (V} is true), fori=1,2,3,...,k.

The test problems were in the form of a group of UOV sets. Since the objective of the
experiments was to determine the number of questions required by each question asking strategy,
deduction was not necessary. Therefore, the problems did not have to be in the form of “IF ...
THEN ... ” rules. The test problems were randomly generated with two parameters:

(1) the number of observable variables, and
(2) the number of UOV sets.

The following eight values: 10, 20, 30, ... , 80 were considered for each parameter. Each
observable variable was assumed to have probability 0.50 of belonging to a given UOV set (this
value was chosen arbitrarily).

For each combination of a number of variables and a number of UOV sets, 1,000 random prob-
lems were tested. The probability P;, that an observable variable V; is true, was a random number
uniformly distributed in the interval [0, 1]. These probabilities are assumed to be independent
from each other. However, the observable variable V; was assigned to a true value if and only if
the following condition was satisfied:

RANDOM < 5.00 x P,
where: RANDOM was a random variable uniformly distributed in the interval [0,1].

The above step was implemented in order to generate more “true” values than “false” ones (the
value 5.00 is arbitrary). In this way, the questioning search was forced to take more steps,
and hence, to simulate more challenging situations. Furthermore, the usages, u;o, were random
integers uniformly distributed in the interval [1, 11] (this interval was considered arbitrarily).

It should be stated here that in the computer experiments the probability that a given variable
belongs to a given UOV set was independent (i.e., always equal to 0.50) from its usage value.
However, in a real application, this may not always be the case. For instance, it is possible that
if a variable occurs many times in a Horn clause system, then one would expect its usages to be
high, and the probability that it is in a given UOV set also to be high.

Each random problem was tested according to the following procedure:

Step 1: Select a UOV set according to one of the seven question asking strategies (to be
described later).

Step 2: Select to ask a question about an unconfirmed variable in this UOV set.

Step 3: If the answer is “true,” go back to Step 2. If the answer is “false,” drop all the UOV
sets which include this false valued variable and go back to Step 1.

Stopping rules:
Stop: If all of the variables in a UOV set are true. In this case, the goal is proved to be

true.
Stop: If no UOV set is left. In this case, the goal cannot be proved to be true or false.

All the examined strategies were comprised of two main phases. In the first phase, a UOV
set is selected (Step 1). In the second phase, a variable is selected from the previous UOV set
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(Step 2). For the case of selecting a UOV set (Step 1), three major scenarios were examined
(see also Table 1). Under the random scenario (denoted as RND in Table 1), the UOV set was
chosen randomly from the available UQV sets. Under the sub-effective scenario (denoted as MP
in Table 1), the UOV set was an MP (most promising) set of the final goal. That is, by choosing
a UOV set S such that the product [Iv,cs Pi was maximum. Under the SMP scenario, the UQOV
set was an SMP set. That is, by choosing a UOV set S such that the product HV¢ es Pi° was
maximum.

The question to be asked next, was based on a variable of the UOV set selected in the first step.
Three scenarios were also considered in selecting the next variable (Step 2). In the first scenario
the variable was randomly selected. The second scenario was to select the most-likely-true (or
MLT) variable. That is, by first asking the variable which is most likely to be true. The third
scenario is to select the least-likely-true (or LLT) variable. That is, by first asking the variable
which is least likely to be true. Besides the previous six strategies, the strategy of selecting a
random UOV set with a random variable (denoted as RND-RND) was also considered. These
seven strategies are depicted in Table 1. Some of the previous issues are further illustrated in the
following example.

Table 1. The seven strategies.

UOV Set Selection Variable Selection Scenarios
Scenarios Random MLT LLT
Random (RND) RND-RND RND-MLT RND-LLT
Sub-effective (MP) Not considered MP-MLT MP-LLT
SMP Not considered SMP-MLT SMP-LLT

EXAMPLE 3. Consider a test problem which is defined, for instance, in terms of 5 UOV sets and 5
variables (denoted as V;, i = 1,2, 3, 4, 5). Suppose that the first UOV is: {V1, Va, V5}, the second
UOV set is: {V5, V3}, the third is: {W1, Vo, V3, V4}, the fourth is: {V4, Vs}, and the fifth is: {1,
Vs}. Furthermore, suppose that the corresponding usage values are: ujg = 3, ugg = 11, ugg = 2,
ug0 = 2, and ugp = 4. Also, suppose that the probabilities P; (i = 1,2, 3, 4,5) are as follows:
P =030, P, =095, P; = 0.10, Py = 0.50, and Ps = 0.25. At this point also assume that the
following “true” /“false” values have been randomly (according to the procedure described earlier
in this section) assigned: V; is TRUE, V; is TRUE, V3 is FALSE, V, is TRUE, and V; is TRUE.

