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ABSTRACT
Considering the unique characteristics of storage class mem-
ory (SCM), such as non-volatility, fast access speed, byte-
addressability, low-energy consumption, and in-place modi-
fication support, we investigated the features of over-write
and append-write and propose a safe and write-efficient SCM-
based journaling mechanism for a file system called SJM.
SJM integrates the ordered and journaling modes of the tra-
ditional journaling mechanisms by storing the metadata and
over-write data in the SCM-based logging device as a write-
ahead log and strictly controlling the data flow. SJM writes
back the valid log blocks to the file system according to
their access frequency and sequentiality and thus improves
the write performance. We implemented SJM on Linux 3.12
with ext2, which has no journal mechanisms. Evaluation
results show that ext2 with SJM outperforms ext3 with a
ramdisk-based journaling device while keeping the version
consistency, especially under workloads with large write re-
quests.

Keywords
Storage Class Memory, File System, Data Consistency, Jour-
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1. INTRODUCTION
Maintaining the consistency of file systems is an important

research topic within the field of storage systems. In order
to quickly restore file systems to a consistent state after un-
expected system crashes, journaling mechanisms are widely
adopted for their simple implementation and good perfor-
mance. However, with the rapid development of emerging
materials and storage technologies, storage class memory
(SCM) [7, 6] plays an increasingly important role in stor-
age systems for its excellent DRAM-like access performance
and disk-like non-volatile characteristics. In recent years,
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more and more new storage devices, such as PCM (Phase
Change Memory) [14], STT-MRAM [11] and Memristor [22],
support byte level access and local (in-place) update, have
higher reading and writing performance, and higher energy
efficiency. These devices will most likely become next gener-
ation SCM technology solutions. However, one cannot take
full advantage of SCM by simply utilizing it as a journal-
ing device because traditional journaling mechanisms are
designed for disk-based devices.

Logging technology is a commonly used method to ensure
the consistency of file systems, however, it introduces an-
other problem. Journaling mechanisms face a “write twice”
problem: before changing the file system, the first step is to
update the record in the log. Therefore, file systems usually
only focus on logging file system metadata, such as ext3fs
[23] and Reiserfs [20]. The log is normally stored in the
disk partition or log file. When the system is down, we
can use the log records, which are written back to disk se-
quentially, to recovery the system. The traditional logging
technology in the system restores indiscriminately so that
multiple log copies of the same piece of data will occupy
more than one log space. System recovery should also write
back many times, this not only occupies a large amount of
log space, but also extends the system recovery time. Shen
et al. [21] studied the cost of additional file system journal-
ing and found the significant cost (slowdown) is up to 73%
due to implementation limitations of the current system.

Aiming at these problems, this paper proposes a safe and
write-efficient logging method, SJM (SCM-based Journaling
Mechanism), to make full use of the performance advantages
and byte addressing and modifying characteristics of SCM.
The SCM device is mounted on the memory bus as the log
device. Using the logging method does not require different
types of data requests. In view of the phenomenon that mul-
tiple log blocks of a certain file system block usually co-exist
in the logging device, SJM only maintains the log blocks
of the latest version; Write back of the valid log blocks to
the file system is according to their access frequency and se-
quentiality. In addition, because the journaling mechanism
of SJM adopts the physical log mode, each data block up-
date will generate a log block, so it will create a relatively
large data log for small data write requests. In view of this
situation, the SJM uses a delay recycling approach, under
the premise of ensuring the integrity of the transaction log
by delaying the log block copying to allow modification of
the old log block, thus, reducing as much as possible writing
to the log data flow.



The rest of the paper is organized as follows: Section 2
discusses the related work; Section 3 presents the design of
SJM and the detailed implementation; Section 4 provides an
evaluation of the mechanism in a real system implementa-
tion; Section 5 concludes the paper.

