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Abstract—Cloud storage has gained increasing popularity in
the past few years. In cloud storage, data is stored in the
service provider’s data centers, and users access data via the
network. For such a new storage model, our prior wisdom
about conventional storage may not remain valid nor applicable
to the emerging cloud storage. In this paper, we present a
comprehensive study and attempt to gain insight into the unique
characteristics of cloud storage, primarily from the client’s
perspective. Through extensive experiments and quantitative
analysis, we have acquired several interesting, and in some
cases unexpected, findings. (1) Parallelizing I/Os and increasing
request sizes are keys to improving the performance, but optimal
bandwidth may only be achieved with a proper combination of
parallelism and request size. (2) Client capabilities, including
CPU, memory, and storage, play an unexpectedly important role
in determining the achievable performance. (3) A geographically
long distance affects client-perceived performance but does not
always result in lower bandwidth and longer latency. Based
on our experimental studies, we further present a case study
on appropriate chunking and parallelization in a cloud storage
client. Our studies show that specific attention should be paid to
fully exploiting the capabilities of clients and the great potential
of cloud storage services.

Index Terms—Cloud Storage; Storage Systems; Performance
Analysis; Measurement.

I. INTRODUCTION

Cloud storage is a quickly growing market. According to

a report from Information Handling Services (IHS), personal

cloud storage subscriptions increased to 500 million in 2012

and will reach 1.3 billion by 2017 [37]. The global market

is expected to grow from $18.87 billion in 2015 to $65.41

billion by 2020 [5]. To date, cloud storage is not only used

for archiving personal data, but also plays an indispensable

role in various core commercial services, from serving videos

on demand to storing unstructured scientific data.

To end users, cloud storage is particularly interesting be-

cause it provides a compelling new storage model. In this

model, data is stored in the service provider’s data centers,

and users access data through an HTTP-based REST proto-

col via the Internet. By physically and logically separating

data storage from data consumers, this architecture enables

enormous flexibility and elasticity, as well as the highly

desirable cross-platform capability. On the other hand, such a

model is drastically distinct from conventional direct-attached

storage – the “storage medium” is replaced by a large-scale

storage cluster, which may consist of thousands of massively

parallelized machines; the “I/O bus” is the worldwide Internet,

which allows connecting two geographically distant ends; the

strictly defined “I/O protocol” is replaced by an HTTP-based

protocol; the “host” is not a single computing entity any more

but could be any kind of computing devices (e.g., PCs or

Smartphones). All these properties, together, form a rather

loosely coupled system, which is fundamentally different from

its conventional counterpart. A direct impact of such change

is that much of our prior wisdom about storage, the basis for

our system optimizations, may not continue to be applicable

to the emerging cloud-based storage.

This is because of several reasons. First, the massively

parallelized storage cluster, where data is stored, potentially

allows a large amount of independent parallel I/Os to be

processed quickly and efficiently. In contrast, our conventional

storage emphasizes how to organize sequential I/O patterns

to address the limitation of rotating mediums [25], [39].

Second, compared to the stable and speedy I/O bus, such

as the Small Computer System Interface (SCSI), the lengthy

Internet connection between the client and the cloud is slow,

unstable, and sometimes unreliable. A cloud I/O could travel

an excessively long distance (e.g., thousands of miles from

coast to coast) to the service provider’s data center, which

may involve dozens of network components and finally result

in an I/O latency of hundreds of milliseconds or even more.

Finally, the clients, which consume the data and drive the I/O

activities, are highly diverse in all aspects, from CPU, memory,

storage, to communication. Certain specifications (e.g., CPU)

are directly related to the capability of a client for handling

parallel network I/Os.

Unfortunately, our current understanding on storage behav-

iors, are mostly confined in the conventional storage, which

is well-defined and heavily tuned to scale in a limited scope,

such as direct attached storage or local Storage Area Network

(SAN). Without a thorough and detailed study, it is difficult

to obtain key insights on the unique I/O behaviors of cloud

storage, a storage solution for cloud stacks, especially from

the perspective of data consumers. In this paper, we attempt

to answer a set of important questions listed as follows.
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Successfully answering these questions cannot only help us

understand the effect of several conventional key factors (e.g.,

parallelism and request sizes) on cloud I/O behaviors, but

also several new issues (e.g., client capabilities, geo-distances),

which are unique to the cloud-based storage model.

• Parallelization and request size are two key factors affect-

ing the performance of storage. What are their effects on

the performance of cloud storage? Can we make a proper

tradeoff between parallelism degree and request size?

• CPU, memory, and storage are three major components

defining the capability of a client. In the scenario of cloud

storage, which is the most critical one affecting the per-

formance of cloud storage? What are their effects on the

performance under different workloads?

• The geographical distance between the client and the cloud

determines the Round Trip Time (RTT), which is assumed

to be a critical factor affecting the cloud storage speed.

What is the effect of such geographical distance to cloud

I/O bandwidths and latencies? Should we always attempt to

find a nearby data center of a cloud storage provider?

• Based on our experimental studies on the performance of

cloud storage, what are the associated system implications?

How can we use them to optimize client applications to

efficiently exploit the advantages of cloud storage?

In this paper, we present a comprehensive experimental

study on cloud storage and strive to answer these critical

questions. Unlike some prior studies that primarily focus on

the cloud storage providers (e.g., [27], [28], [29]), we pay spe-

cific attention to the client side. In essence, our study regards

cloud storage as a type of storage service rather than network

service. As such, we are more interested in characterizing the

end-to-end performance perceived by the client, rather than the

intermediate communications. We believe this approach also

echoes the demand for thoroughly understanding cloud storage

for a full-system integration as a storage solution [22].

For our experiments, we develop and run a homemade test

tool over Amazon Simple Storage Services (S3). By using

latencies and bandwidths, which are the two key metrics used

in storage studies, we perform a series of experiments with

five different client settings to study the effect of clients’

capabilities and locations. Based on our experimental studies,

we further study several optimization issues on the client

side, such as identifying a proper chunk size for caching and

parallelization for prefetching. We hope this work can provide

a complete picture of cloud storage and inspire the research

community, especially cloud storage system and application

designers, to further leverage the unique characteristics of

cloud storage for effective optimizations.

