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bstract 

The structure prediction problem for proteins plays an important role in the protein process. 

his is a notoriously hard problem and been able to achieve good prediction performance with new 

ethods will certainly have an impact in both the computational arena but also in the Bioinformatics 

ield. This paper proposes a novel classification approach using a binary expansion method based on 

he density concept for homogenous clauses to predict protein folding structures. The successes of this 

pproach are demonstrated on several protein data sets whose structure is partially known. 
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1. Introduction 

roteins naturally fold into complex 3D 

lobules from their amino acid sequence. 

here are 20 different types of amino acids 

abeled with their initials as: A, C, G, T, ... By 

his presentation, a protein can be thought as a 

equence of ACTG… The protein process has 

t least two distinct problems [6]. 

 Structure Prediction Problem: the problem 

etermines the 3D structure of a protein from 

ts amino acid sequence.  

 Pathway Prediction Problem: the problem 

etermines the time-ordered sequence of 

olding events from a given protein amino acid 

equence and its 3D structure. 

oth problems have received attentions from 

any researchers. The ability to predict protein 

olding structure, however, can greatly 

nhance structure prediction methods. The 

tructure prediction problem or Protein folding 

roblem can offer significant clues about the 

function of a protein which cannot be found via 

experimental methods quickly or easily. Once a 

protein is identified, it can be applied for 

increasing important players in human disease, 

limiting the ability to effectively design new 

proteins, and other applications. 

In finding the 3D structure, a protein classified 

into four structural classes: all-α, all-α, α/β, and 

α+β introduced by Levitt and Chothia [10] 

according to their secondary structure 

composition. Hence this problem can be stated as 

a four-class classification problem. Once the 

structural class of a protein is known, it can be 

used to reduce the search space of the structure 

prediction problem that most of the structure 

alternatives will be eliminated, and the structure 

prediction task will become easier and faster.  

There have been many theoretical and practical 

developments in the last ten years in this problem. 

Many studies have resulted in classification and 

prediction systems that are highly accurate or they 
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are not so accurate. Chou [1] assigned a 

protein into one of the four structural classes 

by using Amino Acid Composition (AAC) of a 

protein and Mahalanobis distance. Wang et al. 

[2] tried to improve Chou’s work using the 

same data set, without success. Ding and 

Dubchak [3] used Neural Networks (NNs) and 

Support Vector Machines (SVMs) on 

classifying proteins into one of 27 fold classes, 

which are subclasses of the structural classes. 

Tan and coworkers [4] also worked on the fold 

classification problem (for 27 fold classes), 

using a new ensemble learning method. More 

recently, Zerrin Isik et al [5] used SVMs for 

Amino Acid Composition (AAC) of the 

protein as the base for classification.  

A growing belief is that the root of not so 

accuracy is the overfitting and 

overgeneralization behavior of such systems. 

Roughly speaking, overfitting means that the 

extracted model describes the behavior of 

known the training data set very well but does 

poorly on new data points. Overgeneralization 

occurs when the system uses the available data 

and then attempts to analyze vast amounts of 

data that has not seen yet. Both problems may 

cause poor performance. This is a situation 

studied in statistics and, to some extend, with 

some of the data mining methods such as 

decision trees, NNs, and SVMs. 

This paper aims at presenting a useful 

approach of overfitting and overgeneralization 

for the purpose of controlling these two key 

properties. By doing so, it is hoped that the 

classification / prediction accuracy of the 

extracted system will be very high or at least as 

high as it can be achieved with the available 

training data. In particular, the approach uses 

the density concept of a homogenous clause 

described in Section 2.1, and a binary 

expansion approach in Section 3 to classify the 

structure of proteins. In section 4, the successes of 

this approach are demonstrated and assessed on 

several protein data sets whose structure is 

partially known in Ding and Dubchak [3], and 

Zerrin Isik et al [5]. Basically, all of classification 

assessments in the paper use the average accuracy 

introduced by Rost & Scander, 1993 [12], Baldi et 

al, 2000 [11]. 

2. Preliminaries 

2.1 Multi-class prediction method 

Most of classification methods dealing with two-

class problems are often accurate and efficient, for 

example SVMs or NNs. When dealing with more 

classes, they, however, usually reduce accuracy 

and efficiency. This section presents a method, 

One-vs-Others, that utilizes two-class 

classification methods as the basic building block 

for larger number of classes. This is a simple and 

effective method introduced by Dubchak et al 

1999 [8], Brown et al 2000, [9]. 

In this process, suppose there are K classes in the 

problem. K classes, firstly, are partitioned into a 

two-class problem: one class consists of proteins 

in one “true” class, and the “others” includes all 

other classes. A two-class classification method 

then is used to train for this two-class problem. 