2. RELATED WORK

2.1 File system consistency
Timely restoration of the file system to a consistent state

and the resumption of normal service following unexpected
downtime continues to be a core issue and important re-
search topic in the study of file systems. General operating
systems provide a file system check tool (e.g. fsck), capa-
ble of scanning the whole file system metadata in downtime,
correcting possible inconsistencies, and returning it back to
a consistent state. However, this repair process takes a long
time to complete and often requires several hours or days.
For storage systems requiring rapid response time and con-
tinuous provision of services, long periods of service inter-
ruption can cause huge losses of property and maybe even
customers, which is obviously intolerable.
People have put forward many positive methods to en-

sure the file system consistency by considering the possible
inconsistencies after downtime when the system is in oper-
ation. The file system can quickly recover to a consistent
state after unexpected downtime by guaranteeing the atom-
icity of file system operations through certain mechanisms.
For example, positive consistency methods mainly include
journaling mechanisms [24], CoW (Copy-on-Write) [10] and
soft updates [19]. Among them, journaling mechanisms are
widely adopted by many file systems for their simple imple-
mentation and good performance.

2.2 Based on SCM
With the emergence of the next generation of storage with

excellent performance characteristics, such as SCM, much
research is being conducted into applications of SCM in all
kinds of fields. Important among the work are more effi-
ciently guaranteeing the consistency of the storage system
after the introduction of SCM and accelerating the storage
system using SCM. Research in these areas are of two main
types.

2.2.1 The consistency of a storage system based on
SCM

Condit et al. proposed the CoW (Copy-on-Write) file sys-
tem called BPFS for byte-addressable storage [5]. BPFS
performs an in-place-write when the updated data size is
smaller than the unit of an atomic operation. This can re-
duce the out-place-update overhead of CoW significantly.
Wu et al. suggested a file system for SCM [27]. Assuming
that SCM resides on the memory bus and can be accessed
directly from the CPU, they proposed the file system access
files through the same address space of virtual memory sys-
tems. Based on PCM, Lee et al. [17] presented the Shortcut-
JFS, which reduces the amount of journaling by more than
half by exploiting the byte-accessibility of PCM. Shortcut-
JFS performs differential logging and in-place checkpointing
to remove the unnecessary overhead of block copying.
Lu et al. proposed LOC (Loose-Ordering Consistency)

[18] to satisfy the order requirements of persistent memory

writes. By eager commit, LOC reduces the commit overhead
for writes within a transaction. LOC relaxes the ordering of
writes between transactions by speculative persistence. Chi-
dambaram et al. [4] presented NoFS, which provides crash
consistency without ordering writes using a back pointer-
based consistency mechanism.

Venkataraman et al. [25] presented CDDSs (Consistent
and Durable Data Structures) to allow programmers to safely
exploit the low-latency and non-volatile aspects of new mem-
ory technologies. CDDSs use versioning to allow atomic
updates without requiring logging. The same versioning
scheme also enables rollback for failure recovery.

By combining a logging device with cache, UBJ [15] uses
a double circular linked list of all kinds of transactions in
a JBD (Journaling Block Device) memory transaction man-
agement buffer, to ensure the consistency in logic. We will
demonstrate that, compared to the UBJ, SJM is better in
inspecting access characteristics of files and using the char-
acteristics of the SCM to do XOR updates to reduce write
operations.

2.2.2 Accelerated storage system using SCM
In this case, by combining the SCM device with the stor-

age system and using the non-volatile characteristics of SCM,
one can simplify and accelerate the storage system. For ex-
ample, Lee et al. [16] presented a versioning file system
for PCM that reduces the writing overhead of a snapshot
significantly by breaking the recursive update chain at the
immediate parent level. Fang et al. [6] presented an SCM-
based approach for DBMSs logging, which achieves higher
performance by using a simplified system design and better
concurrency support. This logging approach is used to re-
place the traditional disk based logging approach in DBMSs.

Chen et al. [3] proposed FSMAC to optimize metadata
access by exploiting the advantages of Nonvolatile Memory
(NVM). FSMAC decouples the data and metadata I/O path,
by placing the data on disk and the metadata in NVM at
runtime. Thus, data is accessed in blocks from the I/O
bus and metadata is accessed in a byte-addressable manner
from the memory bus. Metadata access is significantly ac-
celerated and metadata I/O is eliminated because metadata
in the NVM is on longer flushed back to disk periodically. A
light-weight consistency mechanism combining fine-grained
versioning and transactions is introduced in the FSMAC.