Suppose that the SMP-LLT strategy is to be applied. Given the previous data, it can be easily
seen that the SMP set is the second UOV set (the corresponding product takes the value of
0.95M x 0.10%2 = 5.69 x 10~3). Therefore, the set of candidate questions which is generated in
Step 1 under the SMP-LLT strategy, is based on the variables {V2, V3}. Since variable V3 is
the least likely to be true, the first question will be about the value of this variable. When this
question is asked, only then it is revealed to the system that the value of V3 is “false.”

At this point, the SMP-LLT strategy will drop from consideration all the UOV sets which
contain variable V3 and will go back to Step 1. Now there are only three remaining UOV sets.
These are the sets: W, Vo, W5}, {V4, V5}, and {V1, V5}. 1t is easy to verify that the new SMP
set is the set {V}, Vi}. Similarly as above, the system will next ask a question about the value
of the variable V5. The answer now is “true.” Therefore, the system will next ask a question
about the value of the variable Vi. The answer is again “true.” Since no more variables are left in
the current SMP set, the questioning process stops, and the final goal is proven to be true after
asking a total of 3 questions. ]

As it can be seen from the way these test problems were considered in this investigation, the MP
and SMP sets can be determined by simply examining the values of the corresponding products.
In this way, the performance of a sub-effective strategy can be studied without having to solve
the NP-hard problem needed in finding the required MP set. In other words, the test problems
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assumed that all the related UOV sets are known a priori. However, in a real situation, the UOV
sets are not known a priori and determining an MP set is an NP-hard problem, while finding the

SMP set takes only log-linear time [1].

Table 2. Average number of questions under different strategies.

No. of Strategy

Observable | RND- RND- RND- SMP- SMP- MP- MP- Lower
Variables MLT RND LLT MLT LLT MLT LLT Bound

10 4.92 4.49 4.09 1.61 1.59 1.55 1.54 1.26

20 11.36 9.79 8.22 5.06 4.70 4.63 4.45 3.76

30 19.18 15.74 12.17 9.99 8.29 9.12 7.90 6.99

40 28.07 22.23 15.83 16.44 11.83 15.16 11.42 10.30

50 37.65 28.81 18.73 24.40 14.97 22.79 14.56 13.32

60 47.47 35.10 20.63 33.66 17.18 31.71 16.76 15.51

70 57.57 40.99 21.69 43.78 18.67 41.75 18.31 17.07

80 67.45 46.24 21.90 54.08 19.27 52.20 18.97 17.86

The results of these experiments are presented in Table 2 and are also depicted in Figures 3
and 4. Figure 3 illustrates the average number of questions asked under each strategy. The
horizontal axis depicts the number of observable variables in the UOV sets. The vertical axis
depicts the average number of questions asked under a given strategy. The number of UOV sets
did not play an important role in these results and thus, it is not depicted in these results.
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Figure 3. Average number of questions under different strategies.

These figures also present the lower bound of questions for each case. Since the actual values
of the observable variables in the UOV variables were assumed to be known for the purpose of
these simulated experiments, a lower bound of the number of questions needed to reach the final
conclusion can be calculated as follows:
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Figure 4. Performance of the strategies relative to the lower bound.

Cast 1. There is at least one UOV set which has all its variables with “true” values. Then,
a lower bound on the number of questions which can be asked by any strategy is the smallest
cardinality of these UOV sets.

CASE 2. The previous case does not hold. That is, all the UOV sets have at least one variable
which has “false” value. In this case, a lower bound can be determined by calculating the
minimum number of variables with “false” value which cover all the UOV sets. This number is
the optimal value of the objective function of the following set cover problem:

MINIMIZE }° 3 X;
i=1 X;€S;

subject to: Z X; >1, fori=1,2,3,...,m
X;€S;

and all the X;’s are either 0 or 1,

where m is the number of the UOV sets, and the X ;’s indicate the variables with “false” value
in the UOV sets (denoted here as S;, for i = 1,2,3,...,m).

The previous two cases are further explained in the following example.

EXAMPLE 4. For Case 1, consider the test problem described in Example 3. The first, fourth,
and fifth UOV sets are the only ones which have variables with true value. Moreover, their
cardinalities are 3, 2, and 2, respectively. Therefore, no question asking strategy can reach a
conclusion by asking less than 2 questions (i.e., the value of the smallest cardinality). Therefore,
the lower bound is equal to 2.