The rest of the paper is organized as follows. Section II

introduces background. Section III describes the methodol-

ogy for our experimental studies. Section IV and V present

the results and case study. Section VI discusses the system

implications of our findings. Related work is presented in

Section VII and the last section concludes this paper.

II. BACKGROUND

A. Cloud Storage Model

In cloud storage, the basic entity of user data is an object.

An object is conceptually similar to a file in file systems.

An object is associated with certain metadata in the form

of key/value pairs. Typically, an object can be specified by a

URL consisting of a service address, bucket, and object name

(e.g., https://1.1.1.1:8080/v1/AUTH test/c1/foo). The maxi-

mum object size is typically 5GB, which is the limit of the

HTTP protocol [15]. Objects are further organized into logical

groups, called buckets or containers. A bucket/container is akin

to a directory in a file system but cannot be nested.

Almost all cloud storage service providers offer an HTTP-

based Representational State Transfer (REST) interface to

users for accessing cloud storage objects. Some also provide

language-specific APIs for programming. Two typical oper-

ations are PUT (uploading) and GET (downloading), which

are akin to write and read in conventional storage. Other

operations, such as DELETE, HEAD, and POST, are provided

to remove objects, retrieve and change metadata. For each

operation, a URL specifies the target object in the cloud

storage. Additional HTTP headers may be attached as well.

B. Cloud Storage Services

Cloud storage is designed to offer convenient storage ser-

vices with high elasticity, reliability, availability, and security

guarantees. Amazon S3 [3] is one of the most typical and

popular cloud storage services. Other cloud storage services,

such as OpenStack Swift [10], share a similar structure.

Typically, the cloud storage service is running on a large-

scale storage cluster consisting of many servers for different

purposes, from handling HTTP requests, accounting, storage,

to bucket listings, etc. These servers could be further log-

ically organized into partitions or zones based on physical

locations, machines/cabinets, network connectivity and so on.

For reliability, the zones/partitions are isolated with each other,

and data replicas should reside separately. In short, the cloud

storage services are built on a massively parallelized structure

and are highly optimized for throughput.

C. Cloud Storage Applications

Applications can access cloud storage in different ways.

Some applications use the vendor-provided APIs to directly

program data accesses to the cloud in their software. Such

APIs are provided by the service provider and are usually

language specific (e.g., Java or Python). Since a cloud storage

object can be located via a specified URL, users can also

manually generate HTTP requests by using tools like curl

to access the link.

A more popular category of cloud storage applications is

for personal file sharing and backup (e.g., Dropbox). Such

applications often provide a filesystem-like interface to allow

end users to access cloud storage. From the perspective of

data exchange, these clients often use syncing or caching to

enhance user experience. With the syncing approach, the client



Client Instance Location Zone vCPU Memory Storage Network OS

Baseline m1.large Oregon us-west-2a 2 7.5GB Magnetic(410GB) Moderate Ubuntu 14.04 (PV)
CPU-plus c3.xlarge Oregon us-west-2a 4 7.5GB Magnetic(410GB) Moderate Ubuntu 14.04 (PV)

MEM-minus m1.large Oregon us-west-2a 2 3.5GB Magnetic(410GB) Moderate Ubuntu 14.04 (PV)
STOR-ssd m1.large Oregon us-west-2a 2 7.5GB SSD(410GB) Moderate Ubuntu 14.04 (PV)

GEO-Sydney m1.large Sydney ap-southeast-2a 2 7.5GB Magnetic(410GB) Moderate Ubuntu 14.04 (PV)

TABLE I
CONFIGURATIONS OF AMAZON EC2-BASED CLIENTS. THE SSD IS THE PROVISIONED SSD WITH 3,000 IOPS.

X
X

X
X

X
X

XX
Size

Speed Magnetic SSD

Read Write Read Write

1KB 2.13 MB/s 0.77 MB/s 2.7 MB/s 1.24 MB/s
4KB 6.70 MB/s 3.13 MB/s 10.57 MB/s 5.67 MB/s

16KB 6.80 MB/s 4.60 MB/s 34.87 MB/s 10.65 MB/s
64KB 7.36 MB/s 10.67 MB/s 62.00 MB/s 28.48 MB/s
256KB 17.36 MB/s 17.46 MB/s 58.24 MB/s 86.63 MB/s
1MB 38.33 MB/s 22.38 MB/s 58.24 MB/s 82.71 MB/s
4MB 61.59 MB/s 23.20 MB/s 58.06 MB/s 82.72 MB/s
16MB 58.12 MB/s 22.66 MB/s 58.12 MB/s 82.92 MB/s

TABLE II
MAGNETIC VS. SSD

Object Size Object Number Workload Size

1KB 81920 80MB
4KB 40960 160MB
16KB 40960 640MB
64KB 40960 2560MB

256KB 40960 10240MB
1MB 16384 16384MB
4MB 4096 16384MB

16MB 2048 32768MB

TABLE III
OBJECT-BASED WORKLOADS

maintains a complete copy of the data stored on the cloud-

side repository. A syncer daemon monitors the changes and

periodically synchronizes the data between the client and the

cloud. With the caching approach, the client only maintains

the most frequently used data in local, and any cache miss

leads to on-demand data fetching from the cloud. In practice,

the syncing mode is adopted by almost all personal cloud

storage applications, such as Dropbox [6], Google Drive [8],

OneDrive [9], etc. The caching mode is adopted by the appli-

cations and storage systems that make use of the cloud as a part

of the I/O stack, such as RFS [26], S3FS [13], S3backer [12],

BlueSky [45], SCFS [18], etc. In general, all the above-

mentioned applications essentially convert the POSIX-like file

operations into an HTTP-based protocol to communicate with

the cloud. For the sake of generality, our study carefully avoids

using any specific application techniques but uses the raw

HTTP requests.

III. MEASUREMENT METHODOLOGY

As mentioned above, the main purpose of our experimental

studies is to characterize the performance behaviors of cloud

storage from the client’s perspective. In our experiments, we

treat the cloud as a “blackbox” storage. In order to avoid inter-

ference from client-side optimizations, we carefully generate

raw cloud I/O traffic via the HTTP-based REST protocol to

directly access the cloud storage and observe the performance

on the client side.