Lee et al. [15] presented a buffer cache architecture that
subsumes the functionality of caching and journaling by
making use of non-volatile memory. The proposed in-place
commit scheme avoids logging, but still provides the same
journaling effect by simply altering the state of the cached
block to frozen. Chen et al. [2] adopted a hybrid stor-
age model, called PMBD, which directly accesses persistent
memory (e.g. SCM) attached to the memory bus and ex-
poses a logical block I/O interface to users.

The above mentioned studies proposed several SCM-based
approaches to reduce the journaling overhead. However, tra-
ditional journaling mechanisms are optimized for block-level
accesses while the byte-accessibility characteristic of SCM is
not explored and exploited. Moreover, it may not be eas-
ily applicable to a hybrid storage system consisting of hard
disk drives (or solid state drives) and SCM, which, we be-
lieve, will be the major form of leveraging SCM in storage
systems in the near future.



3. SJM DESIGN AND IMPLEMENTATION

3.1 SJM system overview
Given that many kinds of SCM have wear limits that

shorten their lifespan, we want to reduce the write transac-
tions to SCM. Therefore, we need an interface to support
byte accesses between memory and storage devices. Al-
though SCM is not commercially available on a large scale,
most research assumes that SCM will be placed in standard
DIMM slots. This is a reasonable assumption as we need
to utilize the byte-accessibility of the SCM. However, this
architecture has a weakness in that it limits the storage ca-
pacity according to the number of DIMM slots. PCI express
is another feasible option to connect SCM to a computer sys-
tem. Because the PCI express bus shields the characteristics
of SCM byte addressing, any changes to a data block in SCM
will involve modifying the entire block of data. One aspect
of this write amplification is an increase in write traffic, but
it also increases the wear time of the SCM. So, in the design
of SJM, we will mount the SCM on the memory bus. On
one hand, the access speed of SCM will be close to DRAM
and we can utilize its rapid access characteristics more effec-
tively, instead of spending too much time on the bus delay;
on the other hand, when the SCM acts as a logging device,
there is a very close interaction relationship with memory,
so mounting the SCM on the memory bus can make full use
of its characteristics of byte addressing, thus we can develop
more efficient journaling mechanisms. In addition, when the
SCM is used as a logging device only, we require a very small
storage capacity, so the amount of DIMM slots consumed on
the main board does not become a serious limitation. This
paper assumes the operating system itself already provides
the write protection mechanism and the prohibition of mem-
ory rearrangement mechanism, rather than repeat this work
in this research.
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Figure 1: SJM overview.

Fig. 1(a) shows a possible module using SCM in our study.
As is shown in Fig. 1(b), the SCM and DRAM are mounted
on the memory bus in parallel. Data flow 1 and data flow 2
depict DRAM interaction with the file system in the absence
of a journaling mechanism. Data flow 3 and 4 shows the
interaction between DRAM and SCM in SJM. Data flow
4 shows that the process of memory transaction writes to
the logging device, and data flow 3 shows the data recovery
process from the logging device after downtime. Data flow 5
indicates that, at the appropriate time, the valid log records
will be effectively written to the file system.

3.2 SJM log mode
The Journaling Block Device (JBD) [13] provides a file

system-independent interface for file system journaling. JBD
log mode is divided into three kinds: writeback mode (data

= writeback), ordered mode (data = ordered) and journal-
ing mode (data = journal). Among them, the writeback
mode log only contains metadata, and is only able to ensure
the metadata consistency of the file system; a journaling
mode log record contains all of the data and metadata, so
it can ensure the version consistency of the file system. The
ordered pattern is a compromise: it only records the meta-
data schema, but strictly ensures the data is written into
the file system before writing the metadata log. Thus, for
an append-write, an ordered mode can ensure version con-
sistency of the file system; while for over-write, an ordered
pattern can only guarantee the data consistency of the file
system.

The write operation can generally be classified into three
types: (i) append-write, (ii) over-write and (iii) a part is
append-written, another part is an over-written. Consider-
ing the practical application, the frequency of an append-
write is much greater than an over-write. Therefore, SJM
will write-ahead of the over-write data or the part of over-
write data in the write operation based on an ordered pat-
tern of JBD, then reduce the log submit as much as possible
to ensure the version consistency of the file system.

