Course Outcomes | CSC 2533

CSC 2533: Introduction to Engineering Computation

Credit Hours: 3 hours

Frequency: Fall and Spring semesters

Prerequisites:

MATH 1550

Prerequisites by Topics:

Calculus (derivatives with respect to a single variable, partial derivatives, single integrals (one integration variable), double integrals (two integration variables))

Catalog Course Description:

Also offered as ME 2533. Problem solving techniques and structured programming tools for engineering synthesis and analysis; application of symbolic solvers and technical computing toolkits.

Course Outcomes

- 1. Be familiar with the MATLAB programming language,
- 2. Be familiar with finite precision computation,
- 3. Be familiar with solutions of nonlinear equations in a single variable,
- 4. Be familiar with solutions of nonlinear equations in two or three variables,
- 5. Be familiar with solutions of systems of linear equations,
- 6. Be familiar with numerical integration for one integration variable,
- 7. Be familiar with numerical integration for two integration variables,
- 8. Be familiar with solutions of ordinary differential equations,
- 9. Be familiar with solutions of systems of ordinary differential equations,
- 10. Be familiar with plotting graphs.

Texts and Other Course Materials

<u>MATLAB Programming for Engineers</u> – Stephen J. Chapman 0-534-42417-1 Latest edition, Thomson

Major Topics

Fundamentals of MATLAB programming,

- Convergence of numerical methods,
- Iterative solver method for single root finding,
- Newton's Method for single root finding,
- Newton's Method for multiple root finding,
- Gauss-Jordan Method for solving systems of linear equations,
- Simpson's Rule for numerical integration of single integrals (one integration variable),
- Simpson's Rule for numerical integration of double integrals (two integration variables),
- Runge-Kutta Method for solving first order differential equations,
- Runge-Kutta Method for solving second order differential equations,
- Runge-Kutta Method for solving systems of first order differential equations,
- Runge-Kutta Method for solving systems of second order differential equations,
- Fundamentals of plotting graphs,
- Plotting multiple curves on the same graph.

Assignments/Projects/Laboratory Projects/Homework

- 12 three-hour labs
- Each lab has two programming assignments based on the major topics listed above

Curriculum Category Content (estimated in semester hours)

Area	Core	Advanced	Area	Core	Advanced	
Algorithms	12	0	Data Structures	3	0	
Software Design	10	0	Prog. Languages	12	0	
Computer Arch.	1	0				

Relationship to Criterion 3 Outcomes

Α	В	С	D	E	F	G	Н	I	J	К
*		*		*				*		*

Math Fundamentals:

Solving an equation for a variable, derivatives, partial derivatives, matrix multiplication, inverse of a matrix, linear algebra techniques, iteration of numerical methods, root finding, numerical integration, numerical solutions of differential equations – 8 hours

Data Structures:

Variables, one-dimensional arrays, two-dimensional arrays – 3 hours

Algorithms and Software:

Problem analysis and algorithm development – 12 hours

Programming logic, software design – 10 hours

Computer Organization and Architecture:

Components of computer, data storage (bits, bytes), limit on size of integer – 1 hour

Concepts of Programming Languages:

Variables, arrays, read statements, print statements, plot statements, arithmetic operators and functions, arithmetic expressions, relational and logical operators, logical expressions, if statements, while loops, for loops, user-defined functions – 12 hours

Social and Ethical Issues:

Oral Communication (presentations):

None

Written Communication:

Students are required to include comments in their programs

Course Coordinator: Dr. Nathan Brener

Last Modified: June 8, 2007