
1

GDS-LC: A Latency and Cost Aware Client Caching Scheme
for Cloud Storage

BINBING HOU, Louisiana State University, USA
FENG CHEN∗, Louisiana State University, USA

Successfully integrating cloud storage as a primary storage layer in the I/O stack is highly challenging. This is
essentially due to two inherent critical issues: the high and variant cloud I/O latency and the per-I/O pricing
model of cloud storage. In order to minimize the associated latency and monetary cost with cloud I/Os, caching
is a crucial technology, as it directly influences how frequently the client has to communicate with the cloud.
Unfortunately, current cloud caching schemes are mostly designed to optimize miss reduction as the sole
objective and only focus on improving system performance, while ignoring the fact that various cache misses
could have completely distinct effects in terms of latency and monetary cost.

In this paper, we present a cost-aware caching scheme, called GDS-LC, which is highly optimized for
cloud storage caching. Different from traditional caching schemes that merely focus on improving cache
hit ratios and the classic cost-aware schemes that can only achieve a single optimization target, GDS-LC
scheme offers a comprehensive cache design by considering not only the access locality but also the object
size, associated latency and price, aiming at enhancing user experience with cloud storage from two aspects:
access latency and monetary cost. To achieve this, GDS-LC virtually partitions the cache space into two
regions: the high-priority region is latency-aware, and the low-priority is price-aware. Each region is managed
by a cost-aware caching scheme, which is based on GreedyDual-Size (GDS) and designed for cloud storage
scenario by adopting clean-dirty differentiation and latency normalization. The GDS-LC framework is highly
flexible, and we present a further enhanced algorithm, called GDS-LCF, by incorporating access frequency in
caching decisions. We have built a prototype to emulate a typical cloud client cache and evaluate the GDS-LC
and GDS-LCF schemes with Amazon Simple Storage Services (S3) in three different scenarios: local cloud,
Internet cloud, and heterogeneous cloud. Our experimental results show that our caching schemes can effectively
achieve both optimization goals: low access latency and low monetary cost. We hope this work can inspire the
community to reconsider the cache design in the cloud environment, especially for the purpose of integrating
cloud storage into current storage stack as a primary layer.

CCS Concepts: • General and reference → Design; Performance; • Information systems → Cloud
based storage; Distributed storage; Hierarchical storage management; • Computer systems organization
→ Cloud computing;

Additional Key Words and Phrases: Cloud storage, storage systems, caching algorithms

ACM Reference Format:
Binbing Hou and Feng Chen. 2017. GDS-LC: A Latency and Cost Aware Client Caching Scheme for Cloud
Storage. ACM Trans. Storage 13, 4, Article 1 (January 2017), 34 pages. https://doi.org/0000001.0000001

∗Corresponding author

Authors’ addresses: Binbing Hou, Louisiana State University, Department of Computer Science and Engineering, Baton
Rouge, LA, 70803, USA, bhou@csc.lsu.edu; Feng Chen, Louisiana State University, Department of Computer Science and
Engineering, Baton Rouge, LA, 70803, USA, fchen@csc.lsu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.
1553-3077/2017/1-ART1 $15.00
https://doi.org/0000001.0000001

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

1:2 B. Hou and F. Chen

1 INTRODUCTION
Cloud storage (e.g., Amazon S3 and Dropbox) is becoming increasingly popular. As a cloud-based
service, cloud storage allows users to store data in the service provider’s data centers and access
data via the network using an HTTP-based protocol. Such a new storage model provides a platform-
independent storage abstraction and enables a set of highly desirable technical merits to end users,
such as efficiency, elasticity, and flexibility. Despite these benefits, integrating cloud storage truly
as a primary storage layer in computer systems still remains highly challenging. This is due to two
critical issues inherent in cloud storage systems.

First, cloud I/Os suffer high and variant latencies. An essential weakness of cloud storage is the
slow, unstable, and sometimes expensive network connection between the client and the cloud.
If we consider a coast-to-coast connection, dozens of network components could be involved
and each contributes a non-trivial delay. As a cloud I/O may travel an excessively long distance
(e.g., thousands of miles) to the service provider’s data center, a cloud storage I/O latency could
be hundreds of milliseconds or even higher. In contrast, local storage, even spinning disks, can
easily complete an I/O in several milliseconds. Such a 100x longer I/O latency is intolerably slow
for interactive operations. Even worse, as the latency is highly dependent on the client-to-cloud
distance, the latencies could be highly variant depending on where the data are stored and where
the data are accessed. In heterogeneous cloud systems where data are stored in multiple distant
data centers, such a situation is even more complex. As so, directly using cloud storage as a primary
storage without proper optimization could incur high I/O latencies and cannot provide satisfactory
user experience for practical use.

Second, cloud storage adopts an unconventional pricing model, which is usage-based. The pricing
of cloud storage is normally a combination of three components: storage cost, which is based on
the amount of data stored in the cloud; request cost, which is based on the number of I/O requests
(e.g., GET and PUT) issued to the cloud; data transfer cost, which is based on the volume of actual
data transfer out from the cloud. With such a pricing model, each cloud storage I/O is associated
with certain amount of monetary cost, and thus the user’s I/O activities would directly impact the
operation cost. This is completely different from conventional storage, which is typically priced
based on capacity and only involves a one-time expense for the initial installation. As so, the
monetary cost of I/Os during runtime is not an issue with conventional storage but a must-have
consideration with cloud storage. Without appropriate optimization, naïvely using cloud storage as
a primary storage may incur undesirable economic loss.
Caching is a classic technique to address the above-said two issues. By using local storage to

temporarily reserve a copy of the most “valuable” data, most I/O requests can be served locally,
so that we can effectively reduce the I/O requests issued to the cloud and consequently lower
both the access latency and monetary cost for using cloud storage services. Unfortunately, current
caching schemes are sub-optimal in the cloud environment. Despite being widely adopted in
cloud-based storage systems (e.g., BlueSky [71] and S3FS [63]), conventional caching schemes,
such as Least Recently Used (LRU), can only exploit the access pattern (e.g., temporal locality) of
the workloads and do not have the capability of differentiating the miss penalties associated with
different objects. Cost-aware caching schemes, such as GreedyDual-Size (GDS) [14], are able to
make caching decisions based on both temporal locality and other factors, including object size
and access cost. However, they can only focus on minimizing one target (generally access latency)
and thus cannot satisfy the requirements of minimizing both access latency and monetary cost,
requiring further optimization in the cloud environment.

In this paper, we present a caching scheme for cloud storage, called GDS-LC, aiming to enhance
user experience with cloud storage from two aspects: access latency and monetary cost. The key

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

GDS-LC: A Latency and Cost Aware Client Caching Scheme for Cloud Storage 1:3

idea of GDS-LC is to label each cloud storage object by their value, in terms of the access locality,
object size, retrieving latency and monetary cost from the cloud, and offer high priority to protect
the high-value objects in the client cache while aggressively evicting the low-value objects (i.e., the
objects accessing which incurs relatively low latency and cost). To achieve this, GDS-LC virtually
partitions the cache space into two regions: a high-priority latency-aware region, and a low-priority
price-aware region. Each region is managed by a cost-aware caching algorithm, which is based
on GreedyDual-Size (GDS) [14] and designed for cloud storage scenario by adopting clean-dirty
differentiation and latency normalization. The objects of high locality and high value in terms
of latency and price are identified for being kept in the cache, which allows us to reshape the
cloud I/O streams to the desired low-latency and low-cost pattern. With such a two-region design,
GDS-LC well balances several key factors for cloud storage caching, namely locality, size, latency,
and price, which helps improve overall system performance and cost. Our solution can also be
flexibly extended by considering other factors for caching. For example, by incorporating frequency
in the caching decision, we further present a scheme called GDS-LCF, which gives a relatively high
caching priority to frequently accessed objects.
To evaluate the effectiveness and efficiency of the caching schemes, we have built a prototype

to emulate a typical cloud client cache. We choose Amazon Simple Storage Services (S3), one of
the most popular cloud storage service providers, as the target cloud. Considering the diversity
of the use cases of cloud storage, we set up three different working scenarios: local cloud, Internet
cloud, and heterogeneous cloud, which feature different access latencies and pricing models. The
experimental results show that compared with traditional caching schemes that solely focus on
locality and the classic cost-aware caching schemes that can only achieve a single optimization
target, our caching schemes can successfully achieve both optimization goals: low access latency
and low monetary cost. We hope this work can inspire the community to reconsider the cache
design in the cloud environment, especially for the purpose of integrating cloud storage into current
storage stack as a primary layer.

The rest of the paper is organized as follows. Section 2 gives the background. Section 3 analyzes
the challenges of making an effective caching design in the cloud environment. Section 4 describes
the design of our caching schemes. Section 5 gives the experimental evaluation. Section 6 presents
other related work. The last section concludes this paper.

2 BACKGROUND
In this section, we briefly introduce the two components of cloud storage, cloud storage services
and client applications, and also describe the classic cost-aware caching scheme GreedyDual-Size
(GDS) [14].

2.1 Cloud Storage Services
Cloud storage can provide efficient object-based storage services. The basic data unit is an object,
which is conceptually similar to a file in file systems. An object can carry certain metadata in
the form of key/value pairs. Objects are generally organized into logical groups, called bucket or
container. A bucket is akin to a directory in file systems, but buckets cannot be nested, meaning
that the namespace is a flat one-level structure. To provide high guarantee of reliability and
availability, the objects can be further distributed to different geographic regions. With such an
organization, an object can be referred to via a URL, similar to a web link. The URL generally
consists of the service domain name (or IP address), bucket name, and object name. For example,
https://s3-us-west-2.amazonaws.com/foo_bucket/foo refers to a cloud storage object foo,
which is in the bucket foo_bucket and located in the data centers of Amazon S3 in US-West region
(Oregon) s3-us-west-2.amazonaws.com.

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

1:4 B. Hou and F. Chen

Typically cloud storage service providers provide an HTTP-based Representational State Transfer
(REST) interface for accessing cloud storage objects. Two important operations are PUT (uploading)
and GET (downloading), which are akin to write and read in file operations. The APIs also provide
DELETE, HEAD, and POST to allow users to remove objects, retrieve and change object metadata. For
each operation, the target URL must be presented to specify the target in the cloud storage.

2.2 Cloud Storage Clients
Cloud storage services typically provide a POSIX-like interface to client applications, allowing
end users to access cloud storage in a way similar to accessing local file systems. Under the hood,
the client application translates the file system level read and write to cloud storage GET and
PUT requests. To reduce the I/O traffic to the cloud, there are two typical ways to enhance user
experience: syncing and caching.

Fig. 1. Client-side caching for cloud storage.

With the syncing approach, the client needs to mirror a complete copy of the cloud storage data
in local devices. A syncer thread monitors the changes made to the local copies and periodically
flushes the changes back to the on-cloud repository. The merit of such a syncing approach is its
simplicity. Almost all read I/Os can be satisfied locally, but it demands a large amount of local
storage space to manage the entire data set. Essentially, the role of the cloud storage in the syncing
mode is more like a secondary storage. In practice, this approach is often adopted by personal cloud
storage (e.g., Dropbox [24], Google Drive [29], OneDrive [51]) to provide data services, such as
sync-and-share, collaborative editing, data recovery, or data archiving.
The second approach is caching, which only maintains the most important data in local cache,

and only cache misses result in on-demand cloud I/Os. Such an approach is sophisticated but
potentially could result in more cloud I/O activities, therefore a well-designed caching policy is
the key to its success. Currently, the caching mode is adopted by some open-source clients and in
academic studies, such as RFS [21], S3FS [63], S3Backer [62], BlueSky [71], and SCFS [9]. Almost
all these systems use an LRU-based replacement for managing the cloud storage cache, which is
unfortunately sub-optimal for latency and cost considerations.
In this paper, we are particularly interested in integrating cloud storage as a primary storage

layer to serve I/O-intensive workloads with the caching approach. Figure 1 illustrates the client-side
caching for cloud storage. In practice, a client cache can be not only a local storage device but also
a client-side gateway or proxy.

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

GDS-LC: A Latency and Cost Aware Client Caching Scheme for Cloud Storage 1:5

2.3 GreedyDual-Size (GDS)
GreedyDual-Size (GDS) is a classic cost-aware caching replacement scheme and has been proven to
be online-optimal [14]. It is an extension of a simple but efficient algorithm called GreedyDual [75].
GreedyDual-Size (GDS) makes the replacement decision by leveraging the recency, size, and the
fetching cost of cached documents.

0 Initialize L = 0.
1 For processing each requested document p:
2
3 if p is already in memory,
4 H(p) = L + Cost(p)/Size(p).
5
6 if p is not in memory,
7 while there is not enough room in memory for p,
8 Let L = min H
9 Evict q such that H(q) = L.
10 Bring p into memory and set H(p) = L + Cost(p)/Size(p)

Fig. 2. GreedyDual-Size (GDS) algorithm [14].

Figure 2 illustrates the algorithm of GreedyDual-Size (GDS) [14]. In this algorithm, each document
is associated with a value, H (line 4, line 10), to determine the caching priority of an object: when a
cache replacement happens, the document with the minimum H value will be evicted (line 8-9).
The H value is a sum of two components (line 4, line 10). The first component is a global value
L (line 0, line 8), which is used to incorporate the recency into the cost function by tracking the
minimum H value (line 8). Since the document with the minimum H value is always selected for
eviction (line 8-9), the L value keeps inflating. Consequently, a more recently accessed document
has a larger L value and thus potentially has a larger H value, tending to have a higher chance of
staying in cache. The second component is the value of cost

size , which represents the considerations
of cost and size by calculating the average cost per size unit. As such, GreedyDual-Size (GDS) is
able to integrate the three factors (including recency, cost, and size in making a caching decision)
to minimize the overall fetching cost.
The GreedyDual-Size (GDS) algorithm was originally designed for web caching. Variants of

GreedyDual-Size (GDS) have also been proven to be efficient in other working scenarios, such as
page cache [40] and key-value stores [44]. In this paper, we present a caching scheme based on
GreedyDual-Size (GDS) to optimize user experience in terms of both access latency and monetary
cost for cloud storage caching.