Cloud storage services: Our experiments are conducted on

Amazon Simple Storage Services (S3). As a representative

cloud storage service, Amazon S3 is widely adopted as the

basic storage layer in consumer and commercial services (e.g.,

Netflix and EC2). Some third-party cloud storage services,

such as Dropbox, are directly built on S3 [7]. In our experi-

ments, we use the S3 storage system hosted in Amazon’s data

center in Oregon (s3-us-west-2.amazonaws.com).

Cloud storage clients: In order to run the experiments

in a stable and well-contained system, we choose Amazon

EC2 as our client platform from which the cloud storage

I/O traffic is generated to exercise the target S3 repository.

An important reason of choosing Amazon EC2 rather than

our own machines is to have a quantitatively standardized

client that provides a publicly available baseline for repeatable

and meaningful measurement. For analyzing the impact of

client variance, we customized five configurations of Amazon

EC2 instances which feature different capabilities in terms

of CPU, memory, storage, and geographical location. Table I

shows these configurations. The Baseline client is located in

Oregon and equipped with 2 processors, 7.5 GB memory, and

410 GB disk storage (denoted as Magnetic). The speeds of the

Magnetic and the SSD are tested and shown in Table II. The

other four configurations vary in different aspects, specifically

CPU, memory, storage, and geographical location (in Sydney).

These instances can properly satisfy our needs of observing

cloud storage performance with differing clients.

Test workloads: For our experiments, we develop a home-

made tool by using the S3 API [11] to generate raw cloud I/O

requests to S3. We purposely avoid using POSIX APIs (e.g.,

S3FS) because our goal is to gain the direct view of the cloud

storage performance from the client side. Certain techniques

(e.g., local cache, data deduplication, data compression) used

in some client tools will prevent us from observing the cloud

I/O behaviors completely or accurately. Our tool allows us

to create combinations of various parallelism degrees (1-64),

object sizes (1KB to 16MB), and types (PUT or GET). Before

each run, we generate objects of the same size with unique

keys/names in the client storage and upload to the cloud as

the uploading workloads; we then download the objects to the

client. Table III lists more details about the workloads.

Accuracy: Considering the possible variance of network

services and multi-thread scheduling, we take the following



measures to ensure the accuracy and repeatability of the

experiments: (1) As stated above, we customize the instances

of Amazon EC2 which can provide stable services as standard

clients rather than picking up a random machine. (2) To

avoid memory interferences across experiments, the memory

is flushed before each run of the experiments. (3) We make

the size of the workloads large enough (see Table III) so that

each run of an individual experiment lasts for a sufficiently

long duration (at least 60 seconds) while still being able to

complete the experiments within a reasonable time frame. (4)

Each experiment is repeated for five times, and we report the

average value while discarding obvious outliers.

IV. PERFORMANCE STUDIES

To comprehensively reveal the effects of different factors,

our measurement work is composed of two parts. We first

conduct a set of general experiments to evaluate the properties

of cloud storage, including parallelism degree and request size.

We then focus on studying the effects of client capabilities,

including CPU, memory, storage, and geographical locations

of the clients.

A. Basic Observations

Parallelism and request size are two critical factors that

significantly affect the storage performance. Considering the

parallelism potential of cloud storage, we set the parallelism

degree up to 64. With regard to request size, prior work has

found that most user requests are not excessively large [19],

typically smaller than 10MB [29]. Also, for transfer over the

Internet, most cloud storage clients split large requests into

smaller ones. Wuala and Dropbox, for example, adopt 4MB

chunks, and Google Drive uses 8MB chunks, while OneDrive

uses 4MB for upload and 1MB for download [19]. Therefore,

we set the request size up to 16MB to study the size effect.

1) The effect of parallelism: In conventional disk drives,

I/O parallelism has limited effect due to its mechanic nature.

For cloud storage, which stores data in a cluster of massively

parallelized storage servers, I/O parallelism has a significant

impact to the client-perceivable performance.

Q1: How does parallelism affect the bandwidth?

Generally, proper parallelization can dramatically improve the

bandwidth, while over-parallelization may lead to bandwidth

degradation to certain degree. As shown in Figure 1, for

example, the bandwidth of 1KB upload requests can be

improved up to 27-fold (from 0.025MB/s to 0.666MB/s), and

the bandwidth of 1KB download requests can be improved

up to 21-fold (from 0.03MB/s to 0.634MB/s). There are two

reasons for this. One reason is due to the underlying TCP/IP

protocol for communication. With TCP/IP, the client and the

cloud have to send ACK messages to confirm the success

of the transmission of data packets. With a high parallelism

degree, multiple flows can continuously transmit data since

the time taken by each parallel request to wait for the ACK

messages overlaps. Another reason is that smaller requests

often require fewer client resources, so the client can support

a higher parallelism degree to saturate the pipeline until the

 0

 10

 20

 30

 40

 50

 60

 10  20  30  40  50  60

B
a
n
d
w

id
th

(M
B

/s
)

Parallelism Degree

Baseline Upload Bandwidth

1KB
4KB

16KB
64KB

256KB
1MB
4MB

16MB

(a) Upload Bandwidth

 0

 5

 10

 15

 20

 25

 30

 10  20  30  40  50  60

B
a
n
d
w

id
th

(M
B

/s
)

Parallelism Degree

Baseline Download Bandwidth

1KB
4KB

16KB
64KB

256KB
1MB
4MB

16MB

(b) Download Bandwidth

Fig. 1. Bandwidth on Baseline

effect of parallelization is limited by one of the major client

resources.

Over-parallelization brings diminishing benefits and even

negative effects. For example, 16MB upload sees a slight per-

formance degradation caused by over-parallelization. This is

related to the overhead of maintaining the thread pool when the

CPU is overloaded. To confirm this, we use vmstat in Linux

to investigate the CPU utilization of the 16MB upload request

with different parallelism degrees. As shown in Figure 4, when

the parallelism degree is 8, the CPU utilization quickly grows

close to 100%, indicating that the CPU is overloaded. Under

this condition, further increasing the parallelism degree will

only increase the overhead of maintaining the thread pool,

which will consequently reduce the overall performance. In a

later section, we will further study the effect of CPU.