The process then partitions the K classes into 

another two-class problem: one “true” class 

consists of another original class and the “others” 

class is the rest. Another two-class problem is 

trained. This process is repeated for each of the K 

classes, and this leads to K two-way trained 

classifiers. 

In the testing process, the system uses testing 

queries for each of the K two-way classifiers and 

determines the maximum of K scores from the K 

classifiers. The maximum score is considered as a 

classifier for the two-class problem: one class 

consists of proteins in one “true” class, and the 



2.2 Homogenous clause (HC) and its 

density

“others” includes all other classes. All of steps 

of this process are repeated for the K -1 

remaining classes. 

Figure 1: B, A1, A2 are homogenous clauses while A is a non-homogenous clause. A can be replaced 
by two homogenous clauses A1 and A2 

Homogeneous is an adjective that has several 

meanings. In biology homogeneous has a 

meaning similar to its meaning in mathematics. 

In physical chemistry, homogeneous describes 

a single-phase system as opposed to 

heterogeneous where more than one 

thermodynamically distinct phase co-exists. 

Homogenous (without the second e) has a 

similar meaning of being the same throughout, 

and is perhaps more common in everyday 

speech. 

In this paper, homogenous has a meaning 

similar to the physical chemistry field. It 

describes a steadiness for distinct phases co-

exist. A homogenous clause covers a set of 

examples of a given class (i.e., positive or 

negative) and unclassified examples uniformly. 

That is, within the clause there are no 

subdivisions with unequal concentrations of 

classified (i.e., either positive or negative) and 

unclassified examples. 

For instance, Figure 1 depicts a situation 

defined on two continuous variables X and Y. 

In the same figure clause A is a non-

homogenous clause while clause B is a more 

homogenous one. Please note that in these two 

clauses only the classified data are shown as 

small circles. The unclassified data are the rest of 

the points of the X-Y plane. 

Clause A, however, is replaced by two more 

homogenous clauses denoted as A1 and A2. Then 

the areas covered by the two new Clauses A1 and 

A2 are more homogenous than the area covered by 

the original Clause A.  

From the above example, a judgment can be 

applied for studying a new classification approach. 

When a classification algorithm that infers a set of 

classification rules from training examples is 

applied, these rules may or may not be affected by 

homogenous clauses and their density. In turn, this 

may affect the accuracy in correctly classifying 

new data points. For instance, the clause labeled as 

“Clause A” in Figure 1 is not as homogenous as 

Clause B in the same figure. Thus, it is possible 

that unseen examples covered by clause A are 

erroneously assumed to be in the same class as the 

“solid” examples covered by the same clause. In 

particular, this is most likely to occur in regions of 

Clause A that are not populated by “solid” points. 

Such a region, for instance, exists in the upper left 

corner of Clause A (see also Figure 1). Another 

similar region is the lower part of the same clause.  

On the other hand, Clause B is more homogenous 

than Clause A. Thus, it is more likely that the 



unclassified examples covered by Clause B are 

more accurately assumed to be in the same 

class as the “solid” examples covered by the 

same clause. The above simple observations 

lead one to surmise that the accuracy of the 

classification rules can be increased if the 

derived clauses are, somehow, more compact 

and homogenous.  

An individual class contributes to the overall 

accuracy in proportion to the number proteins in 

its class. Hence each of Qi relates to the overall Q 

by a weight wi=ni/N. The overall accuracy 

is:  
∑

=

=
k

i
ii QwQ

1

If a protein is sequentially tested for all four 

classes and one of them is correct then c = ¼. 

Therefore in general, ci can be a real number. 
Intuitionally, another factor also affects the 

accuracy of the classification rules. That is the 

density of a homogenous clause. For example, 

the unclassified examples covered by Clause B 

in Figure 1 are more assumed to be in the same 

class as the “solid” examples covered by B 

than Clause A1 or A2. Particularly, Clause B 

may be expanded wider than Clause A1 and 

A2 since B’s density is more concentrated than 

other clauses. This section ends with a simple 

definition for the density of a homogenous 

clause that can be the number of examples of a 

given class in a unit volume. This factor 

decides how much that homogenous clause can 

be expanded. 

3 Binary Expansion Approach (BEA) 

Input: positive and negative examples 

Output: a suitable classification 

Step 1: Find positive and negative clauses by 

using k-means clustering-based with the Euclidean 

distance  

Step 2: Find positive and negative homogenous 

clauses from positive and negative clauses 

respectively  

Step 3: Sort positive and negative homogenous 

clauses on densities 

Step 4: FOR each homogenous clause C DO 

  + Find C’s density, say D 

  + Expand C by using D 

Figure 2: The Binary Expansion Algorithm 
2.3 Accuracy measure This section outlines the binary expansion 