Compared with JBD’s journaling mode, which only records
the over-write data and metadata, SJM can greatly reduce
the log submissions, and also reduce the “write twice” over-
head of the journaling mechanism, while saving log space,
and reducing the frequency of log data written back to the
file system. All update operations in the file system in-
volve metadata modifications, including file modification,
creation, deletion, copying, moving and so on. Updating
the file system metadata involves a large number of random
small write operations, for example, one update operation
involving the bitmap may only involve 1 bit or several bits, a
file inode accounts for only 64 bytes, so to update an inode
also involves modification to only a few bytes. Therefore,
by reducing the write-back frequency of metadata, we can,
thereby improve the write performance of the file system.

3.3 SJM transaction mechanism
SJM can distinguish between different types of write op-

erations, so a transaction in SJM contains two bidirectional
circular linked lists: a two-way cycle chain manages the
buffer of append-write data; another two-way cycle chain
manages the metadata buffer and the over-write data buffer.
Considering that the access speed of SCM is close to that
of memory, when a log has completed writing to a SCM
device, transactions can be written back to the file system
directly from the logging device, without having to maintain
a checkpoint chain like the JBD logging mechanism. (Note:
The JBD mechanism deletes the corresponding log records
from the logging device after the checkpoint chain data is
written to the file system.)

The SJM transaction mechanism includes two kinds of
transactions: running transactions, and committing trans-
actions. Because the append-write transaction buffer in the
chain requires synchronization to the file system, a commit-
ting transaction often contains multiple completed running
transactions to improve writing efficiency.

The normal operation in Fig. 2 shows the interaction
between DRAM, the logging device and the file system,
which mainly includes three processes. Process 1 (P1) is an
append-write data synchronization process, which synchro-
nizes the buffer data of the append-write link in committing
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Figure 2: SJM transaction mechanism.

transactions to the file system. Process 2 (P2) is a write log
process in which the metadata and the buffer of over-write
data in committing transactions are written to the logging
device. Process 3 (P3) is a log write-back process, which,
at the appropriate time, synchronizes the valid log record in
the logging device to the file system. Considering the im-
portance of the update sequence for file system consistency,
the data flows of P1, P2 and P3 must ensure that the order
is P1− > P2− > P3. Note in particular, the sequence of
P1 and P2 refers to a logical sequence and not the actual
data flow sequence. The process to write the log may begin
before a process of append-write data synchronization, but
it can be marked as the write log ends after all append-write
data in the transactions are synchronized to the file system.
In other words, even if the transactions of all metadata and
append-write data have been submitted to the journal, the
system cannot submit the next transaction to the log device
until after the process of append-write data synchronization
is completed.

3.4 SJM space management
SJMmakes full use of the proximity of SCM to the DRAM,

as well as the checkpoint transaction and the related opera-
tions that are sustained in the JBD mechanism to transfer to
the logging device. Hence, SCM becomes the key to manage
the committing transaction and the checkpointing transac-
tion for the SJM space management.
SJM is a journaling mechanism based on SCM, so the

efficiency of sequential write and random write are not sig-
nificantly different. SJM only needs to maintain the logical
order and does not require guaranteeing its physical consis-
tency.

3.4.1 SJM logical layout
As shown in Fig. 3, the SJM can be logically divided

into three parts: checkpoint area, commit area, and free
area. The areas are identified by using the pointer of the
superblock.
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Figure 3: SJM logical layout.

In the free area, a data block is a free block and can be
used to record the log data. The freerecord pointer references
the first free log record in all the log space.
All log records in the checkpoint area are in a consistent

state and all devices have only stored the most recent copy.

The checkpoint pointer references the last block of the check-
point area.

When a logging transaction begins, the log record writes
along the checkpoint area of the last completed transaction.
When all the log blocks of this transaction are finished, the
commitpoint pointer references the last log record of the
commit area. Then each log record is traversed in the com-
mit area. If the blocks in the checkpoint area have an old
copy, then it is marked as invalid. When all log records
in this transaction are completed, the commitpoint pointer
references the position of checkpoint.

