Course Outcomes

CSC 4700 s2

CSC 4700 s2: Special Topics in Computer Science

"Programming Embedded Interfaces"

Credit Hours: 3 hours

Prerequisites: CSC 3102 or permission of department.

Prerequisites by Topics:

Some prior programming experience is expected.

Some C experience is valuable.

Python or Java experience is useful, but not required.

Catalog Course Description:

May be taken for a max of 9 cr. Hrs. when topics vary. Total hrs earned in CSC 2700 and 4700 should not exceed 9 hrs. Specialized areas of current interest in computer science.

Students will examine the concepts and practice, and work hands-on with programming embedded interfaces to sensors, actuators, displays, networks, and people. In the process, they will gain experience both in directly programming embedded devices (in C); and high-level networked control of multiple embedded devices (in Python or Java). Students will also gain familiarity with example hardware and application domains relevant to embedded interfaces.

This is a project-oriented class. Working in small teams, students will learn to build working systems using embedded processors and interfaces (no prior electronics experience is necessary); to program these interfaces; to connect these devices with physical sensors, actuators, and displays; and to use these in real applications.

Course Outcomes:

- 1. Be familiar with the composition, design, and implementation of embedded systems,
- 2. Be familiar with both medium level and high level languages appropriate for embedded systems development techniques (e.g., C and Python),
- 3. Be familiar with reading and understanding processor and component datasheets
- 4. Be familiar with driving use contexts, including human-computer interaction, environmental sensing and actuation, etc.,
- 5. Be familiar with the basics of interfacing hardware and software,
- 6. Be familiar with working on a team to create and apply embedded systems,
- 7. Be exposed to history of embedded interfaces

Texts and Other Course Materials

The class builds on roughly a dozen required and recommended online readings. The text "Physical Computing" (O'Sullivan and Igoe) is recommended, but not required.

Major Topics

- Introduction to the PIC microcontroller,
- Embedded programming in C,
- Embedded control and applications in Python and Java,
- Reading datasheets for microcontrollers and enabling components,
- Embedded communication (wired and wireless, including I²C, RS232, USB, Bluetooth),
- Human-computer interaction,
- Introduction to sensors, actuators, and displays,
- Environmental sensing and actuation,
- Issues related to energy and power,
- Related design and fabrication technologies.

Assignments/Projects/Laboratory Projects/Homework

Three projects:

- 1) Basic embedded programming in C
- 2) Basic embedded control in Python or Java
- 3) Final project applying (1) and (2) to a topic of student interest

Homeworks:

- 1) Questions on contextual readings
- 2) Questions on basic electronics
- 3) Review in preparation for midterm
- 4) C and Python application examples
- 5) Review in preparation for final

Curriculum Category Content (estimated in semester hours)

Area	Core	Advanced	Area	Core	Advanced
Algorithms	5%	5%	Data Structures	2%	2%
	(2h)	(2h)		(1h)	(1h)
Software Design	10%	10%	Prog. Languages	10%	10%
	(5h)	(5h)		(5h)	(5h)
Computer Arch.	20%	20%			
	(10h)	(10h)			

Relationship to Criterion 3 Outcomes

Α	В	С	D	E	F	G	Н	1	J	К
*	*	*	*	*	*	*	*	*	*	*

Math and Fundamentals:

Bitwise operations in binary and hexademical Base converstions

Data Structures:

Bitfields for state representation and messaging Class libraries for embedded communications, sensing, control, and display Class libraries for streaming Internet content (e.g., RSS)

Algorithms and Software:

Watchdog timers
Interrupt handlers
Embedded control loops
Event-based programmings
Internet to embedded system interlinkages

Computer Organization and Architecture:

Datasheet fundamentals
PIC processor fundamentals
Embedded communication networks and protocols

Concepts of Programming Languages:

Embedded programming in C
Embedded control in Python and Java

Social and Ethical Issues:

Embedded systems in applied use contexts, including human-computer interaction and environmental sensing systems.

Discussions of resource and societal implications of varying levels of power consumption

Oral Communication (presentations)

Every student is required to make $\underline{3}$ oral presentation(s), typically of $\underline{10}$ minutes duration.

Written Communication:

Every student is required to make extended (multi-paragraph) English responses in both homeworks and midterm + final examinations.

Course Coordinator: Dr. Brygg Ullmer

Last Modified: June 18, 2007