Course Outcomes

CSC 4103

CSC 4103: Operating Systems

Credit Hours: 3 hours

Prerequisites:

CSC 3102

Prerequisites By Topic:

Formal ADT representations such as linked lists, analysis of algorithms, algorithm design techniques, programming knowledge in C, C++ or JAVA.

Catalog Course Description:

Design techniques, process management, processor scheduling; deadlocks, memory management, secondary memory management, file management; I/O systems, Unix systems.

Course Outcomes

- 1. Master functions, structures and history of operating systems
- 2. Master understanding of design issues associated with operating systems
- 3. Master various process management concepts including scheduling, synchronization, deadlocks
- 4. Be familiar with multithreading
- 5. Master concepts of memory management including virtual memory
- 6. Master system resources sharing among the users
- 7. Master issues related to file system interface and implementation, disk management
- 8. Be familiar with protection and security mechanisms
- 9. Be familiar with various types of operating systems including Unix

Texts and Other Course Materials

A. Silberschatz, P.B. Galvin and G. Gagne, "Operating System Concepts, (6th or Newer Edition) Wiley.

Reference: M. Kiefer and S.A. Smolka, "OSP: An Environment for Operating System Projects," Addison-Wesley.

Major Topics

- Introduction including history and types of operating systems
- Processes and threads, scheduling policies, algorithms, multilevel queuing

- Process synchronization concepts, classical examples, communication, interrupts, semaphores, monitors
- Resource allocation, deadlock prevention, avoidance and detection
- Main memory, paging, multilevel paging, segmentation, virtual memory, thrashing, page replacement algorithms
- File system interface, implementation, file organization, storage allocation, access methods, access control
- I/O system and services, disk management, disk scheduling, RAID structures
- System performance, protection and security, policies and methods, Access matrix

Assignments/Projects/Laboratory Projects/Homeworks

- Individual written homework assignments (4). Each consists of ten short, long and mixed questions including those from the exercises of the text book.
- Individual programming assignments (4). Each takes about one to two weeks to complete. Sample projects:
 - Implement various modules for CPU scheduling, memory management in OSP simulator
 - Perform various case studies using outputs produced by OSP simulator, e.g., difference between I/O bound versus CPU bound processes.
 - Write programs for different algorithms related to operating systems such as a bounded buffer problem.

Curriculum Category Content (estimated in semester hours)

Area	Core	Advanced	Area	Core	Advanced	
Algorithms	20	15	Data Structures	2		
Software Design	5		Prog. Languages	3		
Computer			Mathematical			
Architecture			fundamentals			

Relationship to Criterion 3 Outcomes

Α	В	С	D	E	F	G	Н	I	J	К
*	*	*		*		*	*	*		*

• Data Structures -- 2 hr core

Use of various basic data structures such as linked lists, queues, stacks, search trees, hashing and graphs in the context of operating system.

- Algorithms and Software -- 25 hr core / 15 hr advanced
 Fundamentals of process management, memory management, I/O system, storage management, and protection and security
- Computer Organization and Architecture:
- Concepts of Programming Languages -- 3 hr core
 C, C++ and JAVA languages, which are used for programming assignments.
- Social and Ethical Issues:
- Oral Communication (presentations)
- Written Communication:

Students are required to submit 4 written home works involving discussions of algorithm design issues. The programming assignments (4) also require the students to write comments/specifications of the functions used in their programs. Also some assignments involve preparation of a report on analysis of the results from OSP simulator

Course Coordinator: Dr. Bijaya B Karki

Last Modified: January 8, 2007