3.4.2 SJM physical layout
Since SJM is based on SCM which is mounted on the

memory bus, SJM can make full use of the byte addressing
characteristics of SCM. The system directly uses the pointer
to mark the start and end of a write transaction. There is no
need to submit blocks to represent the transaction commit
completed as required in the JBD mechanism.
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Figure 4: SJM physical layout.

In Fig. 4, the SJM log space can be divided into three
successive parts: super block (Superblock), log record label
(Label) and log record (Logrecord). The super block is used
to record the related information of the SCM logging device
including the magic number, the first available log block,
the total number of log records, the number of invalid log
records, the effective number of log records, the available log
space, the transaction record mark, which marks the current
transaction submission complete, and the next available log
block, which is used for log space allocation.

Different from the JBD mechanism, SJM strictly controls
the logical sequence of log writes. A logical sequence of
SJM is ensured by means of log tags. Every time the system
allocates space for each write log, it realizes the logical order
by the allocation of successive physical tags. It realizes the
logical recovery by recycling tags when dealing with garbage
collection for space. As such, the corresponding physical
block indicated by these tags may be random in physical
space.

3.5 XOR update scheme
As described in subsections 3.2 and 3.3, in order to en-

sure version consistency of file systems with minimal data
copying and a reduction of the log writes on the system
level, SJM integrates ordered mode and journaling mode. In
addition, taking the characteristics of byte-addressing and
support for local modification of SCM into account, SJM
uses the old log version further to reduce log writes.

SCM contains both a metadata and an over-write data
log. According to the locality principle, this data will be
updated again in a short time. Especially the metadata,
which will be accessed frequently [3]. In the log space, there
is more than one log version of data blocks. Considering the
difference between the log blocks, it may be tens of bytes or a
few bytes (e.g. update bitmap block, update inode), so there
is no doubt that reducing log writes by directly modifying



the old log version is advantageous. To change an old log
version, we simply need to write the differences between the
two data blocks - generally a few bytes or tens of bytes. To
write the log block directly would require writing the whole
data block that is usually 4KB.
Assume that a data block number is D and the size of the

data block is 4KB in a file system. The data block D is first
modified and a log block Ll is generated, L1 = D+ delta 1,
where delta 1 is the first amendment part. The data block
D is subsequently modified and a log block L2 is generated,
L2 = L1 + delta 2, where delta 2 is the second amendment
part. At this time, L2 is the latest version for data block D.
L1 is the most recent stale log version and should be marked
as invalid. The data block D is further modified and a log
block L3 is generated, L3 = L2 + delta 3, where delta 3 is
the third amendment part. The system would generate a
4KB log write if it were to directly write the log block. The
system only needs to write the update part if it is based on
the old log version.
As the most recent log copy, L2 cannot be directly mod-

ified. If the system modifies L2 directly, the updating in-
terrupt will damage the integrity and consistency of the log
transactions. However, for L1 which is the most recent stale
copy and has been marked as invalid, even if the update
process is interrupted, the consistency and integrity of the
log transaction will not be damaged.
From the above analysis, L3 = L2 + delta 3 = (L1 +

delta 2) + delta 3 = L1 + (delta 2+delta 3). Therefore, the
system only needs to update the delta 2 + delta 3 based on
L1. Now the question is how to determine the corresponding
update quantity for each log block. For this, SJM adopts a
XOR update scheme.
The most direct way to determine the difference between

two data blocks is a XOR operation. The basic principle
of XOR is that equal data is 0, dissimilarity is 1. For the
log block L1 which is in the log device and the log block L3
which is about to write to the log device, the system only
needs to read the log block L1 and L3, then perform a XOR
operation to obtain the relationship block P (P=L1⊕ L3).
L1(i) represents the i-th bytes of log block L1, L3(i) rep-

resents the i-th bytes of log block L3, and P (i) represents
the i-th bytes of relationship block P .
We analyze the relationship between the blocks L1 and

L3: if P (i) is all zero bytes, and the i-th byte of the log
block L3 and log block L1 are the same, and the system
does not update; if P (i) is not all zero bytes, then the i-th
byte of the log block L3 and log block L1 are different, and
the XOR operation between P (i) and L1(i) will update the
log block L1(i): L1(i) = P (i) ⊕ L1(i); or directly assign
L3(i) to the L1(i): L1(i)=L3(i).