3 CACHING ISSUES
3.1 Challenges
To make a caching scheme effectively achieve two optimization targets is non-trivial. In cloud
storage scenario, we have to consider at least three critical factors for optimization: locality, latency,
and price. Locality represents on the time axis how likely an object will be reaccessed in the future.
The better locality is, the longer the object should stay in cache. Latency specifies how much time
is needed to complete one cloud I/O request, such as PUT or GET. The longer the latency is, the
more performance impact would be perceived by the user, as the user has to wait for the object to
be retrieved from the cloud, which directly influences user experience. Price is the monetary cost
that a user has to pay for completing one cloud I/O. It is determined by the pricing model of the
cloud storage service provider.

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

1:6 B. Hou and F. Chen

What makes the caching decision complicated is that, though related, the above-said components
are orthogonal to each other. For example, a high-latency object may not be an object that will
soon be accessed (weak locality), and a high-cost object may not raise a high latency for accessing
(e.g., an object in a more distant data center is cheaper to retrieve). How to address these situations
is challenging. A well-designed caching policy must consider and balance all the factors to identify
the object that will incur the lowest penalty if being chosen to be evicted as the victim. A cost-aware
caching can indirectly reshape future cloud I/Os, and the ideal situation is that we only see a small
number of low-latency and low-price cloud I/Os.

3.2 Revisiting GreedyDual-Size (GDS) in Cloud Storage
As a typical cost-aware caching scheme, GreedyDual-Size (GDS) has considered both recency and
other factors including file size and the fetching cost (see Section 2.3). However, GDS is difficult to
be directly used in the cloud environment for several reasons.
First, the original GreedyDual-Size (GDS) can only optimize for one cost target. Cloud storage

users are highly sensitive to both performance and monetary cost, especially for running I/O
intensive workloads. Unfortunately, these two optimization goals are orthogonal, thus directly
combining these two optimization dimensions together as a single numeric value lacks a concrete
semantic basis. A straightforward method, for example, is to set the weighted average value of the
two optimization targets as a combined cost. However, this method is based on the assumption that
access latency and monetary cost are exchangeable and can be directly compared (i.e., 1 second
= 1 dollar), which is not semantically meaningful. Also, the diversity of working scenarios and
pricing models further complicates the selection of the weights. Therefore, the method of using a
single value as the combined cost is sub-optimal. In this paper, to achieve two optimization goals,
we adopt a two-region design, in which each region focuses on minimizing one cost target (see
Section 4.1).
Second, unlike storage I/Os in traditional web systems, in which the web pages are frequently

read and rarely modified, storage I/Os in the cloud environment are bi-directional, meaning that
the data can be not only frequently read (downloaded) but also frequently written (uploaded).
The problem of directly using the cost function of the original GreedyDual-Size (GDS) algorithm
designed for web caching is that it simply defines the cost as the penalties of fetching objects and
ignores the cost differences of clean objects and dirty objects. Using cloud storage as a primary
storage, an object can be both read (downloaded) or written (uploaded), and consequently, the
cost of evicting clean objects and dirty objects can be different in cache management—evicting a
dirty object incurs a high on-demand uploading latency, in addition to the downloading latency of
fetching the object upon a related cache miss. Considering this, we define the cost as the penalties
of evicting an object, including the cost of downloading the object and the cost of uploading for
dirty objects (see Section 4.2).

Third, assessing the access cost of cloud storage should also consider several cloud environment
issues. For example, the access time could fluctuate due to many real-time factors (e.g., network
conditions). The variance of access latency may degrade the efficiency of cost-aware caching and
thus has to be well considered. To address this issue, we adopt an adaptive normalization approach
(see Section 4.2).

4 DESIGN OF GDS-LC
In this section, we present the design of GDS-LC, which exploits locality, size, latency, and price to
improve caching efficiency, aiming to minimize both access latency and monetary cost. We first
describe the basic cache design of GDS-LC, and then present GDS-LCF, which is an enhanced
version of GDS-LC by introducing frequency into caching decisions.

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

GDS-LC: A Latency and Cost Aware Client Caching Scheme for Cloud Storage 1:7

4.1 Cache Space Management

HV LV

HV LV

(1) upon hit, the object promoted

to the performance region

(2) a victim object demoted

to the price region

(3) a victim object demoted

from the price region

Performance Region

Price Region

Performance-aware

Caching policy

Price-aware Caching

policy

Fig. 3. The two-region structure for caching.

To achieve both optimization goals in terms of access latency and monetary cost, in the design
of GDS-LC, we adopt a two-region design: each region is managed with a dedicated cost-aware
caching scheme to achieve a specific optimization target (either low access latency or low monetary
cost), respectively; objects are migrated between the two regions, and the low-locality, low-latency,
and low-cost ones will be finally evicted from the local cache.

Cache Partitioning. As shown in Figure 3, GDS-LC logically splits the cache space into two
regions: a performance region and a price region. The performance region is a high-priority region,
which is reserved to contain performance-critical objects, i.e., hot objects that are to be reaccessed
shortly and have long access latencies. The cost region is a low-priority region, which contains
relatively cold objects with a weaker locality but a higher monetary cost. The two regions adopt
two different replacement algorithms: GDS-Latency and GDS-Cost, which focus on the latency and
price goals respectively. Particularly, when considering the cost, we focus on cost per size unit by
using latency/size and price/size, which is based on GreedyDual-Size (GDS) (see Section 4.2).
The main reason for such a two-region design is two-fold: First, separating objects into two

regions allows us to apply different caching replacement algorithms for the management rather
than blending all the factors in a meaningless numeric value. Second, we can flexibly give different
priorities to different optimization goals. Considering the excessively long access latency to the
cloud is a critical concern for most users, in our design we regard performance as more important
than monetary cost, and thus give a higher priority to performance by setting the performance
region as a top region. In practice, high priority can also be given to the monetary concern by
setting the price region as the top region.

It is worth noting that GDS-LC adopts “logical” partitioning, which means that it is unnecessary
to physically partition the cache space, and we simply keep track of the actual space occupied
by the objects in each region. For the partition sizes, we adopt a scheme similar to the memory
management in the Linux kernel by reserving one third of the total client cache space for the
performance region, and the rest is reserved for the price region. Theoretically, such a cache
partitioning can be dynamically tuned. In our experiments, we find the ratio 1:2 works very
well across all the workloads in our test. We will further discuss the impact of different caching
partitioning ratios in Section 5.3.

Object Migration. Figure 4 shows the algorithm of object migration between the two regions.
Initially, an object is admitted into the performance region (line 23-31). If the performance region

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

1:8 B. Hou and F. Chen

0 /* Procedure is invoked upon a reference to object b */
1 reference_object (b)
2 {
3 if b is in cache { /* hit in cache */
4 if b is in performance region
5 hit_object_in_region(b, performance)
6 else {
7 remove_object_from_region(b, price)
8
9 /* if no space in performance region,
10 demote some objects to price region*/
11
12 while (b.size > performance.free_space)i{
13 a = evict_object_from_region(performance)
14 /* if no enough space in price region,
15 evict some objects*/
16 while (a.size > price.free_space)
17 evict_object_from_region(price)
18 add_object_to_region(a, price)
19 }
20 add_object_to_region(b, performance)
21 }
22 } else { /* miss in cache*/
23 download b from the cloud storage
24
25 while (b.size > performance.free_space){
26 a = evict_object_from_region(performance)
27 while (a.size > price.free_space)
28 evict_object_from_region(price)
29 add_object_to_region(a, price)
30 }
31 add_object_to_region(b, performance)
32 }
33 }

Fig. 4. Algorithm of migrating objects between regions.

has available space, the object will be added into the performance region (line 31). If the performance
region has insufficient space, we need to run the GDS-Latency algorithm (see Section 4.2) to move
one or multiple low-latency objects to the price region to accommodate the new object (line 25-30).
In this process, the object with the weakest locality and the smallest latency will be demoted (line
26). If there is insufficient space in the price region, by running GDS-Cost (see Section 4.2), we
further evict low-cost objects from the price region and reclaim enough partition space (line 27-28).

A second access to an object in the price region will promote it into the high-priority performance
region (line 6-21), since the object has proven itself to have high temporal locality. If the performance
region has available space, the object is added into the region (line 20); otherwise, we have to evict
one or multiple objects from the performance region and demote them into the lower-priority price
region (line 12-19).
As illustrated above, in the two-region design, each cost-aware caching scheme works like a

filter: GDS-Latency filters out the low-latency objects, and GDS-Cost filters out the low-cost objects,
and the migration gives a high caching priority to high-locality objects. Therefore, the low-locality,
low-latency, and low-cost objects will be first evicted from the local cache.

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

GDS-LC: A Latency and Cost Aware Client Caching Scheme for Cloud Storage 1:9

4.2 Cost-aware Caching Replacement
As described above, we split the client cache space into two regions, each of which adopts a cost-
aware replacement algorithm, i.e., GDS-Latency and GDS-Cost, to identify the victim objects for
eviction. Both GDS-Latency and GDS-Cost are based on GreedyDual-Size (GDS) but use a carefully
designed cost function. Namely, we calculate the value of an object in each region by applying
corresponding cost functions to the equation of GDS: H (obj) = Lr eдion +Cost (obj)/Size (obj) (see
Section 2.3 for details). In this section, we discuss the latency function used in GDS-Latency and the
price function used in GDS-Cost.

4.2.1 Latency Function. Compared to the latency function used in the original GreedyDual-Size
(GDS) [14], our latency function has two particular considerations: clean-dirty differentiation and
adaptive normalization.

Clean-dirty differentiation. For evicting a clean object, we set the cost to be the latency of
downloading the object from the cloud, which is similar to the original GreedyDual-Size (GDS) [14].
The difference is that for evicting a dirty object, we set the cost to be the sum of the latency of
downloading the object and the latency of uploading it to the cloud. This is motivated by the fact
that dirty objects have to be synchronized to the cloud before being discarded. Therefore, in addition
to the miss penalty (i.e., the downloading latency caused by a cache miss), the cost of evicting
a dirty object should also include the uploading latency. Such a clean-dirty differentiation gives
relatively higher values to dirty objects and is thus helpful to reduce the on-demand uploading
latencies experienced by the users.

Adaptive normalization. To evaluate the cost in terms of latency, we can measure the access
latency online and correspondingly calculate the cost associated with each object. However, due
to the possible variance of network performance and the speed of cloud servers, the latency of
uploading/downloading an object from the cloud may not be constant. The latency variance may
lead to inaccurate cost evaluations and thus deteriorate the efficiency of latency-aware caching.
The rationale behind the latency-aware caching scheme is that the miss penalty of an object

is the time used to download the object (i.e., downloading latency) when the evicted object is
retrieved again. When the downloading latency fluctuates, the latency-aware caching schemes
will make inaccurate cost estimations. For example, if downloading an object A needs 0.4 second,
the latency-aware caching scheme will take 0.4 second as the miss penalty of evicting object A.
However, downloading object A from the cloud upon a cache miss may take a shorter (e.g., 0.36
second) or longer time (e.g., 0.42 second). In other words, the real cache miss penalty may be lower
or higher than evaluated, leading to a mistaken selection of victim objects.
To alleviate this problem, we normalize the latency (including both the download latency and

upload latency) by dividing it by a normalization factor and rounding the result up to an integer.
Specifically, the latencies that are no larger than the normalization factor will be normalized to 1;
otherwise, they will be normalized to the nearest integers. For example, if we set the normalization
factor as 0.2 second, the absolute values of the latencies (e.g., 0.36, 0.4, and 0.42) are normalized to
the same value, i.e., 2. Although the interference of latency variance cannot be completely avoided,
with the normalization approach, we can allow the algorithm to tolerate certain variance of access
latencies in a small range, and in the meantime, still retain the capability of differentiating high-cost
and low-cost objects with a reasonable resolution.
It is also worth noting that a normalization factor with a fixed absolute value cannot fit all

scenarios in the real world. With an excessively small normalization factor, the negative effects of
the variance of access latencies cannot be effectively reduced. On the other hand, an excessively
large normalization factor may weaken the capability of differentiating distinct costs of objects. In
our experiments, we set an adaptive normalization factor based on the Round Trip Time (RTT)

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

1:10 B. Hou and F. Chen

between the client and the cloud. Specifically, we set the normalization factor to be multiple times
of RTT. If the client simultaneously connects with multiple clouds located in different geographic
locations, we set the normalization factor to be multiple times of RTTmin (i.e., the minimum RTT).
The normalization factor can be tuned under different working scenarios. We will further study the
impact of normalization in Section 5.4.

4.2.2 Price Function. Due to its service nature, each cloud I/O takes certain amount of monetary
cost. Based on the service provider’s current pricing model, it includes three components: storage
cost, request cost, and data transfer cost. Since the storage cost is based on the total size of all
the objects stored on the cloud, it is not related to the real-time accesses. The price of a cloud I/O
includes two latter components: the request cost and data transfer cost.
Specifically, for downloading an object, the price is the sum of the cost of a GET request and

the cost of transferring data out from the cloud; for uploading an object, since most cloud storage
service providers do not charge data transfer cost for uploading, the price of uploading an object
equals the cost of a PUT request. Similar to the latency function, we also differentiate the monetary
cost of evicting a clean object and a dirty object; that is, we set the monetary cost of evicting a
clean object to be the price of downloading the object and set the monetary cost of evicting a dirty
object to be the sum of the uploading price and the downloading price.
It is worth noting that the pricing model of a cloud storage service provider is not always

constant, and different cloud storage service providers or even different data centers of the same
cloud storage service provider can price differently. When the service provider’s pricing model
changes, this price function should be updated as well.