Q2: How does parallelism affect the latency?

In general, proper parallelization does not affect the latency

(i.e., end-to-end request completion time) significantly, while

over-parallelization leads to a substantial increase of latency.

As shown in Figure 2 and Figure 3, this speculation is con-

firmed by the tendencies of the growing average latencies for

both upload and download requests as the parallelism degree

increases. For example, for 4KB upload requests, when the

parallelism degree increases from 1 to 16, the average latency

basically remains the same (about 36ms). When the parallelism

degree further increases from 16 to 64, the average latency

increases by 43% (from 36.1ms to 51.5ms). For large requests,

when the parallelism degree exceeds a threshold, the average
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latency increases linearly. For example, for 16MB upload

requests, when the parallelism degree increases from 4 to 64

(16-fold), the average latency increases from 1.1s to 18.3s

(17.3-fold). This implies that for latency-sensitive applications,

over-parallelizing large requests should be carefully avoided.
2) The effect of request size: In conventional storage,

request size is crucial to organizing large and sequential I/Os

and is important in amortizing the disk head seek overhead.

A similar effect has also been observed in cloud storage.
Q1: How does request size affect the bandwidth?

As expected, increasing request size (i.e., the size of GET/PUT)

can significantly improve bandwidth, but the achieved benefit

diminishes as request size exceeds a threshold. As shown

in Figure 1(a) and Figure 1(b), the peak bandwidths of

large requests and small requests have a significant gap. For

example, the peak bandwidth of 4MB upload requests is 23.5

times that of 4KB upload requests (58.9MB/s vs. 2.5MB/s);

the peak bandwidth of 4MB download requests is 10.7 times

that of 4KB download requests (28.9MB/s vs. 2.7MB/s). There

are two reasons for this phenomenon. One reason is that larger

I/O requests on client storage generally have higher I/O speeds

than small ones. As shown in Table II, the 4MB read speed

is 9.2 times that of 4KB (61.6MB/s vs. 6.7MB/s), while the

4MB write speed is 7.4 times that of 4KB (23.2MB/s vs.

3.1MB/s). The other reason is that larger requests have higher

efficiency of data transmission via network due to the packet-

level parallelism [36].
Similar to parallelization, increasing the request size cannot

bring an unlimited bandwidth increase, due to the constraint

of other factors. For example, the speed of client storage is

limited. Uploaded objects need to be first read from the local

device, and downloaded objects need to be written to the local

device. As shown in Table II, when the request size grows from

4MB to 16MB, the speed of Magnetic improves slightly, which

limits the I/O speed of the client side. Also, the maximum size

of the TCP window is limited, though tunable [4], [38]. When

the request size exceeds a certain threshold, the benefit brought

by increasing the request size diminishes. Our observations

have confirmed this speculation. In the scenario of a single

thread, as shown in Figure 5, when the request size increases

from 16MB to 64MB, the upload bandwidth increases only

slightly (20MB/s vs. 21.9MB/s), and the download bandwidth

remains the same (24.3MB/s). In addition, other factors, such

as the link bandwidth on the route, processing speed on the

cloud side, etc., can also limit the achievable bandwidth. All

these observations demonstrate that the benefit obtained by

increasing request size is significant but is not unlimited.

Q2: How does request size affect the latency?

In general, both larger requests and highly parallelized small

requests have longer latencies. For example, as shown in

Figure 2 and Figure 3, when the parallelism degree is 1, the

average latency of 4MB download requests is 192ms – 5.8

times that of 1MB download requests (33ms). However, when

taking parallelism degree into consideration, things become

different. For example, the average latency of 4MB download

requests at parallelism degree 1 is 192ms, which is 13.8 times

lower than the average latency of 1MB download requests at

parallelism degree 64 (2.9s). Therefore, without considering

the latency increase caused by over parallelization, it is not

safe to say larger requests imply longer latencies.

As expected, for small requests, even at the same parallelism

degree, the latencies do not necessarily increase as the request

size increases. Figure 2(a) shows that the average latencies of

1KB and 4KB upload requests are nearly the same. Similarly,

in Figure 3(a), we find that the average latencies of 1KB, 4KB,

and 16KB download requests are nearly equal. The request

latency is mainly composed of three parts: data transmission

time via network, client I/O time, and other processing time.

For small requests, the data transmission time only accounts

for a small portion of the overall latency, while the other two

dominant parts remain mostly unchanged, which makes the

latencies of small requests similar. Also, since the maximum

TCP window is 64KB by default, considering the parallelism

of network [36], the transmission time of the data that are

smaller than 64KB is supposed to be similar.

3) Parallelism vs. Request size: In prior sections, we find

that either increasing the parallelism degree or increasing the

request size can effectively improve the bandwidth, but both

of them have limitations. Here naturally comes an interesting

question: does there exist a combination of parallelism degree

and request size to achieve the optimal bandwidth?

Answering this question has a practical value. Consider the

following case: if we have a 4MB object to upload, we can

choose to upload it by a single thread or split it into four

1MB chunks and upload the them in parallel. Which is faster?

Figure 6 shows the performance under different combinations

of parallelism degree and request size. Obviously, 256KB×16

has the highest bandwidth (44.2MB/s), which is about 3

times of the lowest (14.5MB/s). This shows that a proper



 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60

C
P

U
 U

ti
liz

a
ti
o

n
(%

)

Parallelism Degree

Baseline CPU Utilization-Upload 16MB

Baseline-16MB-Upload

Fig. 4. Baseline CPU Utilization

  0

  5

  10

  15

  20

  25

1KB 4KB 16KB 64KB256KB 1MB 4MB 16MB 64MB

B
an

d
w

id
th

(M
B

/s
)

Request Size

Baseline Upload Bandwidth−Single Thread

(a) Upload Bandwidth

  0

  5

  10

  15

  20

  25

1KB 4KB 16KB 64KB256KB 1MB 4MB 16MB 64MB

B
an

d
w

id
th

(M
B

/s
)

Request Size

Baseline Download Bandwidth−Single Thread

(b) Download Bandwidth

Fig. 5. Baseline Bandwidth-Single Thread

  0

  5

  10

  15

  20

  25

  30

  35

  40

  45

4MB x 1 1MB x 4 256KB x 16 64KB x 64

B
a
n
d
w

id
th

(M
B

/s
)