4. PERFORMANCE EVALUATIONS

4.1 Experimental setup and methodology
The performance evaluation was conducted on a PC plat-

form with an Intel Pentium(R) dual-core 2.93GHz proces-
sor and 1GB DDR memory. In the system, the HDD is
a WD5000AADS-00S9B0 500GB SATA disk. The experi-
mental setup is shown in Table 1. The test software is IO-
Zone [1], PostMark [12] and Filebench [26] respectively. We
mainly show the write performance of the three benchmarks
because we focused on reducing the journaling overhead by
using the SJM mechanism.

Table 1: Experimental setup.
Machine CPU: Pentium(R), Dual-Core 2.93GHz
OS Fedora 17, Linux 3.12
RAM 1GB DDR
Disk driver WD5000AADS-00S9B0 500GB HDD
Benchmark IOZone(version 3.4.0) [1]

PostMark (version 1.51) [12]
Filebench(version 1.4.9) [26]

Since an SCM device is not yet commercially available
and read and write performance of an SCM device is close
to memory, most research in the domain uses memory to
simulate SCM [17, 16, 25, 6, 8, 9]. Our tests of the SJM also
used memory to simulate the SCM. There are many methods
available to acquire the memory to simulate the SCM, such
as dividing an independent memory zone in memory, using
a shared memory method, or memory mapping (MMAP).
Before memory initialization, SJM uses alloc bootmem to
reserve a 128MB block of contiguous physical memory that
is referenced by the pointer scm addr. This partition of
physical memory is fully used and managed by the user,
which bypasses the Linux memory management mechanism.

For the sake of fairness, we compare our system (shown as
ext2 SJM) with ext3fs that uses the same capacity ramdisk
as its journaling device and adopts the JBD mechanism
(shown as ext3 JBD), and with the original ext2fs without
journaling (shown as ext2 no). The log mode of the control
group ext3 JBD is set to be data = journal. In addition,
although the Linux operating system provides the ramdisk
tool, in order to further reduce the performance impact the
equipment itself brings, ramdisk is formerly used to simulate
the SCM which has an added layer of block device driver.

4.2 Large file test
IOZone [1] is a set of open source testing tools for file sys-

tems. IOZone completes the performance test of a file sys-
tem by performing a series of I/O operations. When testing
IOZone, the file size should exceed the memory size. It is
recommended that using a file size that is twice as large as
the memory size is best. We determined the available mem-
ory size to be 231MB by using the instruction free -m before
testing the system. This test used IOZone to measure the
performance of large file writes. The size of test files used
were 512MB, 1GB and 2GB respectively, while the record
size was 64KB.

The write operation of IOZone creates a file and sequen-
tially writes data to the file until the specified file size is
reached. Fig. 5 shows the write performance comparisons
with different journaling mechanisms. As the file size in-
creases, write performance of ext3 JBD is relatively sta-
ble, while the write performance of ext2 SJM and ext2 no
all decreased. This is because the JBD mechanism for the
journal mode, no matter how large the file grows, submits
transactions to the ramdisk log first, and then writes the
checkpoint transaction to the file system. In this manner,
the write operation of a file will be divided into many such
log submissions and write checkpoint transaction operations.
For ext2 no, each write operation writes data to the file sys-
tem, and then the metadata writes back to the file system
at the right time. Because IOZone file writing is divided
into several records based on the unit size of a record, then
the bigger the file, the more metadata updates generated,



leading to the write back of ext2 no metadata more fre-
quently. So the write performance of ext2 no falls away.
But for ext2 SJM , all write operations are append-write,
so the write operation consists of only writing to the meta-
data log. The larger the file, the more metadata log records
generated, the larger overhead of the metadata log, so the
write performance of ext2 SJM decreases with a file size
increase.
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Figure 5: Write performance comparison of different
mechanisms for large file size.

