Course Outcomes

CSC 2259

CSC 2259: Introduction to Discrete Structures

Credit Hours: 3 hours

Frequency: Fall and Spring semesters

Prerequisites:

MATH 1552 and CSC 1254 or 1351.

Prerequisites by Topics:

Fundamentals of algebra and calculus, data structures including lists, basic concepts of recursion.

Catalog Course Description:

Set algebra including mappings and relations; algebraic structures including semigroups and groups; elements of the theory of directed and undirected graphs; Boolean algebra and propositional logic; these structures applied to various areas of computer science.

Course Outcomes

- 1. Be familiar with constructing proofs.
- 2. Be familiar with elementary formal logic.
- 3. Be familiar with set algebra.
- 4. Be familiar with combinatorial analysis.
- 5. Be familiar with recurrence relations.
- 6. Be familiar with graphs and trees, relations and functions, and finite automata.
- 7. Be exposed to the strategies for compare relative efficiency of algorithms.

Texts and Other Course Materials

<u>Discrete Mathematics and Its Applications</u> – K. Rosen 0-07-293033-0 HB Latest McGraw Hill

Major Topics

- Propositional calculus,
- Proof techniques including induction,
- Set, sequences and n-tuples,
- Binary relations,
- Relations and functions,
- Equivalence relations and partial orderings,
- Graphs,

- Combinatorics,
- Probablility, expected values, applications
- Recurrence.

Assignments/Projects/Laboratory Projects/Homework

Example homework questions:

- 1. Define an onto function. Give an example of a function that is not onto.
- 2. Prove that the expected number of n toss of an unbiased coin is n/2.
- 3. Define a transitive relation and an equivalence relation on a set A.
- 4. Show all possible linear orders on $A = \{a,b,c\}$. How many linear orders are there on a set of size n?
- 5. State the similarities and differences between a partial order and an equivalence relation.

Curriculum Category Content (estimated in semester hours)

Area	Core	Advanced	Area	Core	Advanced	
Algorithms	30		Data Structures	30	10	
Software Design	30		Prog. Languages	0		
Computer Arch.	0			•		

Relationship to Criterion 3 Outcomes

Α	В	С	D	E	F	G	Н	1	J	К
*				*		*				*

Math Fundamentals:

- Sets functions, permutations, combinations, and applications to counting of strings, and trees: 8 hours
- Relations, partial orders, binary operations: 8 hours
- Proof by induction (binomial theorem, application to counting, properties of Fibonacci sequences and their generalizations): 8 hours
- Probability, expected values, and applications (including voting problems, assignment probabilities to binary trees and balanced parenthetical strings): 8 hours
- Finite-state machine: 4 hours
- Boolean algebra: 5 hours
- Propositional algebra: 5 hours

Data Structures:

• Fundamental data structures (graphs and trees): 1 hour

Algorithms and Software:

Computer Organization and Architecture:

Concepts of Programming Languages:

Social and Ethical Issues:

Oral Communication (presentations) – none

Written Communication:

Course Coordinator: Dr. Sukhamay Kundu Last Modified: September 11, 2009