Oblivious Routing on Geometric Networks

Costas Busch, Malik Magdon-Ismail and Jing Xi
{buschc,magdon,xij2}@cs.rpi.edu

July 20, 2005.
Oblivious Routing: Background and Our Contribution

- The Algorithm: Oblivious Routing with Single Intermediate Node
- Good Geometric (Metric) Embeddings; Examples
- Routing Result; Examples
- Discussion
Routing: construct “good” paths given sources and destinations.

- Communication Networks – eg. Internet.
- Ad-hoc Networks – eg. sensor networks.
- Parallel Architectures – eg. Mesh.
- ...
Routing: construct “good” paths given sources and destinations.

- Communication Networks – eg. Internet.
- Ad-hoc Networks – eg. sensor networks.
- Parallel Architectures – eg. Mesh.
- ...

Wish List: simple, scalable, efficient, near-optimal, general
Oblivious Routing

A packet’s path is specified independently of other packets’ paths.

- Suffices to specify algorithm for any single packet to select its path.
- Every packet uses this algorithm independent of other packets.

distributed, hence scalable;
applies to dynamic (online) setting with streaming packets;

(A packet π is a source-destination pair $\langle s, t \rangle$)
Optimality of Paths

Congestion

$C(v)$: number of paths using node v

$C(v) = 6$

Congestion (C): $\max_e C(e)$

C^*: optimal congestion

Stretch

$\text{stretch}(\pi): \frac{D(\pi)}{d(\pi)}$ ← packet's path length

stretch: $\max_\pi \text{stretch}(\pi)$

$\text{stretch} = 2$

Optimal: $C = O(C^*)$; stretch $= O(1)$

(Similarly can define w.r.t. edge congestion C_{edge}.)

Srinivasan et al. [STOC97]: Near-optimal; offline; non-oblivious.
Related Work – Opt. C

d-dim Mesh:

$C = O(C^* \cdot d \cdot \log n)$

(Maggs et al. [FOCS97])

(Also gave a lower bound $\Omega(C^* \cdot \frac{1}{d} \cdot \log n)$)

Arbitrary:

$C = O(C^* \log^3 n)$

Räcke [FOCS02], (non-constructive)

Azar et al. [STOC03]

Harrelson et al. [SPAA03]

Bienkowski et al. [SPAA03] (Polynomial-time, constructive)

Bansal et al. [SPAA03], (On-line version)

Oblivious algorithms with near-optimal C; **Unbounded** stretch

simple, scalable, efficient, near-optimal, general
Congestion–Stretch Trade Off

Good stretch, Bad C Bad stretch, Good C

We want **Good Stretch, Good C**
Related Work – Opt. $C, \text{stretch}$

d-dim Mesh: $C = O(C^* \cdot d^2 \cdot \log n)$; stretch $= O(d^2)$;
(Busch et al. [IPDPS05])
(Also lower bound $\Omega(\log d(\pi))$ random bits per packet)
(Scheidler (class notes) indep. considered $d = 2$)

Arbitrary: Not Possible (constructive).

simple, scalable, efficient, near-optimal, general
Hierarchical Decompositions

Existing algorithms use hierarchical network decompositions
Hierarchical Decompositions

Existing algorithms use hierarchical network decompositions
Hierarchical Decompositions

Existing algorithms use **hierarchical network decompositions**
Hierarchical Decompositions

Existing algorithms use **hierarchical network decompositions**
Hierarchical Decompositions

Existing algorithms use **hierarchical network decompositions**
Hierarchical Decompositions

Existing algorithms use hierarchical network decompositions
The Gap

simple, scalable, efficient, near-optimal, general
↓
simple, scalable, efficient, near-optimal, general
↓?
simple, scalable, efficient, near-optimal, general

(Not Possible)
Our Contribution

simple, scalable, efficient, near-optimal, general

↓

simple, scalable, efficient, near-optimal, general

↓

simple, scalable, efficient, near-optimal, general

Link Routing to Finite Metric Embedding
Our Contribution

Simple: Single intermediate point algorithm, not based on hierarchical decomposition.

