Course Outcomes

CSC 4304

CSC 4304: Systems Programming

Credit Hours: 3 hours

Prerequisites:

CSC 4103

Prerequisites By Topic:

Basic programming knowledge in C/C++. Basic constructs of programming: e.g. data types, control structures, modular design and implementation, and algorithm design techniques. Computer Science concepts: e.g. operating systems, file and I/O structures, networking, memory structures, processes and threads.

Catalog Course Description:

Batch process system programs, their components, operating characteristics, user services and limitations; implementation techniques for parallel, distributed and concurrent processing; interrupt handling; addressing techniques, file system design and management, system accounting, and other user-related services; traffic control, interprocess communication, remote procedure calls, design of system modules, and interfaces; system updating, documentation, and operation.

Course Outcomes

- 1. Master in using the C/C++ programming language, its constructs and grammar, to create system software.
- 2. Master in the usage of makefiles, linking, object files, loading, symbol resolution, shared and static libraries, debugging, and execution of system programs.
- 3. Be familiar with basic UNIX OS concepts such as: process, program, process groups, signals, running programs, process control, address space, user and kernel modes, system calls, and context switching.
- 4. Master in file I/O (i.e. open, close, read, write, seek)
- 5. Be familiar with using sockets to implement client-server environment.
- 6. Be familiar with using thread execution models (e.g. Posix threads).
- 7. Be familiar to handle signals and exceptions within a process and to control processes.
- 8. Be familiar with different approaches of concurrent programming.
- 9. Be familiar with different batch processing systems.
- 10. Be familiar with remote execution techniques.

Texts and Other Course Materials

- 1. <u>Computer Systems: A Programmer's Perspective, by</u> Bryant and O'Hallaron. Prentice Hall. 2002.
- 2. The C Programming Language. By Kernighan and Ritchie. Prentice Hall. Latest Edition.

References:

- 1. <u>Advanced Programming in the UNIX Environment</u>, by Richard Stevens. Addison Wesley Press, 1992, ISBN 0-201-56317-7.
- 2. <u>UNIX SYSTEMS Programming: Communication, Concurrency and Threads</u> by Kay A. Robbins and Steven Robbins, Prentice Hall ISBN 0-13-042411-0

Major Topics

- Describe the process of writing system software from code writing to compilation and linking,
- Brief introduction to the language C,
- Exceptions, interrupts, and systems calls,
- Processes and process control,
- Inter-process communication
- Signal and interrupt handling
- Remote procedure calls
- Impact of pipeling on program performance,
- File I/O and system calls,
- Performance measurement and improvement including discussion of parallel architectures,
- Structure and usage of storage technologies including the memory hierarchy,
- Reading and writing floating-point numbers,
- Multi-precision arithmetic,
- Caches and ways to improve cache performance,
- Virtual memory,
- Memory allocation, protection, and garbage collection,
- The client-server programming model and its application to networks and the global IP Internet,
- OS timing facilities,
- Optimizing of C programs using analysis of the generated machine code,
- Threads and concurrent programming
- Batch processing systems
- Distributed computing

Assignments/Projects/Laboratory Projects/Homeworks

Implementation of client/server model Implementation of multi-threaded processes Implementation of remote procedure calls Implementation of inter-process communication, signal and interrupt handling Implementation of file I/O optimization
Usage of batch processing systems and distributed computing
Debugging complex applications

Curriculum Category Content (estimated in semester hours)

Area	Core	Advanced	Area	Core	Advanced	
			Data Structures			
Algorithms	8	5		10		
Software Design	5		Prog. Languages	5	10	
Computer	2		Mathematical			
Architecture			fundamentals			

Relationship to Criterion 3 Outcomes

Α	В	С	D	Е	F	G	Н	I	J	К
*	*	*		*		*	*	*	*	*

- Math and Fundamentals
- Data Structures
 Stacks, queues, linked list, searching, sorting, tree structures, graphs (10 hours)
- Algorithms and Software

Algorithm analysis- Parallel algorithm design, concurrency, search and sort algorithms, threads, multiprocessing, distributed computing, memory allocation, garbage collection, file I/O system calls, signal interrupt handling, remote procedure calls, interprocess communication, pipelining, debugging, performance evaluation, caching, batch processing (18 hours)

Software Design – design and implement system software, guidelines for larger software systems development (5 hours)

- Computer Organization and Architecture:
 Overview of basic computer organization and basic computer architecture structures (2 hours)
- Concepts of Programming Languages
 Master C or C++ programming using the concepts of address pointers, list structures, tree structures, memory management, thread programming, network programming, introduction to programming with sockets, client server programming, file systems and I/O interfaces, UNIX shell (ex. Bash) programming, scripting, basics of UNIX system administration, (15 hours)
- Social and Ethical Issues:

- Oral Communication (presentations)
- Written Communication:

Course Coordinator: Dr. Tevfik Kosar

Last Modified: May 16, 2007