approach to predict the folding structures of a 

protein using the idea of “expanding homogenous 

clauses”. Essentially, this approach is a two-class 

classification method, and the protein folding 

problem then uses the approach through One-vs-

Others method. Suppose each of proteins in data 

sets is considered as a vector in n dimensions. The 

Euclidean distance is used for computing distances 

between proteins. In the training phase, the 

intuition behind of this approach is to find positive 

and negative homogenous clauses, and then to 

expand each of homogenous clauses, considered 

as spheres, until the area of this homogenous 

clause overcomes a threshold based on that 

homogenous clause’s density. Then the testing 

In two-class problems, assessing the accuracy 

involves calculating true positive rates and 

false positive rates. In multi-class problems, 

particularly converted through the One-vs-

Others method, this assessment, however, has 

to be extended suitable to adapt for more than 

two classes. A simple standard assessment, Q, 

was introduced by Rost & Scander, 1993 [12], 

and Baldi et al, 2000 [11]. Suppose there are N 

= n1 + n2 + … + nk test proteins where ni are 

number of examples in class ith. Let C = c1 + c2 

+ .. + ck be the total of proteins that are 

correctly recognized, where ci is the number of 

examples that are correctly recognized in class 

ith. Therefore the accuracy for class ith is 

Qi=ci/ni and the overall accuracy is Q=C/N. 



phase uses expanded positive and negative 

homogenous clauses to test structures for new 

proteins. A detailed description of this 

approach is in Figure 2. 

Step 4 is the main part of this algorithm. Suppose 

homogenous clauses are sorted on densities. The 

expanding process starts with a homogenous 

clause that has the highest density and so on. For 

the current homogenous clause considered as a 

sphere, a new homogenous clause is expanded by: 

At step 1, K-Means Training starts with 

generating the k clause centers randomly and 

goes ahead by fitting the data points in those 

clauses with the Euclidean distance. This 

process is repeated until all points are 

identified in clauses. If the specified clauses of 

a given class are close together, then they can 

be joined in a unique clause. Remaining points 

that do not belong to any clause are created in 

new clauses with unique point. 

Where R: Expanded HC’s radius 

R1: HC’s radius 

R2: Envelope’s radius 

Envelope’s radius is a double radius of the current 

homogenous clause. This formula quotes that the 

density of a homogenous clause decides how 

much that clause is expanded. The expanding 

process stops whether any point differing the class 

name occurs in the expanded region, the area of 

the expanded region is greater than a multiple of 

D, or the current homogenous clause’s radius is 

greater than envelope’s radius. The overall 

approach in 2D is presented in Figure 3 
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The k-means clustering-based method is also 

used for finding positive and negative 

homogenous clauses from positive and 

negative clauses. Only two differences are 

while fitting the data points in those clauses, 

the process is stopped when it hits into the 

border of the positive or negative homogenous 

clause. And the distance used in the process is 

the minimum distance between any two points 

of a given class in the training set. The sorting 

for positive and negative homogenous clauses 

decides the order that homogenous clauses are 

expanded. 

Homogenous Clauses 
Figure 3: The overall approach for positive examples in 2D

Extended HC 

Expand

Positive Clauses



4 Results 

This section presents test bed applications for 

our method with the independent testing 

method, and assessments based on the standard 

accuracy measure introduced in Section 

2.3.We firstly have applied the approach to 

data sets studied by Chih. C.Chang and Chih.J.Lin at 

www.csie.ntu.edu.tw/~cjlin/papers/guide/data/. This 

data set consists of three small data sets whose 

features are described in Table 1. Another data set 

from Chih. C.Chang and Chih.J.Lin at 

www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary has 

assessed as in Table 3 and 4. Results obtained 

from C.J.Lin’s experiments [13] and this approach 

are in Table 1 and 2 respectively. 

 

Training set Testing set #atts* C.J.Lin’s SVMs 
Train_1 

(3089 examples) 
Test_1  

(4000 examples) 4 96.9% 

Train_2 
(391 examples) 

Train_2  
(391 examples) 
Cross validation 

20 85.2% 

Train_3 
(1243 examples) 

Test_3  
(41 examples) 21 87.8% 

Table 1: results of C.J.Lin’s SVM 
Source of the data set www.csie.ntu.edu.tw/~cjlin/papers/guide/data/, *Atts: Attributes 

 

Training set Testing set #Fail Positive #Fail Negative Q 
Train_1 Test_1 9 

(2000 positive examples) 
22 

(2000 negative examples) 
99.25% 

Train_2 Train_2 0 0 100% 
Train_3 Test_3 0 

(41 positive examples) 
0 

(0 negative examples) 
100% 

Table 2: results of BEA 
Source of the data set www.csie.ntu.edu.tw/~cjlin/papers/guide/data/ 

The comparison in Figure 4 shows that BEA 

provides around 15.5% improvement in 

classification accuracy as the SVMs method. 