Near-Optimal: For networks that have low distortion embeddings, eg. Mesh, sensor networks.

General: Result holds for all networks.
General Idea: Diffusive Routing

Imagine the network in space [Network Embedding]

source: s; destination: t.
General Idea: Diffusive Routing

Imagine the network in space [Network Embedding]

Packet “diffuses” out from s – congestion spreads.
General Idea: Diffusive Routing

Imagine the network in space [Network Embedding]

Packet “focuses” back to t.
General Idea: Diffusive Routing

Imagine the network in space [Embedded Network]

Diffusion by random choice of intermediate node.
Outline

• Oblivious Routing: Background and Our Contribution

• The Algorithm: Oblivious Routing with Single Intermediate Node

• Good Geometric (Metric) Embeddings; Examples

• Routing Result; Examples

• Discussion
I: Embed the Network

Embedding function $f : v \in V \mapsto x \in A \subset \mathbb{R}^2$; \(\{v_1, \ldots, v_n\} \mapsto \{x_1, \ldots, x_n\} \)
II: Random Intermediate Point

\[|\ell\perp| = |\ell| \]
Choose a node close to the random intermediate point.
III: Follow the Geodesic

Choose a path as close as possible to the geodesic.
Choose a path as close as possible to the geodesic.
III: Follow the Geodesic

Choose a path as close as possible to the geodesic.
Choose a path as close as possible to the geodesic.
Outline

• Oblivious Routing: Background and Our Contribution

• The Algorithm: Oblivious Routing with Single Intermediate Node

• Good Geometric (Metric) Embeddings; Examples

• Routing Result; Examples

• Discussion
What Can Go Wrong?

Entire diffusive area is not within the network.

\(\gamma \) (pseudo-convexity): fraction guaranteed to lie within network.

– Want \(\gamma \) to be large (note, \(\gamma \leq \frac{1}{2} \)).
What Can Go Wrong?

There is no node close to the random intermediate node R (Coverage Radius): Maximum distance to an intermediate node.
– Want R to be small.
What Can Go Wrong?

No Geodesic following path

\(\Delta \) (Deviation): Furtherest a geodesic path gets from the geodesic.
– Want \(\Delta \) to be small.
What Can Go Wrong?

Geodesic following paths have large stretch.

Σ (Geodesic Stretch): Maximum stretch of a geodesic path.

– Want Σ to be small.
What Can Go Wrong?

Using an intermediate node is costly (large stretch).

\[\text{dist}_E(s, w) + \text{dist}_E(w, t) \leq \sqrt{2} \text{dist}_E(s, t). \]

Want \(\text{dist}_G \approx \text{dist}_E \).

Distortion: \(\alpha \leq \frac{\text{dist}_G(u, v)}{\text{dist}_E(u, v)} \leq \beta \)

(w.l.o.g. \(\alpha = 1 \))

\(\text{dist}_E = \text{Euclidean distance, dist}_G = \text{Graph distance} \)
Graph Embedding Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>What is it?</th>
<th>Best If</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>Pseudo-Convexity</td>
<td>Min. diffusive area in network</td>
</tr>
<tr>
<td>R</td>
<td>Coverage-Radius</td>
<td>Max. distance to intermediate node</td>
</tr>
<tr>
<td>Δ</td>
<td>Deviation</td>
<td>Max. stray of geodesic path</td>
</tr>
<tr>
<td>Σ</td>
<td>Geodesic Stretch</td>
<td>Max. stretch of geodesic paths</td>
</tr>
<tr>
<td>β</td>
<td>Distortion</td>
<td>How closely dist_G matches dist_E</td>
</tr>
</tbody>
</table>

Note: Embedding parameters are not independent. eg.
- γ and R are interdependent.
- Smaller deviation embedding may have a larger stretch.
Examples

Certain networks have natural embeddings:

Mesh, sensor networks (disc graphs),
Examples

Mesh Sensor Network Mesh with Hole

\[\gamma = \frac{1}{2} \]
\[R = \frac{1}{\sqrt{2}} \]
\[\Delta = \frac{1}{\sqrt{2}} \]
\[\Sigma = 1 \]
\[\beta = \sqrt{2} \]

Geodesic following paths are shortest paths.
No two nodes are closer than L. Each unit square contains from 1 to $k = O(1/L^2)$ nodes. $r = 2\sqrt{2}$. (max. degree $\delta \leq 32k$.)