Combination

Baseline Upload Bandwidth

Fig. 6. Request Combinations on Baseline

  0

  10

  20

  30

  40

  50

  60

  70

1KB 4KB 16KB 64KB 256KB 1MB 4MB 16MB

B
an

d
w

id
th

(M
B

/s
)

Request Size

Upload Bandwidth Baseline vs. CPU−plus

Baseline
CPU−plus

(a) Upload Bandwidth

  0

  5

  10

  15

  20

  25

  30

1KB 4KB 16KB 64KB 256KB 1MB 4MB 16MB

B
an

d
w

id
th

(M
B

/s
)

Request Size

Download Bandwidth Baseline vs. CPU−plus

Baseline
CPU−plus

(b) Download Bandwidth

Fig. 7. Peak Bandwidth (Baseline vs. CPU-plus)

combination exists and can achieve optimal performance. This

observation confirms that appropriately combing request size

and parallelism degree can sufficiently improve the bandwidth

beyond optimizing only one dimension.

We also find that, in some cases, either increasing paral-

lelism degree or increasing request size by the same factor can

achieve the same bandwidth improvement. For example, for

upload requests, 1KB×16, 4KB×4, and 16KB×1 have similar

bandwidth (0.4MB/s). Here comes another practical question:

if we have a set of small files (e.g. 1KB), should we adopt a

high parallelism degree (e.g. 16) or bundle the small files to

achieve large request size (e.g. 16KB)? From the perspective of

improving bandwidth, either high parallelism degree or large

request size is feasible. However, from the perspective of the

utilization of client resources, we find that a large request size

requires less CPU resources. Through vmstat in Linux, we

find that the CPU utilization of the above three cases are

65%, 15% and 5%, respectively. This indicates that for the

combinations that can achieve comparable bandwidth, a larger

request size consumes less CPU resources. That is because for

a larger request size, fewer threads have to be maintained to

achieve the similar bandwidth, which consequently reduces the

CPU utilization.

B. Effects of Client Capabilities

Unlike conventional storage, cloud storage clients are very

diverse. In this section, we study different factors affecting the

client’s capabilities of handling cloud storage I/Os, namely

CPU, memory, and storage. We compare the performance

of three different clients, including CPU-plus, STOR-ssd and

MEM-minus, with the performance of the Baseline to reveal

the effects of each factor.

1) The effect of the client CPU: In cloud storage I/Os,

the client CPU is responsible for both sending/receiving data

packets and client I/O. In this section, we try to investigate

the effect of client CPU by comparing the performance of

Baseline (2 CPUs) and CPU-plus (4 CPUs).

Q1: What is the effect of client CPU on bandwidth?

The client CPU has a strong impact on cloud I/O band-

width, especially for small requests. Figure 7 shows the peak

bandwidth, which is the maximum achievable bandwidth with

parallelized requests. We can see that the peak bandwidth of

small requests (smaller than 256KB) increases significantly.

Interestingly, as shown in Figure 7(b), the peak download

bandwidth of 1KB, 4KB and 16KB requests doubles, as the

computation capability doubles (2 CPUs vs. 4 CPUs). This

vividly demonstrates that small requests are CPU intensive,

and as so, small requests receive more benefits from a better

CPU.
Large requests, compared to small ones, are relatively less

sensitive to CPU resources, as the system bottleneck shifts

to some other components. As shown in Figure 7, compared

with Baseline, the peak upload and download bandwidth

of large requests (256KB to 16MB) increases only slightly.

For example, the peak upload bandwidth of 4MB requests

increases by 1.4% (59.2MB/s vs. 60MB/s), while the peak

download bandwidth of 4MB requests is basically the same

(28.9MB/s vs. 28.8MB/s). The system bottleneck may result

from the limitation of other factors, such as memory or storage,

rather than CPU.

Q2: What is the effect of the client CPU on latency?

In our tests, we find that the client CPU does not have

significant effects on average latency. For small requests, the

data transmission via network dominates the overall latency,
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while for large requests, the majority of the overall latency is

the client I/O time (the I/O waiting time may be significant

when client storage becomes the bottleneck) and the cloud

response time, In these two cases, a more powerful CPU does

not help reduce the latency.

2) The effect of client storage: Client storage plays an

important role in data uploading and downloading: For up-

loading, the data is first read from the client storage; for

downloading, the data is written to the client storage. To

evaluate the effect of client storage, we set up a comparison

client STOR-ssd. The only difference between Baseline and

STOR-ssd is storage (Magnetic vs. SSD). Table II shows more

details about the two client storage.

Q1: What is the effect of the client storage on bandwidth?

We find that client storage is a critical factor affecting the

achievable peak bandwidth. As shown in Figure 8, on STOR-

ssd, the peak download bandwidth increases significantly. For

example, the peak download bandwidth of 4MB requests

increases by 165% (76.6MB/s vs. 28.9MB/s). On the other

hand, we also notice that the upload bandwidth increases

slightly. Different from the significant improvement of down-

load bandwidth, for example, the peak upload bandwidth of

4MB requests increases only by 2% (60.3MB/s vs. 59.2MB/s).

The reason why STOR-ssd improves the upload bandwidth

only slightly is that the Magnetic in our experiments can

achieve a similar peak read speed as SSD with a sufficiently

large request size and parallelism degree. In contrast, the

download bandwidth is limited by the relatively slow speed

of Magnetic on the client. We have also tested with a ramdisk

on Baseline. The bandwidths can be further improved but to

a limited extent (77.2MB/s for uploading and 80.3MB/s for

downloading).

Q2: What is the effect of the client storage on latency?

Similar to bandwidth, we did not observe significant effects

of client storage to small requests and large upload requests.

For small requests, client I/O is the minority of the overall

latency. In this case, client storage is not a critical factor.

For large upload requests, since Magnetic and SSD have

similar read speed, the latency is comparable; however, for

large download requests, STOR-ssd can substantially reduce

the latency because STOR-ssd have significantly advantageous

write speed. For example, as shown in Figure 9, when the

parallelism degree is 1, STOR-ssd can reduce the latency by

24% (0.49s vs. 0.64s); when parallelism degree is 32, the

latency can be reduced by 65% (7.7s vs. 21.8s).