4.3 Further Enhancement
The GDS-LC caching framework is highly flexible. It can be easily extended to include additional
factors to make caching decisions. In this section, we introduce a further enhancement to GDS-LC
by including the consideration of access frequency into the cache replacement.
In GDS-LC, the two regions adopt two caching schemes: GDS-Latency and GDS-Cost, where

the H value (used to determine the caching priority) is updated when the object is admitted into
the cache (see Section 4.2). Both approaches do not effectively reflect how frequently an object is
referenced while it is resident in cache. As a further enhancement, we propose the second method
to incorporate the frequency information into the calculation of the object values. We call the
frequency-version of GDS-LC as GDS-LCF. Correspondingly, we call the frequency-version of
GDS-Latency as GDS-LF and the frequency-version of GDS-Cost as GDS-CF.
By incorporating frequency into the equation used in each region (see Section 4.2), we get a

new equation for GDS-LF and GDS-CF to calculate the value of an object (e.g., obj): H (obj) =
Lr eдion +Cost (obj) × Freq(obj)/Size (obj), in which Freq(obj) refers to the approximation function
of frequency. Determining a proper approximation function of frequency, i.e., Freq(obj), is an
important issue, since it may affect the caching efficiency substantially [49]. Frequently accessed
objects are important even if not recently accessed. Some caching algorithms count at most two
most recent references to each cache page (e.g., ARC [49], LRU-2 [56]). Similarly, we set Freq(obj)
to not become greater than two and four for the top and bottom regions, respectively.

Specifically, we associate each object with a counter, which is incremented by one upon an access
to the object and stays unchanged when the object is demoted. Freq(obj) is updated as follow: (1)
For an object in the top region, Freq(obj) is set to two if the counter is larger than two; otherwise,
Freq(obj) is set to the value of the counter. (2) For an object in the bottom region, Freq(obj) is set
to four if the counter is larger than four; otherwise, Freq(obj) is set to the value of the counter.

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

GDS-LC: A Latency and Cost Aware Client Caching Scheme for Cloud Storage 1:11

With such an approximation, we can effectively avoid the possible situation that frequency
outweighs other factors in the extreme cases. Our experiments show that our approximation
function works satisfactorily. It is also worth noting that GDS-LCF incurs trivial overhead. For
cost-aware caching, such as GDS and GDS-LC, the most important metadata of the cached objects
is maintained locally (e.g., the retrieval path, the latest modified time, the state indicating whether
it is clean or dirty). Comparatively, GDS-LCF adds only one additional counter, which increases
negligible time and space overhead.

5 PERFORMANCE EVALUATION
5.1 Experimental Methodology and Environment
5.1.1 Trace-driven Emulation. In order to evaluate our proposed caching schemes, we have

developed a prototype to emulate a cloud storage cache manager. Our emulation simulates a typical
cloud storage client cache, which leverages a specified amount of local storage space as cache for
cloud storage. I/O accesses that cannot be satisfied in the local cache will be converted into PUT
or GET requests to the cloud storage. For each request, we recorded the execution information
including the request type, the end-to-end completion time, and whether it is a cache hit. This
information can be used to calculate the hit ratio, average latency, and monetary cost of each run
of the experiments (see Section 5.1.4 for the methodology of result reporting in our experiments).

Trace Service Type Total Unique Object Size PUT Requests GET requests

Clark Web 164 MB 645 229,233
Netfs Filesystem 707 MB 594,433 135,949
Media Multi-media 1,294 MB 0 166,366

Table 1. Trace characteristics.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

P
e
rc

e
n
ta

g
e
(%

)

Size(KB)

Clark Object Size CDF

(a) Clark

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

P
e
rc

e
n
ta

g
e
(%

)

Size(KB)

 Netfs Object Size CDF

(b) Netfs

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000

P
e
rc

e
n
ta

g
e
(%

)

Size(KB)

Media Object Size CDF

(c) Media

Fig. 5. CDF of object sizes.

Considering web services, file system services (e.g., S3FS [63], BlueSky [71], Tombolo [74], and
SCFS [9]), and multimedia services (e.g., Netflix is deployed on Amazon S3 [4], and Spotify has
moved to Google Cloud [37]) are popular and typical services using cloud storage as a primary
storage, we selected three representative workloads in the experiments: Clark, Netfs, and Media.
The details of the traces are shown in Table 1. Figure 5 shows the distributions of object sizes.
• Clark is a web trace [19], which accesses 164 MB of unique objects (i.e., web pages), and
consists of 229,233 GET requests and only 645 PUT requests. The object size distribution is
shown in Figure 5(a). This workload is highly read-intensive. Thus we use a write-through
policy to synchronize the data to the cloud for this workload.

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

1:12 B. Hou and F. Chen

• Netfs is a file system workload converted from the networkfs workload in the FileBench
1.4.9 [48] running on S3FS [63]. We collect the PUT and GET requests in a trace file. This
workload is more write-intensive. It accesses 707 MB of unique objects (i.e., files) in total,
including 135,949 GET requests and 594,433 PUT requests. The object size distribution is shown
in Figure 5(b). A write-back policy is adopted to sync back the dirty data that reside in the
cache for more than 30 seconds periodically (every 5 seconds), similar to the Linux write-back
policy. All updated objects are filled in with randomly generated content.
• Media is a multimedia workload synthesized using the open-source generator MediSyn, in
which the access pattern of multimedia objects (e.g., small video and audio files) follows
Zipfian distribution [68]. We synthesized this workload by collecting the size of each unique
object and traced the access sequence of object ID. By replaying this trace, we aim to simulate
the object-based client caching for multimedia objects, which has attracted attention from
academia (e.g., [2, 32, 64]) and is widely adopted in industrial products (e.g., VideoCache [70],
Blue Coat ProxySG Appliances [11]). This workload accesses 1,294 MB of unique objects.
As a typical multimedia workload, it is read-only and contains 166,366 GET requests. All
objects are filled in with randomly generated content. The object size distribution is shown
in Figure 5(c).

5.1.2 Experimental Platform. Our experiments were conducted with Amazon Simple Storage
Services (S3). As a representative cloud storage service, Amazon S3 is widely adopted as a storage
layer in various consumer and commercial services such as Netflix [4]. Some consumer cloud storage
services, such as Dropbox, directly use S3 as the low-level storage system for data hosting [65]. In
our experiments, we used the S3 storage hosted in Amazon’s data centers in Oregon (s3-us-west-
2.amazonaws.com) and Tokyo (s3-ap-northeast-1.amazonaws.com) as the cloud storage service
providers. We also used three clients: two Amazon EC2 instances and a workstation on our campus.
All the three clients use Linux 3.2.1 kernel and Ext4 file system.

To comprehensively test our GDS-LC algorithm, we designed three different system setups. Each
system setup simulates a typical working scenario of cloud storage in the real world:

• Local cloud simulates a typical cloud system where the client and the storage servers are in
the same data center. In our experiments, the client is an Amazon EC2 instance and located
in the Oregon data center with the Amazon S3 cloud storage.
• Internet cloud simulates a public cloud system in consumer environment where the client
connects to the storage service through the Internet. The client is a workstation on our
campus in Louisiana and the S3 cloud storage is in the Oregon data center.
• Hetero cloud simulates a special scenario where a client connects simultaneously to two
different clouds. The client is an EC2 instance in Singapore and connects to two S3 cloud
storage systems, one in Tokyo and the other in Oregon.

Table 2 shows the details of the pricing model corresponding to each system setup used in our
experiments. It is also worth noting that we do not intend to cover all the possible use cases in the
experiments; instead, using these system setups with different features in terms of access latencies
and pricing policies, we attempt to evaluate various latency/cost implications in our solution.

5.1.3 Algorithms for Comparison. In our experiments, we have compared our proposed caching
schemes with typical traditional caching algorithms and the original GDS-based algorithms in
different working scenarios. We have also conducted a series of experiments to test the impact of
critical parameter settings and further compare our proposed caching schemes with the customized
GDS-based algorithms.

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

GDS-LC: A Latency and Cost Aware Client Caching Scheme for Cloud Storage 1:13

Client Data Center Request Cost Transfer Cost
PUT GET PUT GET

Local cloud Oregon Oregon $0.005/1,000 $0.004/10,000 0 0
Internet cloud Louisiana Oregon $0.005/1,000 $0.004/10,000 0 $0.090/GB

Hetero cloud Singapore Oregon $0.005/1,000 $0.004/10,000 0 $0.020/GB
Singapore Tokyo $0.0047/1,000 $0.0037/10,000 0 $0.090/GB

Table 2. The pricing model of Amazon S3 services. This table shows a simplified version of Amazon S3 pricing
policy. The referenced price data was collected on December 6th, 2016. Actual price fluctuates. Interested
readers may refer to Amazon website for more details [3].

Basic experiments.We compare our caching schemes GDS-LC and GDS-LCF with two tradi-
tional caching algorithms that focus on improving hit ratios, i.e., LRU and ARC, and two different
settings of the original GreedyDual-Size (GDS) algorithm, i.e., GDS(latency) and GDS(price). We
present the basic experimental results in Section 5.2. The configurations of these algorithms are as
follows:
• LRU: The traditional LRU policy, which applies the least recently used replacement algorithm.
As far as we can see in practical systems, LRU is currently the most widely adopted caching
algorithm in cloud-based storage services in academia (e.g, BlueSky [71] and SCFS [9]) and
industry (e.g., Nasuni [54] and SteelStore [50]).
• ARC: ARC is an advanced caching algorithm, which improves LRU by making use of history
access references with ghost buffers to efficiently filter one-time access [49]. ARC splits
the cache space into two LRU lists, i.e., T1 and T2, to manage the cache entries that are
recently referenced and the cache entries that are frequently referenced (at least twice),
respectively. The cache entries in T1 are promoted to T2 when they are referenced again.
ARC also maintains two ghost LRU lists, i.e., B1 and B2, to track the cache entries evicted from
T1 and T2, respectively. The sizes of the four LRU lists can be tuned adaptive to the access
pattern of workloads (see the literature [49] for details). Since the original ARC replacement
algorithm is designed for page cache and each caching unit is a fixed-sized page or block
(generally 4KB), the basic adaptation granularity of ARC is the page size. In our experiments,
we replace the original adaptation granularity (page size) with the object size. With such a
customization, ARC can work for variable-sized objects but does not rely on object sizes and
the associated costs to make caching decisions, since its methodology and working principles
are not changed. Comparing our caching schemes with ARC, we aim to reveal that it is not
enough to only consider recency and frequency for cloud storage caching.
• GDS(latency): The original GreedyDual-Size (GDS) caching scheme that directly uses the
downloading latency of each object as the cost function. With this configuration, GreedyDual-
Size (GDS) aims at minimizing the overall latency.
• GDS(price): The original GreedyDual-Size (GDS) caching scheme that uses the monetary cost
of downloading each object as the cost function. With this configuration, GreedyDual-Size
(GDS) aims at minimizing the overall monetary cost.
• GDS-LC: The cache is divided into two regions (a performance region and a cost region). We
use a size ratio of 1:2, similar to page cache management in Linux. The performance region
is managed with GDS-Latency scheme, and the cost region uses GDS-Cost scheme. The
difference between GDS-Latency and GDS(latency) is that the former scheme differentiates
the cost of clean and dirty object and uses the normalized latency as the cost function.

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

1:14 B. Hou and F. Chen

Similarly, compared with GDS(price), GDS-Cost has a different monetary cost function for
dirty objects. For the normalization factor, we set it to ten times of RTT (Round Trip Time)
between the client the cloud. In particular, in the scenario of heterogeneous cloud, we set it to
ten times of the minimum RTT from the client to the clouds.
• GDS-LCF: The cache partitioning is the same as GDS-LC, but we further introduce the
frequency factor into the cost function, thus a more frequently read or written object will
have a larger weight to be protected in the local cache. For the frequency approximation, we
count the access frequency at most two when it is in the performance region and at most
four when it is in the price region (see Section 4.3). GDS-LCF sets the same normalization
factor as GDS-LC.

Extensive experiments. In addition to the basic experiments, we investigate the effect of
partition sizes in Section 5.3 and study the impact of latency normalization in Section 5.4. We also
compare our proposed caching schemes with the frequency-version of GDS and the enhanced
GDS-based caching schemes that can recognize clean and dirty objects in Section 5.5 and Section 5.6,
respectively.

5.1.4 Methodology of Result Reporting. Since access latency and monetary cost are two optimiza-
tion goals of our caching schemes, we take average latency and monetary cost as our major metrics.
We also report hit ratio, which is one of the most critical metrics to evaluating caching efficiency.
Each experiment is repeated for five times. After each run of the experiments, we calculate the
average latency of all the requests (including both the requests served by local cache and the requests
served by cloud), the total monetary cost charged by accessing the cloud, and the hit ratio.
After all the experiments, we have five sets of average latency, monetary cost, and hit ratio.

For each metric, we finally report the average value x = 1
N
∑N

i=1 xi , in which xi denotes the value
of the metric obtained from the ith run of the experiments and N denotes the number of runs.
We also calculate the standard error SE =

√
1
N
∑N

i=1 (xi − x)
2, which describes the variance of the

experimental results.

5.2 Basic Experimental Results
5.2.1 Local Cloud. Large enterprises often require high-performance cloud storage services

to efficiently store/retrieve the data. To satisfy this requirement, managing the data from a client
located in the same data center as the storage servers is a desirable choice in terms of performance
and monetary cost. In such environment, both clients and the cloud are close to each other and the
network connection is good. Typically the client-cloud Round Trip Time (RTT) is low (0.28 ms in
our system setup).

Figure 6 shows the experimental results with all the three workloads in the local cloud scenario.
From the results, we can not only see the advantages of our caching design but also observe some
interesting behaviors of different caching schemes. In this section, we first present the observations
on the experimental results of the read-intensive workloads (Clark and Media) and then present
some different observations on the experimental results of the write-intensive workload (Netfs).