We can explain this improvement throughout 

the essential of the SVMs method. Since the 

SVMs method uses hyperplans to classify 

training points, it creates a wide undecided 

region around seen points, and this leads 

overgeneralization. In contract, BEA starts 

with the homogeneity of points and the density 

of homogenous clauses for expanding seen 

regions. It may create expanded regions that can 

satisfy both of fitting and generalizing properties. 

So, this approach provides more classification 

accuracy than other methods. Table 3 and 4 are 

other test beds for the approach. These tables show 

that, BEA obtains better classification rates using 

more training data, which is as expected 

. 

Figure 4: BEA’s accuracy and C.J.Lins SVMs
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 Data #Atts #Exps* Q   Data #Exps Q 
Train W1a 300 2477   Train w4a 7366  

W2a 300 3470 85,97 %  w1a 2477 85,79% 
w3a 300 4912 85,40  w2a 3470 86,57 
w4a 300 7366 85,08  w3a 4912 86,16 
w5a 300 9888 84,64  w5a 9888 85,41 

Test 

w6a 300 17188 84,18  

Test 

w6a 17188 84,83 
Table 3: results of BEA 

Source of the data set www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary, * Exps: Examples 
 

 Data #Atts #Exps Q   Data #Exps Q 
Train a3a 122 3185   Train a7a 16100  

a4a 122 4781 90,17%  a3a 3185 94,98% 
a5a 122 6414 86,47  a4a 4781 94,92 
a6a 122 11220 82,17  a5a 6414 94,92 

Test 

a7a 122 16100 79,99  

Test 

a6a 11220 96,95 
Table 4: results of BEA 

Source of the data set www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary 

Data types Symbol #Atts # Training exps # Testing exps 
A.A.Composition  C 21 605 385 
Secondary struc.  S 22 605 385 

Polarity P 22 605 385 
Polarizability Po 22 605 385 

Hydrophobicity  H 22 605 385 
Volume  V 22 605 385 

Table 5: Six parameter datasets extracted from protein sequence 
Source of the data set http://www.nersc.gov/~cding/protein/ 

For the protein folding problem, the data set 

we used for training and testing was selected 

from the database built by Ding and Dubchak 

[3]. This database has seven or more proteins 

and presents all major structure classes: all-α, 

all-α, α/β, and α+β with 27 most populated 

folds [7]. Table 5 is a description of this database. 

Results Obtained Results from Ding and 

Dubchak’s method using SVMs and NNs, and 

Zerrin’s method using SVMsAAC and SVMstrioAAC 

for the same dataset are in Table 6 respectively. 

Please note that Zerrin’s paper only assessed for 

the data type of Amino Acid Compostion.  

Data types Q1 Q2 Q3 Q4 
Composition 44.9% 20.5% 71.44% 66.66% 

Secondary struc. 35.6 18.3   
Hydrophobicity 36.5 14.2   

Polarity 32.9 11.1   
Volume 35.0 13.4   

Polarizability 32.9 13.2   
Table 6: Results of and Dubchak’s paper [3], and Zerrin’s paper [5] 

Q1: Accuracy of the SVMs Independent Test method in Ding’s assessment 

Q2: Accuracy of the Neural Networks Independent Test method in Ding’s assessment 

Q3: Accuracy of the SVMsAAC method in Zerrin’s assessment 

Q4: Accuracy of the SVMstrio AAC method in Zerrin’s assessment 

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary
http://www.nersc.gov/~cding/protein/


Data types all-α all-β α/β α/β Q5 
A.A.Composition 87.27% 74.81% 71.43% 91.95% 81.37% 
Secondary struc. 87.23 72.21 66.75 91.17 79.34 
Hydrophobicity 86.75 74.55 71.17 91.69 81.04 

Polarity 87.27 73.51 70.13 91.95 80.72 
Volume 87.01 74.29 71.43 91.95 81.17 

Polarizability 86.75 74.29 70.13 91.95 80.78 
Table 7: results of BEA 

Figure 5: BEA’s accuracy and other methods
Obtained results from BEA for the same dataset 

are in Table 7. The comparison of the Qs in 

Figure 5 shows that at the data type of Amino 

Acid Composition, BEA provides around 10% 

improvement in classification accuracy as the 

SVMsAAC method, 43% improvement as Ding’s 

SVM at the data type of Secondary Structure, 

44% improvement as Ding’s SVM at the data 

type of Hydrophobicity, 48% improvement as 

Ding’s SVM at the data type of Polarity, 46% 

improvement as Ding’s SVM at the data type of 

Volume, and 47% improvement as Ding’s SVM 

at the data type of Polarizability. 

5 Conclusion 

This paper has described the intensive novel 

machine learning method to a notoriously hard 

problem, structure prediction problem for 

proteins. The comparison of experiments shows 

that BEA provides 10-48% improvement in 

classification accuracy. We have also obtained 

better classification rates using more training 

data, which is as expected. 
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