3) The effect of client memory: Memory in the clients

has two functions. First, memory is responsible for offering

running space for parallel requests. Second, memory acts as

a buffer for uploading and downloading. In this section, we

shrink the memory of Baseline to investigate the performance

differences. The only configuration difference between MEM-

minus and Baseline is that Baseline has 7.5GB memory while

MEM-minus has only 3.5GB.

1MB 4MB 16MB

Baseline 59.2MB/s 59.1MB/s 58.9MB/s
MEM-minus 58.9MB/s 58.7MB/s 58.7MB/s

TABLE IV
PEAK UPLOAD BANDWIDTH (BASELINE VS. MEM-MINUS)

1MB 4MB 16MB

Baseline 26.7MB/s 28.9MB/s 28.9MB/s
MEM-minus 23.7MB/s 23.8MB/s 20.8MB/s

TABLE V
PEAK DOWNLOAD BANDWIDTH (BASELINE VS. MEM-MINUS)

Since small requests are not memory intensive, the effect

of memory is trivial. We only present the bandwidths of large

requests. The peak upload bandwidth is basically the same

(see Table IV) while the download bandwidth dropped heavily

(see Table V). For example, on MEM-minus, the bandwidth

of 16MB download is 20.81MB/s, which is 28.0% lower than

that on Baseline (28.90MB/s). That is because the write speed

of the Magnetic is much lower than read speed and thus more

sensitive to the memory space. Therefore, large download

requests, especially those involving intensive writes on the

client, suffer more from limited memory.

C. Effects of Geographical Distance

Unlike conventional storage, for cloud storage, the geo-

graphical distance between the client and the cloud determines

the Round-Trip Time (RTT), which accounts for a significant

part of the observed I/O latency. The RTT between the

Baseline client and the cloud is 0.28ms, as both are in the

same Oregon data center. In contrast, the RTT between the

GEO-Sydney client and the cloud in Oregon is about 628

times longer (176ms). This section discusses the effects of

geographical distance.
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Q1: What is the effect of geo-distance to bandwidth?

The effect of geographical distance to the achievable peak

bandwidth is weaker than expected. As shown in Figure 10,

the peak upload bandwidth of GEO-Sydney is close to that of

Baseline. For example, the peak upload bandwidth of 4MB

requests of GEO-Sydney is only 10% lower than that of

Baseline (53.3MB/s vs. 59.2MB/s) while the peak download

bandwidths of 4MB download requests are basically the same

(29.3MB/s vs. 28.9MB/s). This means that RTT is not a

critical factor affecting the peak bandwidth, which is mostly

due to the Bandwidth-Delay Product (BDP) of the network

and is also consistent with the conclusion obtained by Burgen

et al. [16] that the perceived bandwidth from the client is

largely determined by the client’s network capabilities and the

network performance between the client and the cloud.

At the same time, it is also noticeable that the achievable

peak bandwidth of small requests (smaller than 1MB) is much

lower with long geo-distance. That is because a long RTT

needs a high parallelism degree to saturate the pipeline of

parallel requests. However, as analyzed in Section IV-B1,

small requests with high parallelism are more CPU intensive;

therefore, the CPU capability will be a critical bottleneck to

sufficiently saturating the pipeline.

Q2: What is the effect of geo-distance to latency?

As expected, we also find that the geo-distance would signif-

icantly increase the latency, and its impact to latency makes

the client less sensitive to the negative effects caused by over-

parallelization to latency. As shown in Figure 11, when the

parallelism degree is 1, the average latency of 16MB upload

requests on GEO-Sydney is 2.1s, which is about 2.6 times of

the counterpart on Baseline (0.8s); as the parallelism degree

increases, the average latencies gradually get closer; when

the parallelism degree reaches 16, the average latencies are

comparable (4.3s vs. 4.2s). If we compare the two, GEO-

Sydney shows a flatter curve than Baseline, because a long

RTT needs a high parallelism degree to saturate the pipeline,

so the negative effect of over-parallelization appears later.

V. CASE STUDY: CACHING AND PREFETCHING

In cloud storage, client-side caching and prefetching are

two basic schemes for enhancing the user experience. In this

section, we present a case study to show that cloud storage

I/O performance could be affected by optimizing caching and

prefetching. In specific, we will discuss two key techniques,

chunking and parallelization.

To evaluate the effects of chunking and parallelized

prefetching for cloud-based file systems, we build an emulator

to implement the basic read/write operations of a typical cloud-

based file system with the support of disk caching on the client.

To drive this experiment, we use an object-based trace by

converting a segment of an NFS trace, which is a mix of email

and research workload collected at Harvard University [30].

The size of the workload in our experiments is 4.8 GB, and

the average file size is 12.9 MB. For our experiments, we use

Amazon S3 (in Oregon) as the cloud storage provider, and a

workstation on our campus (in Louisiana) as the client. The

client is equipped with a 2-core 1.2 GHZ CPU, 8GB memory,

a 450GB disk drive, and installed with Ubuntu 12.04.5 LTS

and Ext4 file system.

A. Proper Chunk Size for Caching

Chunking is an important technique used in cloud storage.

In S3Backer, for example, the space of the cloud-based block

driver is formatted with a fixed block size that can be defined

by the user [12]. The choice on chunk sizes can affect caching

performance: the smaller the chunk is, the less a cache miss

cost would be, but the more cloud I/Os could be generated.

Although it is difficult to accurately determine the optimal

chunk size, our findings about the effect of chunk size to the

performance of cloud storage can guide us to roughly choose a

proper, if not optimal, chunk size. We can identify a relatively

small chunk size for reaching an approximately maximum

bandwidth by making a reasonable tradeoff between the cache

hit ratio and cache miss penalty. Figure 12 shows that, when

the chunk size exceeds 4MB, the download bandwidth reaches

its peak. Based on this, we speculate that the proper chunk

size is possibly around 4MB. This is for two reasons. First,

further increasing the chunk size over 4MB (e.g., 8MB or

16MB) cannot deliver a higher bandwidth. For example, on

a cache miss of 8MB data, downloading one 8MB chunk

takes an almost equal amount of time as downloading two

4MB chunks, while using 8MB chunks increases the risk of

downloading irrelevant data. Second, if the chosen chunk size

is excessively smaller than 4MB (e.g., 64KB or 1MB), the

cache may suffer from a high cache miss ratio and cause too

many I/Os.
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To verify this speculation, we adopt the standard LRU

algorithm with asynchronous writeback (for the purpose of

generality). Every 30 seconds, we flush dirty data back to the

cloud. The cache size is set as 200MB disk space. Besides

a 4MB chunk size, for a comparison, we choose two smaller

chunk sizes, 64KB and 1MB, and two larger chunk sizes, 8MB

and 16MB, to study the effect of the chunk sizes.