Observations on the read-intensive workloads. In our experiments, both the Clarkworkload
and theMediaworkload are read-intensive:Clark is dominated by read requests, and a write-through
policy is adopted; Media is read-only (see Section 5.1.1). Consequently, all the victim objects are
clean when working with these two workloads. From the experimental results obtained with Clark
and Media, we have the following observations:

The GDS-based policies are observed to be better than LRU and ARC. This is because the GDS-based
policies take recency, object size, and the cost (in terms of both latency and price) into account,

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

GDS-LC: A Latency and Cost Aware Client Caching Scheme for Cloud Storage 1:15

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

H
it
 R

a
ti
o
(%

)

Cache Size (% of total unique object size)

Hit Ratio with Clark

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(a) Hit Ratio

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 6 8 10 12 14 16 18 20
A

v
e
ra

g
e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency with Clark

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(b) Average Latency

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 6 8 10 12 14 16 18 20

M
o
n
e
ta

ry
 C

o
s
t(

$
)

Cache Size (% of total unique object size)

Monetary Cost with Clark

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(c) Monetary Cost

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

H
it
 R

a
ti
o
(%

)

Cache Size (% of total unique object size)

Hit Ratio with Netfs

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(d) Hit Ratio

 15

 20

 25

 30

 35

 40

 45

 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency with Netfs

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(e) Average Latency

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 6 8 10 12 14 16 18 20

M
o
n
e
ta

ry
 C

o
s
t(

$
)

Cache Size (% of total unique object size)

Monetary Cost with Netfs

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(f) Monetary Cost

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

H
it
 R

a
ti
o
(%

)

Cache Size (% of total unique object size)

Hit Ratio with Media

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(g) Hit Ratio

 0

 5

 10

 15

 20

 25

 30

 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency with Media

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(h) Average Latency

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 6 8 10 12 14 16 18 20

M
o
n
e
ta

ry
 C

o
s
t(

$
)

Cache Size (% of total unique object size)

Monetary Cost with Media

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(i) Monetary Cost

Fig. 6. Local cloud: Hit ratios, average latencies, and monetary cost of Clark, Netfs, and Media.

while LRU and ARC are cost-unaware. Since the GDS-based policies prefer to evict the objects of
larger size and smaller cost, these replacement policies have higher caching efficiency. Particularly,
in this scenario, the price for evicting each object is equal, since all the objects to be evicted are
clean and the price only includes the cost of GET requests for internal data transfer in the data
center (see Table 2). In this case, the GDS-based caching schemes cause less monetary cost than
LRU and ARC, since they generally have higher hit ratios (see Figure 6(a) and 6(g)). As shown in
Figure 7, we also take the experimental results with Clark, of which the cache size is set to 10% of
the total size of unique objects, to investigate the caching behaviors of different caching schemes.
Figure 7(a) shows the distributions of the end-to-end completion time of all the requests (including
both the requests served by the local cache and those served by the cloud). Figure 7(b) shows the
differences among the size distributions with different caching schemes. For example, the object
size larger than 20 KB is 37% of all the downloaded objects upon related cache misses with GDS-LC,
but the corresponding number with LRU is 18%. The reason is that the GDS-based caching schemes
prefer evicting larger objects. In contrast, the differences of the latency distributions are not so

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

1:16 B. Hou and F. Chen

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200

P
e
rc

e
n
ta

g
e
(%

)

Latency(ms)

Access Latency CDF with Clark

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(a) Access Latency CDF

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180 200

P
e
rc

e
n
ta

g
e
(%

)

Size(KB)

Downloaded Object Size CDF with Clark

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(b) Object Size CDF

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140 160 180 200

P
e

rc
e
n
ta

g
e
(%

)

Latency(ms)

Downloaded Object Latency CDF with Clark

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(c) Downloading Latency CDF

Fig. 7. Local cloud: An example with Clark to investigate the caching behaviors of different caching schemes,
in which the cache size is set to 10% of the working set (i.e., the total size of unique objects). Figure 7(a)
shows the CDFs of the access latencies; Figure 7(b) and Figure 7(c) show the CDFs of sizes and downloading
latencies of the objects fetched from the cloud upon related cache misses, respectively.

significant (see Figure 7(c)). This is because the access latency does not increase as the request size
increases for small requests (e.g., smaller than 64 KB), which has been reported in prior study [33].
Compared with GDS(latency) and GDS(price), GDS-LC can minimize both average latency and

monetary cost. Specifically, the average latency of GDS-LC is close to that of GDS(latency) (see
Figure 6(b) and 6(h)), and the monetary cost of GDS-LC is close to that of GDS(price) (see Fig-
ure 6(c) and 6(i)). This demonstrates the effect of the two-region design of GDS-LC: via adopting
GDS-Latency in the performance region and GDS-Cost in the price region, GDS-LC keeps the most
“expensive” objects in terms of both latency and monetary cost in the cache so that it can optimize
both metrics at the same time.

GDS-LCF performs the best in this scenario. The difference between GDS-LC and GDS-LCF is that
GDS-LCF further includes the frequency into the caching consideration, which helps identify the
hottest object from the perspective of popularity. Consider this case: object A has value 1, being
accessed 4 times; and object B has value 2, being accessed once. With GDS-LC, object A will be
evicted because GDS-LC is unaware of the access frequency; while based on GDS-LCF, object B
will be evicted (2×1 < 1×4). Thus, GDS-LCF focuses more on the frequently accessed objects, and
the experimental results demonstrate the strength of such a consideration.

Observations on the write-intensive workload. Compared with Clark and Media, Netfs has
more intensive writes, and dirty data are asynchronously written back to the cloud periodically
(see Section 5.1.1). With this workload, we have similar observations, which show the advantages
of our caching schemes: GDS-LCF performs the best in this experiment, and GDS-LC can optimize

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

GDS-LC: A Latency and Cost Aware Client Caching Scheme for Cloud Storage 1:17

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

LRU ARC GDS(latency)

GDS(price)

GDS−LC
GDS−LCF

T
h

e
 N

u
m

b
e

r
o

f
U

p
lo

a
d

in
g

s

The Number of On−demand Uploadings with Netfs

(a) On-demand Uploadings

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

 16,000

 18,000

 20,000

LRU ARC GDS(latency)

GDS(price)

GDS−LC
GDS−LCF

T
h

e
 N

u
m

b
e

r
o

f
U

p
lo

a
d

in
g

The Number of Detailed Uploadings with Netfs

on−demand upload
background upload

(b) Detailed Uploadings

 0.000

 0.002

 0.004

 0.006

 0.008

 0.010

 0.012

LRU ARC GDS(latency)

GDS(price)

GDS−LC
GDS−LCF

M
o

n
e

ta
ry

 C
o

s
t(

$
)

Detailed Monetary Cost with Netfs

Data Transfer
GET Request
PUT Request

(c) Detailed Monetary Cost

Fig. 8. Local cloud: The number of uploadings and detailed monetary cost of Netfs achieved by different
caching schemes with the cache size set to 10% of the working set (i.e., the total size of unique objects). The
number of uploadings refers to the number of uploading requests caused by synchronizing dirty objects to
the cloud. In specific, on-demand uploading refers to synchronizing dirty objects to the target cloud when
being evicted from the local cache; background uploading refers to synchronizing dirty objects to the target
cloud with the background write-back daemon. The monetary cost for accessing cloud objects includes data
transfer fee and request fee (see Table 2 for the pricing model used in our experiments).

both average latency and monetary cost. Meanwhile, for such a write-intensive workload, we also
have some different observations:

GDS-LC can achieve lower average latency than both GDS(latency) and GDS(price), especially when
the cache size is relatively small. As shown in Figure 6(e), for example, when the cache size is 5%
of the working set, GDS-LC reduces the average latency by 21% (from 33 ms to 26 ms). That is
because GDS-LC particularly considers the cost of data synchronization for evicting dirty objects,
so that less dirty objects are discarded when the cache space is not enough; consequently, GDS-LC
makes the requests suffer less from waiting for on-demand synchronization (i.e., uploading). This
is consistent with our observation on the number of uploadings with different caching schemes: as
shown in Figure 8(a), compared with GDS(latency), GDS-LC decreases the number of on-demand
uploadings by 46% (from 2,800 to 1,500). As for the price, we find that GDS-LC and GDS-LCF do
not have obvious advantages over GDS(price). This is because the total uploadings of these three
caching schemes (i.e., GDS-LC, GDS-LCF, and GDS(price)) are comparable (see Figure 8(b)). At the
same time, since data transfer is not charged in this scenario, and the fee of PUT request is 12.5
times as that of GET request (see Table 2), the charge of the PUT requests dominates the overall
monetary cost; thus, the monetary costs of these three caching schemes (i.e., GDS-LC, GDS-LCF,
and GDS(price)) are comparable (see Figure 8(c)).

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

1:18 B. Hou and F. Chen

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

H
it
 R

a
ti
o
(%

)

Cache Size (% of total unique object size)

Hit Ratio with Clark

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(a) Hit Ratio

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 6 8 10 12 14 16 18 20
A

v
e
ra

g
e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency with Clark

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(b) Average Latency

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 6 8 10 12 14 16 18 20

M
o
n
e
ta

ry
 C

o
s
t(

$
)

Cache Size (% of total unique object size)

Monetary Cost with Clark

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(c) Monetary Cost

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

H
it
 R

a
ti
o
(%

)

Cache Size (% of total unique object size)

Hit Ratio with Netfs

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(d) Hit Ratio

 40

 50

 60

 70

 80

 90

 100

 110

 120

 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency with Netfs

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(e) Average Latency

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 6 8 10 12 14 16 18 20

M
o
n
e
ta

ry
 C

o
s
t(

$
)

Cache Size (% of total unique object size)

Monetary Cost with Netfs

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(f) Monetary Cost

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

H
it
 R

a
ti
o
(%

)

Cache Size (% of total unique object size)

Hit Ratio with Media

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(g) Hit Ratio

 0

 50

 100

 150

 200

 250

 300

 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency with Media

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(h) Average Latency

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 6 8 10 12 14 16 18 20

M
o
n
e
ta

ry
 C

o
s
t(

$
)

Cache Size (% of total unique object size)

Monetary Cost with Media

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(i) Monetary Cost

Fig. 9. Internet cloud: Hit ratios, average latencies, and monetary cost of Clark, Netfs, and Media.

ARC has more on-demand uploadings than other caching schemes (see Figure 8(a)). That is because
LRU always evicts the least recently accessed objects, which means that the most recently written
objects (i.e., dirty objects) will be protected in the cache. In contrast, ARC also attempts to recognize
one-time accesses and select such objects as victim objects, resulting in more on-demand uploadings
than LRU. On the other hand, ARC has a higher cache hit ratio than LRU, which means that ARC
can absorb more write traffic than LRU, therefore ARC has less background uploadings than LRU
and finally creates less total uploadings and monetary cost than LRU. However, compared with
GDS-based policies, both LRU and ARC have more uploadings and monetary cost (see Figure 8),
since both LRU and ARC have lower hit ratios than the GDS-based policies and do not actively
differentiate clean and dirty objects (compared with GDS-LC and GDS-LCF).
GDS(latency) does not work as well as expected. From Figure 6(e), we find that the performance

of GDS(latency) is worse than that of GDS(price), and even worse than that of LRU when the
cache size is 20% of the working set. It is understandable. Working with Netfs, the objects may be
frequently updated with an object size change; in this case, the access latencies could be different
from the previously observed values. Without a reasonable estimation, the cost used in the caching

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

GDS-LC: A Latency and Cost Aware Client Caching Scheme for Cloud Storage 1:19

 0.00

 0.02

 0.04

 0.06

 0.08

 0.10

 0.12

LRU ARC GDS(latency)

GDS(price)

GDS−LC
GDS−LCF

M
o

n
e

ta
ry

 C
o

s
t(

$
)

Detailed Monetary Cost with Clark

Data Transfer
GET Request
PUT Request

(a) Clark

 0.00

 0.02

 0.04

 0.06

 0.08

 0.10

 0.12

 0.14

 0.16

 0.18

 0.20

LRU ARC GDS(latency)

GDS(price)

GDS−LC
GDS−LCF

M
o

n
e

ta
ry

 C
o

s
t(

$
)

Detailed Monetary Cost with Netfs

Data Transfer
GET Request
PUT Request

(b) Netfs

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

LRU ARC GDS(latency)

GDS(price)

GDS−LC
GDS−LCF

M
o

n
e

ta
ry

 C
o

s
t(

$
)

Detailed Monetary Cost with Media

Data Transfer
GET Request
PUT Request

(c) Media

Fig. 10. Internet cloud: Detailed monetary cost of Clark, Netfs, and Media with the cache size set to 10% of
the working set (i.e., the total size of unique objects). The monetary cost for accessing cloud objects includes
data transfer fee and request fee (see Table 2 for details).

replacement scheme may be different from the real value. Comparatively, the performance of
our solution GDS-LC is more stable. This is because we only adopt the latency-aware caching
scheme in the first region, and optimization including clean-dirty cost differentiation and latency
normalization contribute to improving the caching efficiency.

5.2.2 Internet Cloud. The Internet cloud system setup simulates a typical consumer cloud
storage environment. In this case, the client locates on our campus in Louisiana and accesses cloud
storage data stored in Amazon’s Oregon data center. Different with the local cloud scenario, the
RTT between the client and the cloud is high (113 ms), and the price of data transfer is also more
expensive. Figure 9 shows the results of different caching schemes in the Internet cloud scenario.
Particularly, for Clark and Media, in which the requests are read-intensive (dominated by GET
requests), the data transfer fee is much higher than request fee (see Figure 10(a) and 10(c)).

Similar to the results achieved in the local cloud scenario, GDS-LC and GDS-LCF perform the best,
and LRU performs the worst. However, we can also find some differences caused by the distinct
characteristics of the system setup in terms of latency and pricing policies in this scenario. The most
obvious difference is about the results of the monetary cost. For the Clark workload, for example,
the monetary cost of LRU is close to that of other caching schemes except GDS-LCF (see Figure 9(c)).
Comparatively, in the local cloud scenario, significant gaps can be observed between the result of
LRU and other caching schemes (see Figure 6(c)). This difference is caused by the charging of data
transfer out from the cloud. As shown in Figure 10(a), compared with LRU, GDS-LC has a lower
request fee but a much higher data transfer fee, so that the gap between the overall monetary cost
is narrowed down. The reason why GDS-LC has a higher data transfer fee is that GDS-LC prefers
to evict larger objects, leading to a larger data transfer traffic on cache misses.