It can be seen from Fig. 5, for write operations of a large
file, the performance of ext2 no is the highest, ext2 SJM is
the second, and ext3 JBD is the lowest. Because ext2 no
does not have additional journaling overhead, write perfor-
mance of ext2 no is best; and ext3 JBD is the other ex-
treme, where each write operation will maintain a write-
ahead log, so ext3 JBD has the lowest performance. Al-
though ext2 SJM also incurs a log overhead, it is only the
metadata log. In combination with the garbage collection
mechanism and the XOR update method we further re-
duce the metadata log overhead such that the write speed
of ext2 SJM is slightly slower than ext2 no, but is much
faster than ext3 JBD. The rewrite operation of IOZone
performs over-write on an opened file. Compared with the
write operation, it avoids the process of creating the file and
data block allocation.
A performance comparison of the write and rewrite oper-

ations in the ext2 SJM mechanism is shown in Fig. 6. For
ext2 SJM , a write operation only needs to do the meta-
data log while a rewrite operation needs to do the entire
data (data and metadata) log, which are the two extremes
of the SJM mechanism. Seen from the graph, it is evident
that the speed of a write operation is much faster than that
of a rewrite in ext2 SJM . For ext2 SJM , although we
avoid the cost of file creation and data block allocation, all
rewrite operations are over-writes, so the SJM rewrite op-
eration incurs roughly a 2x cost, as such it leads to a sharp
decline in writing performance.
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Figure 6: Write/rewrite performance comparison of
ext2 SJM mechanism for large file size.

Fig. 7 shows the comparison of rewrite performance in

different journaling mechanisms. Comparing Fig. 5 with
Fig. 7 it can be found that the rewrite operation speed of
ext3 JBD and ext2 no is faster than the write operation.
This is because the rewrite in comparison to the write op-
eration eliminates the file creation and data allocation pro-
cess. In addition, the rewrite operation speed of SJM is still
higher than that of ext3 JBD, but the higher amplitude
has been greatly reduced. Also, as the file size increases,
the higher amplitude gradually decreases. When the file
size is 2GB, the rewrite speed of ext2 SJM is almost equal
to that of ext3 JBD. This is partly because ext2 SJM
in the face of rewrite operations, like ext3 JBD, also faces
“write two times”. Therefore, the rewrite operating speed
of ext2 SJM is far lower than the write operating speed,
while the ext3 JBD rewrite operation was higher than that
of the write operation speed, so the relative speed advantage
of a ext2 SJM rewrite is reduced. On the other hand, SJM
employs the write-back strategy to optimize the write-back
of log data, so the speed of ext2 SJM is still higher than
that of ext3 JBD. At the same time, with the increased
size of rewrite files, rewrite operations involving the meta-
data update is increased, and the rewrite log overhead is
greater. So as the file size increases, the rewrite operating
speed advantage of ext2 SJM decreases, so that when the
file size is 2GB, the rewrite operation speed of ext2 SJM is
almost equal to that of the ext3 JBD.
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Figure 7: Rewrite performance comparison of dif-
ferent mechanisms for large file sizes.

4.3 Small file test
PostMark [12] is software for testing back-end storage per-

formance. Postmark is mainly used for testing the perfor-
mance of a file system under applications that require a
significant number of random accesses to small files. This
class of applications include e-commerce systems, mail sys-
tems, etc. The basic principle of Postmark is to create a
test file pool which can set a number of files and range of
sizes; do a series of transaction operations on the file pool;
and finally output the test structure. Unlike IOZone, Post-
mark can compensate for the influence of the file system
cache by adjusting the proportion of create (or delete) op-
erations and read (or append) operations, so Postmark is
suitable for the performance testing of small files. This pa-
per uses PostMark with the settings: transactions=1, 000
and number=100, 000. This means the transaction number
is 1, 000 and the number of files is 100, 000. Test file sizes
are 4KB, 8KB, 16KB, and 32KB respectively.

As the test results in Fig. 8 show, with the increase in
size of the file, write performance of ext3 JBD, ext2 SJM



and ext2 no are increased. This is because as the file size
grows, the proportion of data updates in the write process is
greater. The updating of data is mostly sequential updates,
and metadata updates are small random writes. Therefore,
the greater the file size, the greater the proportion of writes,
and the write performance of ext3 JBD, ext2 SJM , and
ext2 no are also higher.
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Figure 8: Write performance comparison of different
mechanisms for small file sizes.