The average access latencies with different chunk sizes are

shown as Figure 13. It clearly shows that the lowest average

read/write latencies are achieved at 4MB, which confirms our

speculation. When the chunk size increases from 64KB to

4MB, the average read latency decreases by 47.3% (from

95.2ms to 50.2ms), and the average write latency decreases

by 40.4% (from 109.9ms to 65.5ms). This benefit is due to

the increase of cache hit ratio: The read hit ratio increases

from 77.8% to 98.4%, and the write hit ratio increases from

88.9% to 99.4% (see Figure 14). This is mostly because using

a relatively large chunk size allows to pre-load the useful data

and consequently improves the cache hit ratio and the overall

performance. However, when the chunk size exceeds a certain

threshold, further increasing chunk size may cause undesirable

negative effects. Figure 14 shows that the cache hit ratios

increase slightly with a large chunk size. The increased cache

miss penalty with a large chunk size is responsible for the

slowdown. Specifically, it takes 4s to load a 4MB chunk, while

it needs 14.2s for 16MB. Consequently, the average access

latencies increase.

The analysis above has shown how to determine the proper

chunk size for a certain client. Specifically, 4MB is the proper

chunk size on our client for the testing workload. For the

workloads with weak spatial locality, the proper chunk size

should be correspondingly smaller. In general, an excessively

large chunk size is not desirable, as it increases the risk of

unnecessary overhead with no extra benefit.

B. Proper Parallelization for Prefetching

Prefetching is another widely used technique in cloud stor-

age. Since objects can be downloaded (prefetched) in parallel,

a proper parallelism degree is important to the performance,

while over-parallelization may raise the risk of mis-prefetching

and also waste resources.

In order to determine a proper parallelism degree for a

certain chunk size, it is critical to ensure that on-demand

fetching would not be significantly affected by prefetching.

To find the proper parallelism degree that will not significantly

increase the average fetching latencies, an exhaustive search

on the client is feasible but inefficient. Based on our findings,

in fact, we can greatly simplify the process of identifying a

proper parallelism degree. To show how to achieve this, we

take the chunk sizes 64KB, 1MB and 4MB as examples. We

may first choose a 4MB chunk with parallelism degree 1 and

then gradually increase the parallelism degree step by step (i.e.,

2, 4, 8) for testing. For smaller chunk sizes, we only need to

test from a larger parallelism degree, since small chunks are

more parallelism friendly and it is unlikely to achieve higher

performance at a low parallelism degree as large chunks.

Figure 15 gives such an example: 4 parallel jobs for 4MB,

8 parallel jobs for 1MB, and 16 parallel jobs for 64KB are

the best choices.

To illustrate the actual effect of parallelization to prefetch-

ing, we implement an adaptive prefetching algorithm in our

emulator. We adopt the history-based prefetching window to

determine the prefetching granularity, which is similar to the

file prefetching scheme used in Linux kernel. A prefetching

window is maintained to estimate the best prefetching degree.

The initial window size is 0 and is enlarged based on the

detected sequentiality of observed accesses. Assuming chunk

n of an object is requested, if chunk n-i, chunk n-i+1, · · · ,

chunk n-1 (1≤i≤n) are detected to be sequentially accessed,

the size of the prefetching window grows to 2
i−1. We set the

maximum prefetching window size (i.e., parallelism degree of

prefetching) for all chunk sizes (i.e., 64KB, 1MB, 4MB) to 8.

The performance comparison of no-prefetching and

prefetching are shown in Figure 16 and Figure 17. We can see

that, with prefetching, the optimal chunk size is 1MB. Obvi-

ously, small chunk size benefits more from the prefetching (as

we see in the prior sections, small objects benefit more from

parallelism), and the relative benefits decrease as the chunk

size increases (see Table VI).

Chunk Size Read Lat. Red. Write Lat. Red.

64KB 70.4% 31.1%
1MB 56.9% 24.6%
4MB 22.6% -1.2%

TABLE VI
AVERAGE LATENCIES REDUCTION CAUSED BY PREFETCHING
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Surprisingly, with prefetching, the average write latency

of 4MB increases by 1.2%. This means that the prefetch-

ing granularity in our experiment is so aggressive that the

negative effects of prefetching overweight the benefits. The

negative effects may result from two factors. First, a lot of

unnecessary data is prefetched so that the cache efficiency

is reduced, leading to a lower cache hit ratio. Second, the

competition of parallel prefetching threads may increase the

average downloading latency (i.e., the average penalty of cache

miss). Specifically for the case of the average write latency of

4MB, the performance degradation is mainly caused by the

second factor since the cache hit ratio remains high (close to

98.7%). As a rule of thumb, we should set a small prefetching

degree for large chunk sizes (e.g., 4MB) to avoid the intensive

competitions of the parallelized downloading threads. For

example, we can limit the growing speed of the prefetching

window, or cap the maximum prefetching window size. On

the contrary, the prefetching granularity of small chunk sizes

(e.g., 64KB) can be more aggressive. This also confirms our

speculation about the proper parallelism degrees for different

chunk sizes (i.e., 16 for 64KB chunks, 4 for 4MB chunks).

In summary, our case studies on prefetching and caching

further show that the real-world implementation of client-side

management should carefully consider the factors that we have

studied in the prior sections, particularly parallelism degree

and request size. Other issues, such as client capabilities and

geo-distances would also inevitably further complicate the

design consideration.

VI. SYSTEM IMPLICATIONS

With these experimental observations, we are now in a

position to present several important system implications. This

section also provides an executive summary of our answers to

the questions we asked earlier.