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

1:20 B. Hou and F. Chen

In addition, for the monetary cost charged with the Netfs workload, GDS-LC and GDS-LCF
significantly outperform GDS(price) in the Internet cloud scenario (see Figure 9(f)); comparatively,
GDS-LC and GDS-LCF do not have obvious advantages over GDS(price) in the local cloud scenario
(see Figure 6(f)). From Figure 10(b), we can see that the data transfer fee and GET request fee
of GDS-LC and GDS(price) are close; the main difference comes from the PUT request fee. This
is understandable. Since the RTT in this scenario is quite high, the dirty objects that are not
synchronized by cache replacement cannot be quickly synchronized to the cloud; consequently,
GDS-LC, which adds weight to dirty objects, has better caching efficiency for dirty objects. This
explains why GDS-LC leads to lower PUT request fee.
Again, the results achieved in this scenario demonstrate the merits of GDS-LC and GDS-LCF.

For monetary cost, GDS-LCF performs better than GDS-LC; for average latency, the performance
of GDS-LC and GDS-LCF are comparable, and both outperform other algorithms.

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

H
it
 R

a
ti
o

(%
)

Cache Size (% of total unique object size)

Hit Ratio with Clark

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(a) Hit Ratio

 40

 60

 80

 100

 120

 140

 160

 180

 200

 6 8 10 12 14 16 18 20

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency with Clark

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(b) Average Latency

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 6 8 10 12 14 16 18 20

M
o

n
e

ta
ry

 C
o

s
t(

$
)

Cache Size (% of total unique object size)

Monetary Cost with Clark

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(c) Monetary Cost

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

H
it
 R

a
ti
o

(%
)

Cache Size (% of total unique object size)

Hit Ratio with Netfs

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(d) Hit Ratio

 80

 100

 120

 140

 160

 180

 200

 6 8 10 12 14 16 18 20

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency with Netfs

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(e) Average Latency

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 6 8 10 12 14 16 18 20

M
o

n
e

ta
ry

 C
o

s
t(

$
)

Cache Size (% of total unique object size)

Monetary Cost with Netfs

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(f) Monetary Cost

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

H
it
 R

a
ti
o

(%
)

Cache Size (% of total unique object size)

Hit Ratio with Media

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(g) Hit Ratio

 50

 100

 150

 200

 250

 300

 350

 400

 6 8 10 12 14 16 18 20

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency with Media

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(h) Average Latency

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 6 8 10 12 14 16 18 20

M
o

n
e

ta
ry

 C
o

s
t(

$
)

Cache Size (% of total unique object size)

Monetary Cost with Media

LRU
ARC

GDS(latency)
GDS(price)

GDS-LC
GDS-LCF

(i) Monetary Cost

Fig. 11. Heterogeneous cloud: Hit ratios, average latencies, and monetary cost of Clark, Netfs, and Media.

5.2.3 Heterogeneous Cloud. Heterogeneous cloud storage systems are generally adopted to
exploit the advantages of multiple clouds. For example, RACS [1] adopts an RAID-like structure,
which provides high-level data availability and reliability and prevents vendor lock-in problem.

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

GDS-LC: A Latency and Cost Aware Client Caching Scheme for Cloud Storage 1:21

Several other cloud-based storage systems, such as NCCloud [36] and DepSky [10], are also based
on distributing data to multiple clouds. Another use case is to integrate different cloud storage
services to uniformly access the storage space, especially for the purpose of utilizing the free tiers
(e.g., AWS free tier [5] and Google cloud platform free tier [30]). In this case, the data may also be
distributed to heterogeneous clouds.

In our experiments, to emulate the heterogeneous cloud storage system environment, we set up
an EC2 instance in Amazon’s Singapore data center as the client, which simultaneously connects
to two cloud storage locating in Amazon’s Oregon and Tokyo data centers. For each data set, we
evenly distribute the objects to these two data centers, organizing the data similar to RAID-0. An
interesting fact is the difference of the pricing and network delay – Due to a shorter geographic
distance to the client, the Tokyo data center can provide a shorter latency (a 74 ms RTT) for cloud
storage I/Os than the Oregon data center (a 161 ms RTT). However, its pricing on data transfers
is significantly higher than the Oregon data center (see Table 2). The client caching scheme has
to intelligently tradeoff and balance the two cloud storage sources for data accesses – for each
eviction decision, it needs to choose either the closer but more expensive Tokyo data center or the
farther but cheaper Oregon data center. This is particularly difficult for caching schemes.

As shown in Figure 11, our proposed GDS-LC and GDS-LCF caching schemes perform very well
in this complicated scenario. LRU performs the worst, and GDS-LC can optimize both latency and
monetary cost when being compared with the original GDS algorithms (i.e., GDS(latency) and
GDS(price)); particularly in some cases, GDS-LC and GDS-LCF can perform much better than the
GDS algorithms. These results well demonstrate the effect of our approach – our caching solution
can well optimize both the latency and monetary cost in complicated environment.

 0

 5

 10

 15

 20

 25

 30

5 10 15 20

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency Error Bars with Clark

LRU
ARC
GDS(latency)
GDS(price)
GDS−LC
GDS−LCF

(a) Clark

 5

 10

 15

 20

 25

 30

 35

 40

 45

5 10 15 20

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency Error Bars with Netfs

LRU
ARC
GDS(latency)
GDS(price)
GDS−LC
GDS−LCF

(b) Netfs

 0

 5

 10

 15

 20

 25

 30

5 10 15 20

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency Error Bars with Media

LRU
ARC
GDS(latency)
GDS(price)
GDS−LC
GDS−LCF

(c) Media

Fig. 12. Local cloud: Observed variances of average latencies.

5.2.4 Variance of Experimental Results. In addition to system performance, we have also exam-
ined the variance, which can be caused by the unexpected dynamics of network performance and

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

1:22 B. Hou and F. Chen

 0

 20

 40

 60

 80

 100

 120

 140

5 10 15 20

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency Error Bars with Clark

LRU
ARC
GDS(latency)
GDS(price)
GDS−LC
GDS−LCF

(a) Clark

 0

 20

 40

 60

 80

 100

 120

 140

5 10 15 20

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency Error Bars with Netfs

LRU
ARC
GDS(latency)
GDS(price)
GDS−LC
GDS−LCF

(b) Netfs

 0

 50

 100

 150

 200

 250

 300

5 10 15 20

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency Error Bars with Media

LRU
ARC
GDS(latency)
GDS(price)
GDS−LC
GDS−LCF

(c) Media

Fig. 13. Internet cloud: Observed variances of average latencies.

 0

 50

 100

 150

 200

 250

5 10 15 20

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency Error Bars with Clark

LRU
ARC
GDS(latency)
GDS(price)
GDS−LC
GDS−LCF

(a) Clark

 0

 50

 100

 150

 200

 250

5 10 15 20

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency Error Bars with Netfs

LRU
ARC
GDS(latency)
GDS(price)
GDS−LC
GDS−LCF

(b) Netfs

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

5 10 15 20

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency Error Bars with Media

LRU
ARC
GDS(latency)
GDS(price)
GDS−LC
GDS−LCF

(c) Media

Fig. 14. Heterogeneous cloud: Observed variances of average latencies.

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

GDS-LC: A Latency and Cost Aware Client Caching Scheme for Cloud Storage 1:23

cloud services. As presented in Section 5.1.4, we use the standard error of the values of each metric
(i.e., hit ratio, average latency, and monetary cost) measured from five runs of the experiments to
describe the variance. Since the observed variances of hit ratios and monetary cost are insignificant,
for brevity, we only show the observed variances of the average latencies in Figure 12, 13, and 14.

From the figures, we can see that the absolute values of the variances observed in the local cloud
scenario are lower than those observed in the other two scenarios; however, we do not observe
obvious differences with respect to the relative variances (i.e., the ratio of the variance and the
average latency), which are about 5% - 10% in all the working scenarios. As for the latency variances
observed on the experimental results of different caching schemes, we find that when the hit ratios
are relatively low, the variances of average latencies are relatively higher. That is because a lower
hit ratio means that the client has to more frequently access the cloud and thus is more likely to
subject to a larger variation of average access latencies. In particular, for LRU and ARC, the miss
ratios of these caching schemes are higher than others, especially when the cache sizes are small,
we can observe relatively larger variances on the average access latencies achieved by these two
caching schemes.

It is worth noting that the discussions on the observed variances should be confined in the context
of our experimental platform and the runs of our experiments; in other words, the comparisons are
based on our observations and should be not be regarded as general conclusions.

5.3 Sensitivity Study on Partition Size
Cache partitioning may influence the caching decision and its effectiveness. To evaluate the
sensitivity of the GDS-LCF caching scheme to the cache partition size, in this experiments, we run
three workloads with the three system setups by using four different ratios of performance-to-price
regions, specifically 1:2, 1:1, 2:1, and 1:3. For brevity, we use the Internet cloud scenario to illustrate
the effect of cache partitioning.

As shown in Figure 15, we can see that the effect of cache partitioning is workload dependent. In
Clark and Media, the three partition ratios have a relatively weak impact on the observed latencies,
hit ratio, and cost. In contrast, the Netfs workload exhibits certain distinctions. Generally, the ratio
1:2 is a reasonably sound choice to effectively reduce both access latency and monetary cost (see
Figure 15(e) and 15(f)). Particularly, compared to the ratio 1:3, the ratio 1:2 can achieve comparable
monetary cost but significantly lower average latency. Thus, the 1:2 ratio is a proper choice.

Interestingly, we also note that a larger performance region does not necessarily result in a lower
average latency. As shown in Figure 15(e), for example, when the cache size is 10% of the working
set, increasing the performance region from one fourth of the cache size (with the ratio 1:3) to
one third of the cache size (with the ratio 1:2), the average latency decreases from 74 ms to 59 ms;
however, further increasing the performance partition to two thirds of the cache size (with the
ratio 2:1), the average latency increases from 59 ms to 80 ms. The effect is caused by the object
migration between the two regions (see Section 4.2). On the one hand, a larger performance region
means that the objects that have high values in terms of latency are more likely to be kept in local
cache. On the other hand, a larger performance region leads to a smaller price region, which means
that the objects demoted to the price region may be quickly evicted from the local cache and thus
have less opportunities to be promoted to the performance region again upon a second access.
Consequently, the relationship between the latency and the size of the performance region is not a
simple linear function.

5.4 Impact of Latency Normalization
As analyzed in Section 4.2.1, the latency variance for accessing cloud storagemay affect the efficiency
of latency-aware caching schemes, and we adopt an adaptive normalization approach based on the

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

1:24 B. Hou and F. Chen

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

H
it
 R

a
ti
o
(%

)

Cache Size (% of total unique object size)

Hit Ratio with Clark

GDS-LCF-2:1
GDS-LCF-1:1
GDS-LCF-1:2
GDS-LCF-1:3

(a) Hit Ratio

 30

 40

 50

 60

 70

 80

 90

 6 8 10 12 14 16 18 20
A

v
e
ra

g
e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency with Clark

GDS-LCF-2:1
GDS-LCF-1:1
GDS-LCF-1:2
GDS-LCF-1:3

(b) Average Latency

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 6 8 10 12 14 16 18 20

M
o
n
e
ta

ry
 C

o
s
t(

$
)

Cache Size (% of total unique object size)

Monetary Cost with Clark

GDS-LCF-2:1
GDS-LCF-1:1
GDS-LCF-1:2
GDS-LCF-1:3

(c) Monetary Cost

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

H
it
 R

a
ti
o
(%

)

Cache Size (% of total unique object size)

Hit Ratio with Netfs

GDS-LCF-2:1
GDS-LCF-1:1
GDS-LCF-1:2
GDS-LCF-1:3

(d) Hit Ratio

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency with Netfs

GDS-LCF-2:1
GDS-LCF-1:1
GDS-LCF-1:2
GDS-LCF-1:3

(e) Average Latency

 0.08
 0.09
 0.1

 0.11
 0.12
 0.13
 0.14
 0.15
 0.16
 0.17
 0.18
 0.19

 6 8 10 12 14 16 18 20

M
o
n
e
ta

ry
 C

o
s
t(

$
)

Cache Size (% of total unique object size)

Monetary Cost with Netfs

GDS-LCF-2:1
GDS-LCF-1:1
GDS-LCF-1:2
GDS-LCF-1:3

(f) Monetary Cost

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

H
it
 R

a
ti
o
(%

)

Cache Size (% of total unique object size)

Hit Ratio with Media

GDS-LCF-2:1
GDS-LCF-1:1
GDS-LCF-1:2
GDS-LCF-1:3

(g) Hit Ratio

 40

 60

 80

 100

 120

 140

 160

 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency with Media

GDS-LCF-2:1
GDS-LCF-1:1
GDS-LCF-1:2
GDS-LCF-1:3

(h) Average Latency

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 6 8 10 12 14 16 18 20

M
o
n
e
ta

ry
 C

o
s
t(

$
)

Cache Size (% of total unique object size)

Monetary Cost with Media

GDS-LCF-2:1
GDS-LCF-1:1
GDS-LCF-1:2
GDS-LCF-1:3

(i) Monetary Cost

Fig. 15. Internet cloud: Evaluation of the effects of different size ratios of the performance region and the cost
region. Shown in the figures are hit ratios, average latencies, and monetary cost of Clark, Netfs, and Media
achieved by our caching scheme GDS-LCF with different size ratios.

observed Round Trip Time (RTT) between the client and the cloud to alleviate this problem. In this
section, we further discuss the impact of normalization.