As can be seen from the graph, in a small file write test,
write performance of ext2 no is lowest, ext3 JBD is the
highest, ext2 SJM is in the middle. This is because the
metadata write operation is intensive when writing small
files and metadata updates occupy a very large proportion of
the write operations. The ext2 no first writes the data, and
then writes the metadata, so this mechanism breaks up the
metadata update and the data update. So each write back
of data results in small random write operations, write back
metadata is also random small write operations, so write
performance of small files for ext2 no provides the poorest
performance. Journal mode of ext3 JBD, though it will
bring twice the updates, will merge many write operations
into one large transaction to commit back. The checkpoint
transaction to the file system is also a large write, so write
performance of a small file for ext3 JBD provides the best
performance. For ext2 SJM , the journaling mechanism re-
duces the write back frequency of metadata, but the se-
quence control of SJM, namely performing an over-write for
data and then writing the metadata log, reduces the perfor-
mance of the file system.

4.4 Different load test
Filebench [26] is an automatic testing tool for the perfor-

mance of file systems by performing a fast simulation of a
real system load. Unlike traditional IOZone and PostMark
tools Filebench can simulate various typical loads, such as
a fileserver and varmail, while allowing the user to mod-
ify parameters of the load generated. The varmail load of
Filebench is used for simulating access of a user to the server
in a simulated mail system. As such, the access requests in
the varmail load consists mostly of small amounts of random
data. The fileserver in Filebench is used to simulate access
from a user to the server in a file server system. The access
requests of users in fileserver is mainly for large amounts of
data. Therefore, we use varmail to simulate small data ac-
cess loads and fileserver to simulate large data access loads.
In this test, parameter settings are as follows: average dir
width: 1, 000; the average directory depth: 0.5-0.8, file num-
ber: 10, 000; and the number of user threads: 16. The aver-
age file size is 2MB.
As Fig. 9 shows, under the fileserver load, write speed

of ext2 SJM is faster than ext3 JBD by roughly 45%, but

slightly lower than ext2 no. This is because most of the re-
quests are large data requests in the fileserver load. The
performance of ext3 JBD is decreased as a result of the
log overhead. Comparing ext2 SJM with ext2 no, the fre-
quency of metadata write-backs is reduced, but there is also
an increase in the overhead of the metadata log, so the per-
formance of ext2 SJM is slightly lower than ext2 no.

 

0 

5 

10 

15 

20 

25 

Fileserver Varmail 

T
h

ro
u

g
h

p
u

t 
(M

B
/s

) 

Workloads 

ext3_JBD ext2_SJM ext2_no 

Figure 9: Write performance comparison of different
mechanisms for different workloads.

Under the load of varmail, the write performance of ext2 no
is the highest, ext3 JBD is the lowest, and ext2 SJM is in
the middle. This is because, the write requests are mostly
small in the varmail load, therefore the varmail load is meta-
data intensive. Because ext3 JBD posesses the function of
merging small writes into larger writes, the write perfor-
mance of ext3 JBD is the best. ext2 no faces frequent re-
freshing of metadata, so the write performance of ext2 no
is the lowest. While ext2 SJM reduces the frequency of
metadata write backs due to the effects of cache logs, but at
the same time sequence control reduces performance of data
writes, so write performance of ext2 SJM is higher than
ext2 no and lower than ext3 JBD.

5. CONCLUSIONS
As the next generation of memory, SCM has the charac-

teristics of both memory and disk. Considering the applica-
tion of SCM in the storage system, the most basic idea is to
replace traditional memory (including memory, disk, solid
state disk and flash etc) with SCM. The SJM is put forward
to address the inefficiencies of the JBD block device journal-
ing mechanism of Linux. In general, the design and realiza-
tion process of SJM has taken all aspects of the problems
into account, but SJM is not perfect. The proposed design
utilizes the SCM more as a storage device, compared with
the log device layout of JBD, and the layout model of SJM
makes full use of the SCM characteristics of byte addressing.
As for memory, the logical sequence of transactions can be
fully realized by the list, without ensuring the physical or-
der of the log labels. In future work, SJM can be applied to
a storage system based on SCM and further improvements
can be made to SJM for small file write performance.
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