Appropriately combining request size and parallelism

degree can maximize the achievable performance. This is

sometimes a tradeoff between the two factors. By combining

the chunking/bundling methods with parallelizing I/Os, the

client can enhance bandwidth in two different ways: we can

increase the parallelism degree for small requests or increase

the request size at low parallelism degree. Both can achieve

comparable bandwidth, but interestingly, we also find that

compared to increasing parallelism degree, increasing the

request size can achieve another side benefit: reduced CPU uti-

lization. This means that for some weak-CPU platforms, such

as mobile systems, it is more favorable to create large requests

with a low parallelism degree. On the other hand, we should

also consider several related side effects of bundling/batching

small requests. For instance, if part of a bundled/batched

request failed during the transmission, the whole request would

have to be re-transmitted. Also, it is difficult to pack a bunch

of small requests to different buckets or data centers together.

In contrast, parallelizing small requests is easier and more

flexible. Therefore, there is no clear winner between the two

possible optimization methods (i.e., creating large requests and

parallelizing small requests). An optimal way may vary from

client to client and from service to service, but we can still

use some general principles to guide us in making a decision.

For example, as we find that small requests demand a high

parallelism degree, if we know the proper parallelism degree

on a certain client for 1MB is 8, and 4 for 4MB (we can obtain

these combinations via simple measurement or experience), it

is reasonable to infer that the proper parallelism degree for

2MB should be between 4 and 8. To avoid the worst situation,

a rule of thumb is to make a conservative choice, if uncertain.

The client’s capability has a strong impact to the

perceived cloud storage I/O performance. CPU, memory,

and storage are the three most critical components determining

a client’s capability. Among the three, CPU plays the most

important role in parallelizing small requests, while memory

and storage are critical to large requests, especially large

download requests. A direct implication is that for optimizing

the cloud storage performance, we must also distinguish the

capabilities of clients, and one policy will not be effective in

all clients. Due to the cross-platform advantage, many personal

cloud storage applications can run on multiple platforms (from

PCs to Smartphones). Such distinction among clients will

inevitably affect our optimization policies. For example, for a

mobile client with a weak CPU, we should avoid segmenting

objects into excessively small chunks, since it is unable to

handle a large number of parallel I/Os, although this is not a

constraint for a PC client. Given the diversity of cloud storage

clients, we believe that a single optimization policy is unlikely

to succeed across all clients.

Geographical distance between the client and the cloud

plays an important role in cloud storage I/Os. For cloud

storage, the geographical distance determines the RTT. We

find that a long RTT has distinct effects to bandwidth and

latency. In particular, with a long RTT, we still can achieve

a similar peak bandwidth as the case of a short RTT, but



the cloud I/O latency is significantly higher. The implications

are two-fold. First, to tackle the long latency issues, it is a

must-have to use effective caching and prefetching for latency-

sensitive applications. Second, for the clients far from the

cloud, we should proactively adopt large request sizes and high

parallelism degrees to fully saturate the pipeline and exploit

available bandwidth as much as we can. In other words, by

sufficiently exploiting the I/O characteristics of cloud storage,

if bandwidth is the main requirement (e.g., video streaming),

choosing a relatively distant data center of the cloud storage is

a viable option and a high bandwidth is still achievable with

appropriate client-side optimizations.

In essence, cloud storage represents a drastically differ-

ent storage model for its diverse clients, network-based I/O

connection, and massively parallelized storage structure. Our

observations and analysis strongly indicate that fully exploiting

the potential of cloud storage demands careful consideration

of various factors.

VII. RELATED WORK

Most prior studies focus on addressing various issues of

cloud storage, including performance, reliability, and security

(e.g., [14], [20], [21], [22], [24], [31], [32], [33], [35], [41],

[47], [48]). Some other work studies the design of cloud-

based file systems to better integrate cloud storage into current

storage systems (e.g., [18], [26], [45]). Our work is orthogonal

to these studies and focuses on understanding the behaviors

of cloud storage from the client’s perspective.

Our work is related to several prior measurement works

on cloud storage. Li et al. compared the performance of four

major cloud providers: Amazon AWS, Google AppEngine

and Rackspace CloudServers [40]. Ou et al. compared a file

system client of cloud storage based on CloudFuse with two

other IP-based storage, NFS and iSCSI [44]. Bermudez et

al. presented a characterization of Amazon’s Web Services

(AWS) [17]. Copper et al. benchmarked cloud storage systems

with YCSB [23]. Meng et al. presented a benchmarking

work on cloud-based data management systems to evaluate

the effects of different implementation on cloud storage [43].

This work treats cloud storage as a blackbox and focuses

on characterizing its I/O behaviors from client’s perspective.

Several other measurement works focus on the client applica-

tions (e.g., [27], [28], [29], [34], [42], [46]). Unlike our study,

these prior studies focus on measuring the performance of

commercial personal cloud storage clients, such as Dropbox,

Wuala, Google Drive, etc. In contrast, we treat the cloud

storage as a blackbox and focus on revealing the key factors

affecting the interactions of the client and the cloud from

the perspective of the client side rather than benchmarking

specific cloud storage clients. In fact, we purposely avoid

using any specific client tools so that we can minimize

the potential interference. Besides object-based storage, some

service providers also provide block- and file-level storage

services, such as Amazon Elastic Block Store (EBS) [1] and

Elastic File System (EFS) [2]. These services are more similar

to conventional IP-based storage, such as iSCSI and NFS.

In this work, we focus on the HTTP-based object storage,

represented by Amazon S3, and we have observed several

interesting and unique I/O behaviors.

VIII. CONCLUSIONS

We present a comprehensive measurement and quantitative

analysis on cloud storage to investigate the critical factors

affecting the perceived performance of cloud storage from

a client-side perspective. Our experiments show several im-

portant characteristics of cloud storage, such as benefits of

parallelizing cloud storage I/Os, the latency impact of over-

parallelization, the effect of client’s capability to achievable

performance, and more. Based on these findings, we also

present a case study on chunking and parallelization, the two

key techniques used for optimizing cloud storage performance

on the client. We hope our observations and the associated

system implications can provide guidance to help practitioners

and application designers exploit various optimization oppor-

tunities for cloud storage clients.
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