To evaluate the effects of the normalization approach, we conduct a set of experiments with our
proposed GDS-LC and GDS-LCF and the GDS(latency). We set four different normalization levels:
(1) NoNorm: directly using the absolutely value of latency; (2) Norm-1rtt, using 1x RTT (Round Trip
Time) between the client and the cloud as the normalization factor; (3) Norm-10rtt, normalizing with
10x RTT; (4) Norm-100rtt, normalizing with 100x RTT. We run the experiments for ten times, report
the average value of each metric, and calculate the standard error as the variance (see Section 5.1.4).
Figure 16 shows the experiments in the local cloud scenario, and the cache size is set to be 10%

of the working set. From the figure, we can see that the hit ratios increase as the values of the
normalization factors increase; however, the increase of hit ratios does not always lead to lower
average latencies. As shown in the figures, we find that setting the normalization factor to be 10x
RTT achieves the best performance among the settings; meanwhile, setting the normalization factor

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

GDS-LC: A Latency and Cost Aware Client Caching Scheme for Cloud Storage 1:25

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

GDS(latency) GDS−LC GDS−LCF

H
it
 R

a
ti
o

(%
)

Caching Scheme

Hit Ratio with Clark

NoNorm
Norm−1rtt
Norm−10rtt
Norm−100rtt

(a) Hit Ratio

 0

 2

 4

 6

 8

 10

 12

 14

GDS(latency) GDS−LC GDS−LCF

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

Caching Scheme

Average Latency with Clark

NoNorm
Norm−1rtt
Norm−10rtt
Norm−100rtt

(b) Average Latency

 0.000

 0.002

 0.004

 0.006

 0.008

 0.010

 0.012

 0.014

 0.016

 0.018

 0.020

GDS(latency) GDS−LC GDS−LCF

M
o
n
e
ta

ry
 C

o
s
t(

$
)

Caching Scheme

Monetary Cost with Clark

NoNorm
Norm−1rtt
Norm−10rtt
Norm−100rtt

(c) Monetary Cost

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

GDS(latency) GDS−LC GDS−LCF

H
it
 R

a
ti
o

(%
)

Caching Scheme

Hit Ratio with Netfs

NoNorm
Norm−1rtt
Norm−10rtt
Norm−100rtt

(d) Hit Ratio

 0

 5

 10

 15

 20

 25

 30

 35

GDS(latency) GDS−LC GDS−LCF

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

Caching Scheme

Average Latency with Netfs

NoNorm
Norm−1rtt
Norm−10rtt
Norm−100rtt

(e) Average Latency

 0.00

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

GDS(latency) GDS−LC GDS−LCF

M
o

n
e

ta
ry

 C
o

s
t(

$
)

Caching Scheme

Monetary Cost with Netfs

NoNorm
Norm−1rtt
Norm−10rtt
Norm−100rtt

(f) Monetary Cost

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

GDS(latency) GDS−LC GDS−LCF

H
it
 R

a
ti
o

(%
)

Cache Scheme

Hit Ratio with Media

NoNorm
Norm−1rtt
Norm−10rtt
Norm−100rtt

(g) Hit Ratio

 0

 2

 4

 6

 8

 10

 12

 14

 16

GDS(latency) GDS−LC GDS−LCF

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

Caching Scheme

Average Latency with Media

NoNorm
Norm−1rtt
Norm−10rtt
Norm−100rtt

(h) Average Latency

 0.000

 0.002

 0.004

 0.006

 0.008

 0.010

GDS(latency) GDS−LC GDS−LCF

M
o
n
e
ta

ry
 C

o
s
t(

$
)

Caching Scheme

Monetary Cost with Media

NoNorm
Norm−1rtt
Norm−10rtt
Norm−100rtt

(i) Monetary Cost

Fig. 16. Local cloud: The performance of GDS(latency), GDS-LC, and GDS-LCF with different normalization
factors for Clark, Netfs, and Media. The cache size is set to 10% of the working set.

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

GDS(latency) GDS−LC GDS−LCF

H
it
 R

a
ti
o

(%
)

Cache Scheme

Hit Ratio with Media

NoNorm
Norm−1rtt
Norm−10rtt
Norm−100rtt

(a) Hit Ratio

 0

 20

 40

 60

 80

 100

 120

 140

GDS(latency) GDS−LC GDS−LCF

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

Caching Scheme

Average Latency with Media

NoNorm
Norm−1rtt
Norm−10rtt
Norm−100rtt

(b) Average Latency

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

GDS(latency) GDS−LC GDS−LCF

M
o

n
e

ta
ry

 C
o

s
t(

$
)

Caching Scheme

Monetary Cost with Media

NoNorm
Norm−1rtt
Norm−10rtt
Norm−100rtt

(c) Monetary Cost

Fig. 17. Internet cloud: The performance of GDS(latency), GDS-LC, and GDS-LCF with different normalization
factors for Media. The cache size is set to be 10% of the working set.

as 1x RTT brings trivial benefits and 100x RTT may reduce the benefits. That is because local cloud
has low RTT (i.e., 0.28 ms). With setting the normalization factor to be 1x RTT, the interference of
the latency variance cannot be effectively reduced; while setting the normalization factor to 100x

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

1:26 B. Hou and F. Chen

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

GDS(latency) GDS−LC GDS−LCF

H
it
 R

a
ti
o

(%
)

Caching Scheme

Hit Ratio with Clark

NoNorm
Norm−1rtt
Norm−10rtt
Norm−100rtt

(a) Hit Ratio

 0

 20

 40

 60

 80

 100

 120

GDS(latency) GDS−LC GDS−LCF

A
v
e

ra
g

e
 L

a
te

n
c
y
(m

s
)

Caching Scheme

Average Latency with Clark

NoNorm
Norm−1rtt
Norm−10rtt
Norm−100rtt

(b) Average Latency

 0.00

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

GDS(latency) GDS−LC GDS−LCF

M
o

n
e

ta
ry

 C
o

s
t(

$
)

Caching Scheme

Monetary Cost with Clark

NoNorm
Norm−1rtt
Norm−10rtt
Norm−100rtt

(c) Monetary Cost

Fig. 18. Heterogeneous cloud: The performance of GDS(latency), GDS-LC, and GDS-LCF achieved by different
normalization factors for Clark. The cache size is set to be 10% of the working set.

RTT (i.e., 28 ms) normalizes the latencies of many objects to 1, which may decrease the overall
system performance. As for the impact of normalization on different caching schemes, we note
that the impact of normalization on GDS(latency) is more significant than that on GDS-LC and
GDS-LCF. That is because only the top region in the design of GDS-LC and GDS-LCF adopts the
latency-aware caching scheme and the object evicted from the top region will be migrated to the
second region and still has the opportunity to be fetched back instead of being immediately evicted
from the local cache, which makes them less sensitive to normalization than GDS(latency).
We also note that in the scenarios of Internet cloud and heterogeneous cloud, the normalization

factor 10x RTT can still achieve better performance than no normalization, but 1x RTT performs
better. The performance achieved by different caching schemes with the Media trace is shown in
Figure 17: when the normalization factor is larger than one RTT, the benefit brought by normal-
ization is diminishing; when the normalization factor is 100x RTT, the aggressive normalization
approach leads to performance loss. In the scenario of Internet cloud, the RTT is 113 ms, thus setting
the normalization factor to be 100x RTT (i.e., 11.3 seconds) means almost all the latencies of the
objects are normalized to 1. In this case, although the hit ratio is improved, the overall system
performance is decreased. Similarly, in the scenario of heterogeneous cloud, the minimum RTT
between the two (74 ms and 161 ms) is 74 ms, and setting the normalization factor to be higher than
10x RTT may cause negative effects (i.e., setting the normalization factor to be 100x RTT). Shown
in Figure 18 is the performance achieved by different caching schemes with the Clark trace, which
indicates setting the normalization factor to be 1x RTT performs the best among the settings.

Therefore, based on our observations, a proper normalization factor varies with different working
scenarios. In our platform, we find 10x RTT is a good choice for the scenario in which the client
and the cloud are in the same data center. A smaller normalization factor (e.g., 1x RTT) is good for
the scenarios in which the clients access the cloud across data centers, where the RTT between the
client and the cloud is a relatively larger value. Setting the normalization factor to an excessively
large one (e.g., 100x RTT) is generally undesirable, since it removes the capability of differentiating
access costs. It is also worth noting that the negative effects of latency variance to cost-aware
caching schemes cannot be completely eliminated due to the difficulty of accurately predicting
latency variance. In our proposed caching schemes, we attempt to reduce the interference of latency
variance by using an adaptive normalization approach. In practice, we can further improve the
accuracy of cost evaluations with the knowledge of the performance behaviors of cloud storage
services and the variance of network services, which can be gained by long-term observations. For
example, if we know that an object will be reloaded during the “busy hours” of the target cloud
storage (at the time when the cloud is busy with handling intensive requests, leading to longer

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

GDS-LC: A Latency and Cost Aware Client Caching Scheme for Cloud Storage 1:27

response time), the cost of evicting the object should be estimated higher than the download latency
measured beyond the “busy hours”.

5.5 Further Evaluation on GDS-LCF

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

H
it
 R

a
ti
o
(%

)

Cache Size (% of total unique object size)

Hit Ratio with Clark

GDSF(latency)
GDSF(price)

GDS-LCF

(a) Hit Ratio

 30

 40

 50

 60

 70

 80

 90

 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency with Clark

GDSF(latency)
GDSF(price)

GDS-LCF

(b) Average Latency

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 6 8 10 12 14 16 18 20

M
o
n
e
ta

ry
 C

o
s
t(

$
)

Cache Size (% of total unique object size)

Monetary Cost with Clark

GDSF(latency)
GDSF(price)

GDS-LCF

(c) Monetary Cost

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

H
it
 R

a
ti
o
(%

)

Cache Size (% of total unique object size)

Hit Ratio with Netfs

GDSF(latency)
GDSF(price)

GDS-LCF

(d) Hit Ratio

 40

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency with Netfs

GDSF(latency)
GDSF(price)

GDS-LCF

(e) Average Latency

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 6 8 10 12 14 16 18 20

M
o
n
e
ta

ry
 C

o
s
t(

$
)

Cache Size (% of total unique object size)

Monetary Cost with Netfs

GDSF(latency)
GDSF(price)

GDS-LCF

(f) Monetary Cost

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

H
it
 R

a
ti
o
(%

)

Cache Size (% of total unique object size)

Hit Ratio with Media

GDSF(latency)
GDSF(price)

GDS-LCF

(g) Hit Ratio

 40

 60

 80

 100

 120

 140

 160

 180

 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency with Media

GDSF(latency)
GDSF(price)

GDS-LCF

(h) Average Latency

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 6 8 10 12 14 16 18 20

M
o
n
e
ta

ry
 C

o
s
t(

$
)

Cache Size (% of total unique object size)

Monetary Cost with Media

GDSF(latency)
GDSF(price)

GDS-LCF

(i) Monetary Cost

Fig. 19. Internet cloud: Comparisons of GDS-LCF, GDSF(latency), and GDSF(price).

GDS-LCF is an enhanced version of GDS-LC. By introducing frequency into the cost functions
of GDS-LC, GDS-LCF gives higher caching priority to frequently accessed objects. As shown in
Section 5.2, GDS-LCF outperforms traditional caching schemes (i.e., LRU and ARC) and GreedyDual-
Size (GDS) with different settings (i.e., GDS(latency) and GDS(price)) and can successfully improve
the caching efficiency of GDS-LC in most cases. In this section, we further compare GDS-LCF with
the frequency-enhanced version of GDS called GDSF and discuss the enhancement.
Both GDS-LCF and GDSF are enhanced by introducing frequency. GDS-LCF is an enhanced

version of GDS-LC, and GDSF is an enhanced version of GDS. We expect that the advantage of
GDS-LCF over GDSF is similar to the advantage of GDS-LC over GDS: For read-intensive workloads,
GDS-LCF can optimize both performance and monetary cost instead of only one optimization goal;

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

1:28 B. Hou and F. Chen

for write-intensive workloads, GDS-LCF can significantly outperform GDSF, since the former has a
two-region design and can also differentiate the cost of evicting clean objects and dirty objects.

To verify our speculation, we implement GDSF, a frequency-enhanced version of GDS. As for the
frequency approximation, we count frequency to at most four. We also test other approximation
methods, for example, counting frequency to atmost 8, 16, or higher.We find that counting frequency
to at most four achieves comparable performance as other methods. Setting the optimization goals
as latency and monetary cost respectively, we get two versions of GDSF: GDSF(latency) and
GDSF(price).
Figure 19 shows the performance comparison of GDS-LCF, GDSF(latency), and GDSF(price)

with different traces in the Internet cloud scenario. The experimental results have confirmed our
speculation: for the read-intensive traces Clark and Media, GDS-LCF can achieve comparable
average latency to GDSF(latency) and comparable monetary cost to GDSF(price), successfully
optimizing both goals; for the write-intensive trace Netfs, GDS-LCF have much better performance
than GDSF(latency) and GDSF(price).

5.6 Comparisons to GDS Enhanced with Clean-dirty Differentiation

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

H
it
 R

a
ti
o
(%

)

Cache Size (% of total unique object size)

Hit Ratio with Netfs

GDS-L
GDS-LC

(a) Hit Ratio

 45

 50

 55

 60

 65

 70

 75

 80

 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency with Netfs

GDS-L
GDS-LC

(b) Average Latency

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 6 8 10 12 14 16 18 20

M
o
n
e
ta

ry
 C

o
s
t(

$
)

Cache Size (% of total unique object size)

Monetary Cost with Netfs

GDS-L
GDS-LC

(c) Monetary Cost

Fig. 20. Internet cloud: Comparisons of GDS-LC and GDS-L.

 50

 60

 70

 80

 90

 100

 6 8 10 12 14 16 18 20

H
it
 R

a
ti
o
(%

)

Cache Size (% of total unique object size)

Hit Ratio with Netfs

GDS-LF
GDS-LCF

(a) Hit Ratio

 45

 50

 55

 60

 65

 70

 75

 80

 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 L

a
te

n
c
y
(m

s
)

Cache Size (% of total unique object size)

Average Latency with Netfs

GDS-LF
GDS-LCF

(b) Average Latency

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 6 8 10 12 14 16 18 20

M
o
n
e
ta

ry
 C

o
s
t(

$
)

Cache Size (% of total unique object size)

Monetary Cost with Netfs

GDS-LF
GDS-LCF

(c) Monetary Cost

Fig. 21. Internet cloud: Comparisons of GDS-LCF and GDS-LF.