For Case 2, consider the same test problem as above, but now suppose that also the variables Vs
and V5 have in reality “false” value (i.e., besides the variable V3). In this case, there is no single
UOV set with all its variables having “true” value. Then the corresponding set cover problem
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takes the following form:

MINIMIZE X2 + X3+ X5
subject to:
X+ X5 > 1 (for the 15 UOV set)
Xz + X3 > 1 (for the 274 YOV set)
X5+ X3 > 1 (for the 3" UOV set)
X5 > 1 (for the 4*® UOV set)
X5 > 1 (for the 5% UOV set)
and X5, X3, Xj is either 0 or 1.

In this demonstration, an optimal solution is X3 = X5 = 1 and X, = 0. The objective
function has value at optimality equal to 2. That is, by asking at least two questions, the system
can determine that the final goal cannot be proven. Therefore, the lower bound now is equal
to 2.

Finally, Figure 4 presents the performance of each strategy relative to the lower bound described
above. For this reason, the lower bound is represented by a horizontal line with value on the
vertical axis equal to 1.00. All the other lines were normalized subject to that line.

5. CONCLUDING REMARKS

The computational results in Table 2 or in Figures 3 and 4 lead to the following observations:

(1) Among the seven examined strategies the best strategy is MP-LLT. Moreover, the strategy
SMP-LLT is a close approximation of the MP-LLT strategy.

(2) The worst strategy is RND-MLT. Recall that this strategy randomly selects an UOV set

and then asks questions according to the “most-likely-true variable first” (i.e., MLT) rule.

(3) The performance of the strategies which use the “most-likely-true variable first” rule dete-

riorates (see also Figure 3) as the number of observable variables increases. This, however,
is not the case with the strategies which use the “least-likely-true variable first” (i.e., LLT)
rule.
(4) Both the MP-LLT and the SMP-LLT strategies are very close to the lower bound (see also
Figure 4).

(5) The strategy RND-LLT has very good performance (i.e., it is closer to the strategies
MP-LLT and SMP-LLT) when the number of observable variables is high (greater than
70).

Although the computer experiments showed that MP-LLT is the best strategy (in terms of the
number of questions asked), this strategy is not practical in real life situations. This happens
because determining the MP (most promising) set is NP-hard when the problem is given in the
form of “IF ... THEN ... ” rules. For this reason the best practical strategy is the SMP-LLT
strategy. In the experiments, the SMP-LLT strategy performed almost as well as the MP-LLT
strategy. Moreover, determining an SMP set takes only log-linear time in a real situation where
rules are in the “IF ... THEN ... ” form. Therefore, the recommended SMP-LLT strategy is a
highly effective and efficient strategy for real life applications.

The recommended SMP-LLT strategy is an extension of the original SMP strategy which was
developed in [1]. In a real life application (i.e., when the rules are Horn clauses of the “IF ...
THEN ... ” form) the proposed strategy can be applied as follows:

Step 1: Select an SMP set by applying the log-linear time labeling algorithm developed in {1].
Step 2: Select to ask a question about the value of an unconfirmed observable variable in this
SMP set by using the “least-likely-true variable first” (LLT) rule.
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Step 3: If the answer is “true,” go back to Step 2. If the answer is “false,” drop all the Horn
clauses in the rule base which include this false valued variable in their antecedent
parts and go back to Step 1.

Stopping rules:

Stop: If all of the variables in an SMP set are true. In this case, the goal is proved to be
true.
Stop: If no SMP set is left. In this case, the goal cannot be proved to be true or false.

The computational experiments also illustrated that the number of UOV sets in a test problem
is not important. However, the total number of unconfirmed observable variables in a problem
is critical in the performance of the strategies. Another interesting point is to observe that the
RND-RND strategy represents the performance under the usual backward chaining approach.
This strategy has the worst performance for small and large values of the number of unconfirmed
observable variables. This can be seen from Figure 4 because the corresponding curve is far away
from the lower bound when the number of observable variables is low or very high.

As it was stated earlier in this section the RND-LLT strategy (random set and “least-likely-
true variable first”) has a very good performance for large numbers of unconfirmed observable
variables. This observation suggests that when the number of observable variables is large (i.e.,
more than 70), then a good idea is to ask about the variable which is least likely to be true without
bothering to select an SMP set first. Just any UOV set would be fine. However, it should be
kept in mind that, before asking questions, one has to carry out the deduction to see whether
the goal can be reached by the currently known facts. An SMP strategy performs deduction and
UOV set selection simultaneously [1].

Another important issue is to observe that the small difference between the performance of
the proposed SMP-LLT strategy and the lower bound, allows for very little potential for future
improvement on that strategy. Future research may be focused on combining the inference process
with the question selection strategy, and extending the results on Horn clause systems to more
general logical systems. Finally, it should be pointed out that the experimental results generated
above are the averages on randomly generated instances. On a particular real world instance, a
strategy may perform significantly different from its average.
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