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The inventory model with a (¢, S;) policy with increasing demand is common in many practical applications. Under this model the
inventory system operates only during a prescribed period of time. It also corresponds to the classical deterministic, stationary
demand model with no shortages. This present sensitivity analysis reveals that there is a strong relationship among the optimal
number of replenishments, the total demand, the planning horizon, and the optimal cost.
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1. Introduction

Consider an inventory system in which the demand is given by the following relation:

r(t)=a,+a/t). (0)

This demand pattern captures the essence of a product’s demand during its life cycle. This paper studies

the sensitivity of the (¢;, S,) inventory policy with increasing demand. In this policy r; denotes the

scheduling periods and §; the order levels. The sensitivity analysis is done with respect to the optimal

total cost, the optimal number of replenishments, the time horizon, and the demand assumed during this
horizon. The present inventory system is assumed to have the following characteristics [4]:

1. The system operates only during a prescribed period which is H units of time long.
2. The demand is continuous and increases linearly with time at rate r(z). In this situation the
parameters a, and a, of (0) are a, =0 and a, > 0. Therefore, the demand pattern for this system is

r(t)=a *t. (1)
(The ideas can also be extended to linearly decreasing demand.)

3. During the period H there exists a total demand for D quantity units. That is, the constant a, in (1)
can be calculated as follows:

H H | 2
D=f0 r(t) dt=f0 a,t dt = LaH?, (2)
Hence
2D
r(t)=(F)t. (3)

4. The only relevant unit costs are ¢,, the unit carrying cost in $§ per item per unit time, and c,, the
unit replenishment cost in $ per run.
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As stated in [1-8], under the present policy the total amount in inventory J,, during the period H can
be found as follows. Let I(r) represent the inventory at time 7. Then, assuming zero lead times and zero
reorder points,

m

> [ 1) dr

i=1"Ti

Iy

l.é /T,Tilf;h]]{dt} dr [where I{dt} = (d[I(¢)]/dt)*d¢]

m

=Y (M -To)r(n) ar,
i=1"Ti
which leads to
D m
JIZ%DH_?Z(TI'Z_Y}ZAI)T[—I (4)

i=1
where m is the number of replenishments and 7, are the scheduling points, and where T, =0, T,_, < T,
and T,, = H.

Then, the total relevant cost per unit time for this inventory system is given by (5)

cJ, c;m
COm, Ty, Ty, Ty Tt) =~ + )

In the previous equation it is assumed that the time horizon H and the interest rates are such that
discounting is unimportant. Relations (4) and (5) combined yield

|, D =z 5 c,m
C(m’Tl’Tz’T3’~'-’Tm—1)=E §DH_?i§(E _Ti—l)Ti—l + H (6)
The optimal values for m, T,, T,, T3,...,T,,_, which minimize the total cost can be found by

differentiating with respect to each of the T, variables. Then, it turns out that the optimal values for the

1
T, variables are given by the recursive relation

T.=aT, fori=0,1,2,....m—1,and T, =H=q,T, (7)

where the a,’s are derived using the recursive relationship

@y=0, a;=1, and a;=\3a} —a,_a;_, forj=2,3,4,...,m. (8)
From the relation T, =a,T, it can be seen that the quantities «; represent the ratio of the scheduling
point T, when it is compared with T, (for i =0, 1, 2,...,m).

The optimal value of m (i.e., the optimal number of replenishments in period H) can be found by first
combining (6) and (7)

5 c,m
C(m7T1’T2’T39"’7Tm—1)=C(m):CID[§_Bm]+ H (9)
where
1z 2 2
B = ;3_ Z (ai _ai—l)aiﬂ- (10)
m =1

The optimal value of m, m,, can be obtained by observing that the following two conditions should be
satisfied:

c(my) <c(my+1) and c(my) <c(my—1).
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When the previous two conditions are combined with (9), they yield
Ca

A < —

ﬁm0+ 1 CIDH

where 48, = By~ Brmy-1 ABmQ+l = Buyi1 = By, and the By Brmy—15 By, can be foupd using (10).
From the previous considerations it follows that the optimal cost ¢,, and the optimal number of
replenishments m,, can be calculated in two steps:
Step 1. Find the integer m,,, that satisfies the relation

=)
c¢,DH

where the AB,’s can be calculated using (8), (10) and (11).
Step 2. Find the optimal cost ¢, using the formula

<AB,, (11)

ABm0+l < <Aﬁ}mo (12)

CoMyg
C():C(m())zch[§_Bm(,]+ H (13)

2. Transformations

Let W, =c¢,D and W, =c,/H. Then, (12) and (13) become (14) and (15), respectively.