As stated in Section 4.2, a significant difference between the latency functions used in our caching
schemes (i.e., GDS-LC and GDS-LCF) and the original GDS-based policies (i.e., GDS(latency) and
GDSF) is that our latency functions have the capability of distinguishing clean and dirty objects.
Since in prior sections we have compared our caching schemes with the original GDS-based
policies, in this section, we further compare our caching schemes with the improved GDS-based

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

GDS-LC: A Latency and Cost Aware Client Caching Scheme for Cloud Storage 1:29

policies, which have the same latency functions as our caching schemes, called GDS-L and GDS-LF.
Compared to GDS-L and GDS-LC, GDS-L and GDS-LF do not have a price region and take all the
cache space as the performance region. Particularly, GDS-LF counts the access frequency at most
four in its cost functions, which is the same as that of GDSF (see Section 5.5).
Since no victim objects are dirty when working with the Clark trace and the Media trace (note

that Clark is highly read-intensive and a write-through policy is adopted and Media is read-only),
we use the Netfs trace in the experiments. Figure 20 shows the experimental results of GDS-L
and GDS-LC in the scenario of Internet cloud. Since GDS-LC has a price region to keep high-price
objects, it can significantly reduce the monetary cost. With respect to access latency, compared
to GDS-L, GDS-LC achieves comparable (even slightly better) performance. Although GDS-LC
reserves two-thirds of the cache space as the price region, the objects that have the highest cost in
terms of access latency are kept in the performance region, and the objects demoted to the price
region still have opportunities to be fetched back to the performance region; thus, GDS-LC can
achieve comparable average latency even with a smaller performance region. For similar reasons,
compared to GDS-LF, GDS-LCF achieves lower monetary cost and comparable average latency (see
Figure 21). The experimental results further demonstrate the advantages of our two-region design.

6 OTHER RELATEDWORK
Both cloud storage and cache replacement algorithms have received extensive studies. In this
section we present other prior work most related to this paper.

Cloud storage systems. Cloud storage recently has attracted a lot of research attention. A
variety of issues of cloud storage systems have been studied, such as performance, reliability,
availability, confidentiality, and service lock-in concerns [1, 7, 12, 26, 31, 36, 76]. Much research
has been first conducted to characterize the performance and I/O behaviors of cloud storage
(e.g., [8, 22, 23, 33–35, 47, 57, 72]). Our work is orthogonal to these studies.

Cloud-based file systems. For easy use of cloud storage, prior research has also attempted to
unify the I/O interfaces of cloud storage and file systems. For example, a cloud-backed network file
system for the enterprise use, called BlueSky [71], stores data in cloud storage and accesses storage
through an on-site proxy, which caches data and supports multiple protocols including NFS and
CIFS. Another similar network file system design, called RFS [21], is proposed for mobile devices.
SCFS [9] provides a POSIX-like interface on top of cloud storage. Similarly, S3FS [63] also provides
simple filesystem-like interfaces for Amazon Simple Storage Services (S3). These solutions typically
adopt an LRU-based caching scheme on local clients or proxies. Our work focuses particularly on
caching schemes and can potentially enhance these systems.

Commercial cloud-based storage products. Our work is also related to the caching algo-
rithms adopted by the commercial cloud storage products, including cloud proxies and gateways
(e.g., Nasuni [53], Twinstrata [69], CTERA [20], Panzura [58], StorSimple [66]). These products
mainly provide storage accelerating services, acting as a cloud-based cache between user applica-
tions and remote clouds. Although the implementation details of these products are not publicly
available, according to open documents, LRU is the most popular caching algorithm adopted by the
majority of these products [50, 54, 55, 59]. Our work aims at optimizing the cloud-based storage
systems with cost-aware caching by considering various factors, including access latency, price,
object size, and access recency and frequency, and can be flexibly applied in these working scenarios
to improve user experience in terms of not only performance but also monetary cost.

Cost-aware caching. Recent studies have studied cost-aware caching in different working
scenarios for different proposes. Jiang et al. presented an OS kernel buffer cache management
scheme, called DULO [40]. DULO leverages the speed distinction of random and sequential I/Os
on hard disk drives and gives higher caching priority to the blocks that are randomly accessed,

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

1:30 B. Hou and F. Chen

since random accesses are slower than sequential accesses on hard disk drives. Similarly, Li and
Cox customized also proposed a caching scheme based on GreedyDual-Size (GDS) [14], called
GD-Wheel, in the scenario of key-value stores by considering recomputing latency as cost [44].
Kim and Anh presented a caching scheme, called BPLRU, for improving random writes in flash
storage [42]. PS-BC [16] leverages the filtering effect of OS buffer cache to create bursty disk I/Os for
disk power saving. Forney et al. introduced a set of storage-aware caching algorithms that partition
the file buffer for heterogeneous storage and dynamically tune the partition sizes to balance the
workloads across the storage devices [27]. Liang et al. studied caching replacement policies for
distributed storage systems and proposed two off-line heuristics and an on-line algorithm by
considering access latencies as the major cost when deciding the victim data [46]. Araldo et al.
proposed two optimization models that either minimize the overall costs or maximize the hit-ratio,
jointly considering cache sizing, object placement, and path selection, and taking the retrieval
latency as the cost in the scenario of Information Centric Networks (ICNs) [6]. Jeong and Dubois
made several extensions of LRU, taking into account non-uniform miss costs (e.g., the latency,
penalty, power consumption, bandwidth consumption, or any other ad-hoc numerical property
attached to a miss) in different practical cases, such as multiprocessor memory systems and single
super-scalar processor systems [38].

Though sharing a similar design principle with these solutions by leveraging cost-awareness in
caching decisions, our solution particularly aims to enhance caching for cloud storage, which shows
distinct properties compared to other systems. In particular, its special performance behaviors
and pricing models demand us to focus on improving user experience with regard to both access
latency and monetary cost. Second, our caching scheme is designed for using cloud storage as
primary storage. In this scenario, I/O accesses are both read and write intensive, requiring us to
fully consider the access time of handling both clean and dirty data, rather than one-direction cloud
I/Os. Third, different from prior schemes that only consider the cost from only one aspect (e.g.,
latency, bandwidth, or energy), we aim at minimizing the cost from two orthogonal dimensions
(latency and price) at the same time.

Other advanced caching options. In addition to cost-aware caching algorithms, some other
advanced caching optimization has been introduced to improve caching efficiency. These caching
schemes can be roughly classified into four categories: (1) Leveraging application-level hints. For
example, application-controlled file caching [13] and informed prefetching and caching [60] are
motivated by making use of hints from applications. Recently, for the purpose of improving
cloud storage performance, Chen et al. presented a solution called Client-aware cloud storage,
which further leverages client-provided semantic hints to enhance server-side caching [15]. (2)
Tracing and utilizing history information. Some advanced caching algorithms (e.g., CLOCK-Pro [39],
ARC [49], LIRS [41], Multi-Queue [77]) utilize access history to assist cache replacement and thus
outperform LRU, which only takes recency in its caching consideration. Most of these schemes
leverage a deep caching history to identify weak-locality and low-frequency data and improve cache
performance. (3) Exploiting access patterns and data correlations. Prior studies have also exploited
the access patterns from history information to direct caching for virtual memory management
and buffer management (e.g., [17, 18, 28, 43]). In addition to these on-line methods, data semantic
relationships have also been exploited to improve caching efficiency. For example, Li et al. proposed
a data mining scheme working in storage systems to obtain block-level correlations that can be
used to direct caching and prefetching [45]. Some web mining (e.g., [52, 73]) and file correlations
algorithms (e.g., [25]) have also been leveraged to optimize caching in web services and file systems.
(4) Partitioning the shared cache. Cache partitioning is a typical method used to deal with the
cache sharing issues, working in the scenarios of sharing cache between multiple applications
or heterogeneous storage devices. For example, in prior work [27], the cache is partitioned for

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

GDS-LC: A Latency and Cost Aware Client Caching Scheme for Cloud Storage 1:31

heterogeneous storage systems, and each storage device is assigned a partition. Qureshi and Patt
also proposed a method that partitions a shared cache between multiple applications to reduce
cache misses for a given amount of cache resources [61]. Dynamic partitioning of shared cache
memory is also used to assign cache resources for simultaneously executing processes or threads
that can be applied to set-associative caches [67].
Our solution is largely orthogonal to these classic caching approaches. The key idea of our

solution is to address the unique requirements in cloud storage scenario and take both performance
and monetary cost into consideration with a cost-aware caching algorithm. We do not rely on
application-level hints, history information, or extra knowledge gained through data mining or
machine learning methods; however, our solution can be flexibly integrated with other optimization
methods. For example, each partition of a shared cache can be managed with our caching scheme.
In fact, as a special case, we have demonstrated the effectiveness and efficiency of GDS-LCF, which
is an integration of our basic scheme GDS-LC with another caching factor frequency. It would be
an interesting and practically valuable research topic to investigate how to properly integrate these
advanced caching schemes within our solution, which we leave as our future work.

7 CONCLUSIONS
Client caching is crucial to truly integrating cloud storage as a primary storage layer in computer
systems. By keeping the most valuable objects in local cache and evicting the least important ones,
client caching policies can influence future accesses. Leveraging such a filtering effect, we design
two unique caching schemes, called GDS-LC and GDS-LCF, with an attempt to minimize future
access latencies and monetary costs. Compared with traditional caching schemes, our experimental
results show that our solution can effectively improve the system performance and reduce the
system cost.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive feedback and insightful comments. This
work was supported in part by Louisiana Board of Regents under grant LEQSF(2014-17)-RD-A-01,
and National Science Foundation under grants CCF-1453705 and CCF-1629291.

REFERENCES
[1] Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon. 2010. RACS: A Case for Cloud Storage Diversity.

In Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC 2010). Indianapolis, IN.
[2] SoamAcharya and Brian Smith. 2000. Middleman: A Video Caching Proxy Server. In Proceedings of the 10th International

Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV 2000). Chapel Hill, NC.
[3] Amazon. 2016. Amazon S3 Pricing Policy. https://aws.amazon.com/s3/pricing/. (2016).
[4] Amazon. 2016. Netflix Case Study. https://aws.amazon.com/solutions/case-studies/netflix/. (2016).
[5] Amazon. 2017. AWS Free Tier. https://aws.amazon.com/free/. (2017).
[6] Andrea Araldo, Michele Mangili, Fabio Martignon, and Dario Rossi. 2014. Cost-aware Caching: Optimizing Cache Pro-

visioning and Object Placement in ICN. In Proceedings of the 2014 IEEE Global Communications Conference (GLOBECOM
2014). Austin, TX.

[7] Sobir Bazarbayev, Matti Hiltunen, Kaustubh Joshi, Richard Schlichting, and William Sanders. 2013. PSCloud: A Durable
Context-Aware Personal Storage Cloud. In Proceedings of the 9th Workshop on Hot Topics in Dependable Systems (HotDep
2013). Farmington, PA.

[8] Ignacio Bermudez, Stefano Traverso, Marco Mellia, and Maurizio Munafo. 2013. Exploring the Cloud from Passive
Measurement: The Amazon AWS Case. In Proceedings of the 32nd Annual IEEE International Conference on Computer
Communications (INFOCOM 2013). Turin, Italy.

[9] Bessani, Alysson, Ricardo Mendes, Tiago Oliveira, Nuno Neves, Miguel Correia, Marcelo Pasin, , and Paulo Verissimo.
2014. SCFS: A Shared Cloud-backed File System. In Proceedings of the 2014 USENIX Annual Technical Conference (ATC
2014). Philadelphia, PA.

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

1:32 B. Hou and F. Chen

[10] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo Sousa. 2013. DepSky: Dependable and
Secure Storage in a Cloud-of-Clouds. ACM Transactions on Storage 9, 4 (2013), 1–33.

[11] BlueCoat. 2017. https://www.bluecoat.com/sites/default/files/documents/files/Object_Caching.1.pdf. (2017).
[12] Nicolas Bonvin, Thanasis G. Papaioannou, and Karl Aberer. 2010. A Self-Organized, Fault-Tolerant and Scalable

Replication Scheme for Cloud Storage. In Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC 2010).
Indianapolis, Indiana.

[13] Pei Cao, Edward W Felten, and Kai Li. 1994. Application-Controlled File Caching Policies. In Proceedings of the 1994
USENIX Summer Technical Conference (USTC 1994). Boston, Massachusetts.

[14] Pei Cao and Sandy Irani. 1997. Cost-Aware WWW Proxy Caching Algorithms. In Proceedings of the 1997 USENIX
Symposium on Internet Technologies and Systems (USITS 1997). Monterey CA.

[15] Feng Chen,Michael P.Mesnier, and Scott Hahn. 2014. Client-aware Cloud Storage. In Proceedings of the 30th International
Conference on Massive Storage Systems and Technology (MSST 2014). Santa Clara, CA.

[16] Feng Chen and Xiaodong Zhang. 2010. PS-BC: Power-saving Considerations in Design of Buffer Caches Serving
Heterogeneous Storage Devices. In Proceedings of the 2010 International Symposium on Low Power Electronics and
Design (ISLPED 2010). Austin, TX.

[17] Jongmoo Choi, Sam H Noh, Sang Lyul Min, and Yookun Cho. 1999. An Implementation Study of a Detection-based
Adaptive Block Replacement Scheme. In Proceedings of the 1999 Annual USENIX Technical Conference (ATC 1999).
Monterey, CA.

[18] Jongmoo Choi, Sam H Noh, Sang Lyul Min, and Yookun Cho. 2000. Towards Application/File-level Characterization of
Block References. In Proceedings of the 2000 ACM SIGMETRICS Conference on Measuring and Modeling of Computer
Systems (SIGMETRICS 2000). Santa Clara, CA.

[19] ClarkNet. 2016. http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html. (2016).
[20] CTERA. 2017. CTERA Cloud Storage Gateways. http://www.ctera.com/. (2017).
[21] Yuan Dong, Jinzhan Peng, Dawei Wang, Haiyang Zhu, Fang Wang, Sun C. Chan, and Michael P. Mesnier. 2011. RFS -

A Network File System for Mobile Devices and the Cloud. SIGOPS Operating System Review 45, 1 (February 2011),
101–111.