W2
ABmy+1< Wl <4B,, (14)
and
c0=w1[§—Bmo] + W,m,. (15)

If the two parameters W, and W, are given then, using (8), (10), (14), and (15), the value of the integer
m,, and the optimal cost ¢, can be determined uniquely. Very often in practice the costs ¢, and ¢, can be
considered as constants, while the demand D and horizon H vary. When this is true we can talk about
W, changes and mean changes of the demand D or W, changes and mean changes of the horizon H.
However, we use W, and W, for generality. A computer program was written that calculates the optimal
number of replenishments, m;, given different values for the parameters W, and W,. More specifically,
the parameter W, was assumed o take the values 250, 500, 750, ...,20000 while W, was assumed to take
the values 1, 2, 3,...,20. The optimal value of m, was found by using (14) and observing that the
quantities AB;, B,, and «, are independent of any other parameters. Figure 1 presents m,, the optimal
number of replenishments to be made during period H, as a function of W, and W,.

Relations (14) and (15) also reveal that for a given value of the optimal cost ¢, the value of the
parameter W, (or W,) can be determined if the value of the parameter W, (or W) is given. A computer
program was written that considers optimal cost with values 100, 200, 300, ...,2 000 and calculates W, for
a given W, value. The parameter W, was assumed to take the values 250, 500, 750,...,20000. The
resulted observations are plotted in Figures 2 and 3. Figure 2 presents the optimal cost as a function of
W, and W,, and Figure 3 presents W, as a function of W, and the optimal cost.

3. Evaluation of the results

Figure 1 illustrates that the same optimal number of replenishments m, can be derived from different
combinations of W, and W, values. In particular, common values of m, form the regions in Figure 1,
where the borders fit straight lines. Linear regression analyses of the observations laying on the border

lines reveal that the above observations perfectly fit straight lines.
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Fig. 1. Optimal number of replenishments, m, versus demand and planning horizon

An examination of Figure 1 suggests that the optimal number of replenishments m, is highly sensitive
(narrow regions) when W, is large and W, is small. The same is also true when W, is small and W, is
large. If we assume that the costs ¢, and c, are fixed, then we conclude from the above and the two
relations: W, =c,D and W, = ¢,/H that the optimal number of replenishments is highly sensitive when
the demand is high and the horizon is wide or the demand is low and the horizon is narrow.

However, the optimal number of replenishments m,, is not so sensitive (wider regions) when both W,
and W, take medium size values. Similarly with the above, if we assume that the unit costs ¢, and ¢, are
fixed, then the optimal number of replenishments is not sensitive to the changes of demand D or horizon
H when both D and H take medium size values.

The same figure also depicts that the optimal number of replenishments becomes very sensitive when
W, and W, take small values. The opposite is true when the values of both W, and W, are large. That is,
when the ¢, and ¢, are fixed, then the optimal number of replenishments is highly sensitive when the
demand is low and the horizon is wide. However, the number of optimal replenishments is not so
sensitive when the demand is high and the horizon is narrow.

Figure 2 illustrates that the same value of optimal cost ¢, can be achieved from different combinations
of W, and W, values. If it is assumed that ¢, and c, are constant, then the optimal cost ¢, is fixed if by
increasing the demand (or equivalently, the parameter W,) the horizon increases (or equivalently, the
parameter W, decreases). Similarly, if the demand takes small values (how small depends on the optimal
cost level), then in order for the optimal cost to be constant the horizon should be decreased (i.e., the
parameter W, be increased). Moreover, if the optimal cost is small, so is the threshold before which high
changes of the horizon occur. Since the iso-cost curves become closer for high values of demand, we can
conclude that the optimal cost becomes highly sensitive when the demand takes large values. The above
behavior of the optimal cost is more dramatic when the cost takes small values (then the iso-cost curves
tend to be linear sooner for small cost values).

Figure 3 depicts the relation between W, and the optimal cost when W, is fixed. If ¢, and c, are
constants, then Figure 3 suggests that when the demand is small the optimal cost changes dramatically
even with small changes in the demand. The plots in Figure 3 tend to become linear for high values of
W,. This behavior indicates that if ¢, and ¢, are constant, then for a constant horizon the optimal cost
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Fig. 2. Optimal cost values versus demand and planning horizon
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Fig. 3. Optimal horizon versus optimal cost and demand
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depends linearly on the demand when the demand is high. Again, how much high is considered high
depends on the current horizon length. The wider the horizon is (i.e., the smaller the W, parameter
becomes), the more rapidly the relation between optimal cost and demand becomes linear.

4. Concluding remarks

Very often in real life situations the parameters are not constant or cannot be determined with
accuracy. As this paper illustrates some of the parameters in the (¢, S;) inventory system play a critical
role under certain conditions. A deep understanding of the sensitivity of the (z;, S;) model under various
conditions makes it to be even more applicable to real life problems.
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