[22] Idilio Drago, Enrico Bocchi, Marco Mellia, Herman Slatman, and Aiko Pras. 2013. Benchmarking Personal Cloud
Storage. In Proceedings of the 2013 ACM Conference on Internet Measurement Conference (IMC 2013). Barcelona, Spain.

[23] Idilio Drago, Marco Mellia, Maurizio M. Munafo, Anna Sperotto, Ramin Sadre, and Aiko Pras. 2012. Inside Dropbox:
Understanding Personal Cloud Storage Services. In Proceedings of the 2012 ACM Conference on Internet Measurement
Conference (IMC 2012). New York, NY.

[24] Dropbox. 2016. Dropbox. https://www.dropbox.com/. (2016).
[25] Patrick R. Eaton, Dennis Geels, and Greg Mori. 1999. Clump: Improving File System Performance Through Adaptive

Optimizations. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.227 (1999).
[26] D. Ford, F. Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie Grimes, and Sean

Quinlan. 2010. Availability in Globally Distributed Storage Systems. In Proceedings of 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2010). Vancouver, Canada.

[27] Brian C Forney, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2002. Storage-Aware Caching: Revisiting
Caching for Heterogeneous Storage Systems. In Proceedings of the 1st USENIX Conference on File and Storage Technologies
(FAST 2002). Monterey, CA.

[28] Gideon Glass and Pei Cao. 1997. Adaptive Page Replacement Based on Memory Reference Behavior. In Proceedings of
the 1997 ACM SIGMETRICS Conference on Measuring and Modeling of Computer Systems (SIGMETRICS 1997). Seattle,
WA.

[29] Google. 2016. Google Drive. https://www.google.com/drive/. (2016).
[30] Google. 2017. Google Cloud Platform Free Tier. https://cloud.google.com/free/docs/always-free-usage-limits. (2017).
[31] Ajay Gulati, Ganesha Shanmuganathan, Irfan Ahmad, Carl Waldspurger, and Mustafa Uysal. 2011. Pesto: Online

Storage Performance Management in Virtualized Datacenters. In Proceedings of the 2nd ACM Symposium on Cloud
Computing (SoCC 2011). Cascais, Portugal.

[32] Flex Hartanto, Jussi Kangasharju, Martin Reisslein, and KeithW Ross. 2002. Caching Video Objects: Layers vs Versions?.
In Proceedings of the 2002 IEEE International Conference on Multimedia and Expo (ICME 2002). Lausanne, Switzerland.

[33] Binbing Hou, Feng Chen, Zhonghong Ou, Ren Wang, and Michael Mesnier. 2016. Understanding I/O Performance
Behaviors of Cloud Storage from a Client’s Perspective. In Proceedings of the 32nd International Conference on Massive
Storage Systems and Technology (MSST 2016). Santa Clara, CA.

[34] Binbing Hou, Feng Chen, Zhonghong Ou, Ren Wang, and Michael Mesnier. 2017. Understanding I/O Performance
Behaviors of Cloud Storage from a Client’s Perspective. ACM Transactions on Storage 13, 2 (June 2017), 16:1–16:36.

[35] Wenjin Hu, Tao Yang, and Jeanna N. Matthews. 2010. The Good, the Bad and the Ugly of Consumer Cloud Storage.
ACM SIGOPS Operating Systems Review 44, 3 (July 2010), 110–115.

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

GDS-LC: A Latency and Cost Aware Client Caching Scheme for Cloud Storage 1:33

[36] Yuchong Hu, Henry C. H. Chen, Patrick P.C. Lee, and Yang Tang. 2012. NCCloud: Applying Network Coding for the
Storage Repair in a Cloud-of-Clouds. In Proceedings of the 10th USENIX Conference on File and Storage Technologies
(FAST 2012). San Jose, CA.

[37] InTheCloud. 2016. Spotify Moving onto Google Cloud is A Big Win for Google Over Amazon and Microsoft.
https://www.forbes.com/sites/alexkonrad/2016/02/23/spotify-is-a-big-win-for-google-cloud/#49cc582374b9. (2016).

[38] Jaeheon Jeong and Michel Dubois. 2003. Cost-sensitive Cache Replacement Algorithms. In Proceedings of the 9th
International Symposium on High Performance Computer Architecture (HPCA 2003). Anaheim, CA.

[39] Song Jiang, Feng Chen, and Xiaodong Zhang. 2005. CLOCK-Pro: An Effective Improvement of the CLOCK Replacement.
In Proceedings of the 2005 USENIX Annual Technical Conference (ATC 2005). Anaheim, CA.

[40] Song Jiang, Xiaoning Ding, Feng Chen, Enhua Tan, and Xiaodong Zhang. 2005. DULO: An Effective Buffer Cache
Management Scheme to Exploit Both Temporal and Spatial Localities. In Proceedings of the 4th USENIX Conference on
File and Storage Technologies (FAST 2005). San Francisco, CA.

[41] Song Jiang and Xiaodong Zhang. 2002. LIRS: An Efficient Low Inter-reference Recency Set Replacement Policy to
Improve Buffer Cache Performance. In Proceedings of the International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS 2002). Marina Del Rey, CA.

[42] Hyojun Kim and Seongjun Ahn. 2008. BPLRU: A Buffer Management Scheme for Improving Random Writes in Flash
Storage. In Proceedings of the 6th USENIX Conference on File and Storage Technologies (FAST 2008). San Jose, CA.

[43] Jong Min Kim, Jongmoo Choi, Jesung Kim, Sam H Noh, Sang Lyul Min, Yookun Cho, and Chong Sang Kim. 2000. A
Low-Overhead High-Performance Unified BufferManagement Scheme that Exploits Sequential and Looping References.
In Proceedings of the 4th Conference on Symposium on Operating System Design and Implementation (OSDI 2004). San
Francisco, CA.

[44] Conglong Li and Alan L Cox. 2015. GD-Wheel: A Cost-aware Replacement Policy for Key-value Stores. In Proceedings
of the 10th European Conference on Computer Systems (EuroSys 2015). ACM, Bordeaux, France.

[45] Zhenmin Li, Zhifeng Chen, Sudarshan M Srinivasan, and Yuanyuan Zhou. 2004. C-Miner: Mining Block Correlations
in Storage Systems. In Proceedings of the 1st USENIX Conference on File and Storage Technologies (FAST 2004). The
USENIX Association, San Francisco, CA.

[46] Shuang Liang, Ke Chen, Song Jiang, and Xiaodong Zhang. 2007. Cost-aware Caching Algorithms for Distributed
Storage Servers. In Proceedings of 21st International Symposium on Distributed Computing (DISC 2007). Lemessos,
Cyprus.

[47] Thomas Mager, Ernst Biersack, and Pietro Michiardi. 2012. A Measurement Study of the Wuala On-line Storage Service.
In Proceedings of the 12th IEEE International Conference on Peer-to-Peer Computing (P2P 2012). Sophia Antipolis, France.

[48] Richard McDougall, Joshua Crase, and Shawn Debnath. 2005. FileBench. (2005).
http://sourceforge.net/projects/filebench.

[49] N. Megiddo and D. Modha. 2003. ARC: A Self-tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd
USENIX Conference on File and Storage Technologies (FAST 2003). San Francisco, CA.

[50] Microsoft. 2016. ESG Microsoft Azure StorSimple White Paper. http://www6.nasuni.com/rs/445-ZDB-
645/images/CacheConfig.pdf. (2016).

[51] Microsoft. 2016. OneDrive. https://onedrive.live.com/. (2016).
[52] Alexandros Nanopoulos, Dimitrios Katsaros, and Yannis Manolopoulos. 2003. A Data Mining Algorithm for Generalized

Web Prefetching. IEEE Transactions on Knowledge and Data Engineering 15, 5 (2003), 1155–1169.
[53] Nasuni. 2016. Nasuni. https://www.nasuni.com/. (2016).
[54] Nasuni. 2016. Nasuni Cache Configuration. http://www6.nasuni.com/rs/445-ZDB-645/images/CacheConfig.pdf. (2016).
[55] NetApp. 2016. NetApp SteelStore Cloud Integrated Storage 3.2 Deployment Guide.

https://library.netapp.com/ecm/ecm_download_file/ECMP12031272. (2016).
[56] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. 1993. The LRU-K Page Replacement Algorithm for

Database Disk Buffering. In Proceedings of the 1993 ACM International Conference on Management of Data (SIGMOD
1993). Washington, D.C.

[57] Zhonghong Ou, Zhen-Huan Hwang, Antti Ylä-Jääski, Feng Chen, and Ren Wang. 2015. Is Cloud Storage Ready? A
Comprehensive Study of IP-based Storage Systems. In Proceedings of the 8th IEEE/ACM International Conference on
Utility and Cloud Computing (UCC 2015). Limassol, Cyprus.

[58] Panzura. 2016. Panzura. http://panzura.com/. (2016).
[59] Panzura. 2016. Panzura Debuts Version 3.0 of its Global Cloud Storage System. http://panzura.com/press-

releases/panzura-debuts-version-3-0-of-its-global-cloud-storage-system/. (2016).
[60] R Hugo Patterson, Garth A, Eka Ginting, Daniel Stodolsky, and Jim Zelenka. 1995. Informed Prefetching and Caching.

In Proceedings of the 15th Symposium on Operating System Principles (SOSP 1995). Copper Mountain, CO.
[61] Moinuddin K Qureshi and Yale N Patt. 2006. Utility-based Cache Partitioning: A Low-overhead, High-performance,

Runtime Mechanism to Partition Shared Caches. In Proceedings of the 39th Annual IEEE/ACM International Symposium

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

1:34 B. Hou and F. Chen

on Microarchitecture (MICRO 2006). Orlando, FL.
[62] S3Backer. 2016. S3Backer. https://code.google.com/p/s3backer/. (2016).
[63] S3FS. 2016. S3FS. https://code.google.com/p/s3fs/. (2016).
[64] Muhammad Zubair Shafiq, Alex X Liu, and Amir R Khakpour. 2014. Revisiting Caching in Content Delivery Networks.

ACM SIGMETRICS Performance Evaluation Review 42, 1 (2014), 567–568.
[65] StorageServers. 2013. Dropbox Uses Amazon S3 Services for Storage! (2013).

https://storageservers.wordpress.com/2013/10/ 25/dropbox-uses-amazon-s3-services-for-storage/.
[66] StorSimple. 2016. Azure StorSimple. https://www.microsoft.com/en-us/cloud-platform/azure-storsimple. (2016).
[67] G Edward Suh, Larry Rudolph, and Srinivas Devadas. 2004. Dynamic Partitioning of Shared Cache Memory. The

Journal of Supercomputing 28, 1 (2004), 7–26.
[68] Wenting Tang, Yun Fu, Ludmila Cherkasova, and Amin Vahdat. 2003. Medisyn: A Synthetic Streaming Media Service

Workload Generator. In Proceedings of the 13th International Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV 2003). Monterey, CA.

[69] TwinStrata. 2016. TwinStrata. http://www.emc.com/domains/cloudarray/. (2016).
[70] VideoCache. 2017. VideoCache. https://cachevideos.com/. (2017).
[71] Michael Vrable, Stefan Savage, and Geoffrey M. Voelker. 2012. BlueSky: A Cloud-Backed File System for the Enterprise.

In Proceedings of the 10th USENIX Conference on File and Storage Technologies (FAST 2012). San Jose, CA.
[72] Haiyang Wang, Ryan Shea, Feng Wang, and Jiangchuan Liu. 2012. On the Impact of Virtualization on Dropbox-like

Cloud File Storage/Synchronization Services. In Proceedings of the 20th International Workshop on Quality of Service
(IWQoS 2012). Coimbra, Portugal.

[73] Qiang Yang, Haining Henry Zhang, and Tianyi Li. 2001. Mining Web Logs for Prediction Models in WWW Caching
and Prefetching. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (SIGKDD 2001). San Francisco, CA.

[74] Suli Yang, Kiran Srinivasan, Kishore Udayashankar, Swetha Krishnan, Jingxin Feng, Yupu Zhang, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. 2016. Tombolo: Performance Enhancements for Cloud Storage Gateways. In
Proceedings of the 32nd International Conference on Massive Storage Systems and Technology (MSST 2016). Santa Clara,
CA.

[75] Neal Young. 1994. The K-server Dual and Loose Competitiveness for Paging. Algorithmica 11, 6 (1994), 525–541.
[76] Rui Zhang, Ramani Routray, David Eyers, David Chambliss, Prasenjit Sarkar, Douglas Willcocks, and Peter Pietzuch.

2011. IO Tetris: Deep Storage Consolidation for the Cloud via Fine-grained Workload Analysis. In Proceedings of the
4th IEEE International Conference on Cloud Computing (CLOUD 2011). Washington D.C.

[77] Yuanyuan Zhou, James F. Philbin, and Kai Li. 2001. The Multi-Queue Replacement Algorithm for Second Level Buffer
Caches. In Proceedings of the 2001 USENIX Annual Technical Conference (ATC 2001). Boston, MA.

Received February 2007; revised March 2009; accepted June 2009

ACM Transactions on Storage, Vol. 13, No. 4, Article 1. Publication date: January 2017.

	Abstract
	1 Introduction
	2 Background
	2.1 Cloud Storage Services
	2.2 Cloud Storage Clients
	2.3 GreedyDual-Size (GDS)

	3 Caching Issues
	3.1 Challenges
	3.2 Revisiting GreedyDual-Size (GDS) in Cloud Storage

	4 Design of GDS-LC
	4.1 Cache Space Management
	4.2 Cost-aware Caching Replacement
	4.3 Further Enhancement

	5 Performance Evaluation
	5.1 Experimental Methodology and Environment
	5.2 Basic Experimental Results
	5.3 Sensitivity Study on Partition Size
	5.4 Impact of Latency Normalization
	5.5 Further Evaluation on GDS-LCF
	5.6 Comparisons to GDS Enhanced with Clean-dirty Differentiation

	6 Other Related Work
	7 Conclusions
	Acknowledgments
	References