Geodesic paths constructed from unit square path.
Examples

Mesh Sensor Network Mesh with Hole

Geodesic following paths are shortest paths.

\[\gamma = \frac{1}{2} \]
\[R \rightarrow \frac{1}{\sqrt{2}} + r \]
\[\Delta \rightarrow \frac{1}{\sqrt{2}} + r \]
\[\Sigma = 1 \]
\[\beta \leq 5 \]
Examples

Mesh

Sensor Network

Mesh with Hole

\[\sqrt{n} \]

\[\sqrt{n} \]

\[\gamma = O(1) \]
\[\beta = O(1) \]
\[\Delta = O(1) \]
\[\Sigma = O(1) \]

\[R = O(1) \]

\[(L=\text{min. node sep.}) \]

\[(r=\text{size of hole.}) \]
Outline

• Oblivious Routing: Background and Our Contribution

• The Algorithm: Oblivious Routing with Single Intermediate Node

• Good Geometric (Metric) Embeddings; Examples

• Routing Result; Examples

• Discussion
Theorem.

$$\text{stretch} = O(\beta \cdot R \cdot \Sigma)$$

The stretch depends on:
- Quality of the embedding: β;
- Coverage density: R;
- Geodesic stretch: Σ.
\(-\) distance stretch is \(O(1+R)\).
\(-\) \(\beta\) links distances to graph distances.
\(-\) \(\Sigma\) is stretch introduced by geodesic paths.

\[\beta \cdot R \cdot \Sigma \]
Congestion

Theorem.

\[C \leq f(\gamma, R, \Delta, \beta; n) \cdot C^* \]

\[f = O\left(\frac{\beta^2(R + \Delta)}{\gamma} \cdot ((\beta + \Delta)^2 + \log(n + R))\right) \]

\[(f = O(\log n)) \]

The Congestion depends on:
- Optimal Congestion: \(C^*\);
- Extent of diffusion: \(\gamma\);
- Quality of the embedding: \(\beta\);
- Coverage density: \(R\);
- Deodesic deviation: \(\Delta\).
Lemma 1. Probability \((P)\) source at distance \(d\) uses node \(v\). \(P \sim \frac{1}{d}\). (so \(E[C(v)] \sim \sum d \frac{N_d}{d}\), where \(N_d = \text{Number of sources distance } d \text{ from } v\))
Lemma 2. \(C^* \sim \frac{N_d}{d} \).

(so \(E[C(v)] \sim \sum_d \frac{N_d}{d} \sim \sum_d C^* \sim C^* \log n \))

- destination is \(\sim 2d \) away.
- use at least \(\sim d \) nodes in \(2d \)-disc.
- total node usage \(\sim N_d \cdot d \).
- number of nodes in disc \(\sim d^2 \).
- pigeonhole: \(\exists \) node used \(\sim \frac{N_d}{d} \) times.
Examples

Mesh

Sensor Network

Mesh with Hole

\[\gamma = O(1) \]
\[R = O(1) \]
\[\Delta = O(1) \]
\[\Sigma = O(1) \]
\[\beta = O(1) \]

\[\gamma = O(1) \]
\[R = O(1) \]
\[\Delta = O(1) \]
\[\Sigma = O(1) \]
\[\beta = O(\frac{1}{L}) \]

\[\text{stretch: } O(1) \]
\[C : O(C^* \log n) \]

\[\gamma = O(1) \]
\[R = O(r) \]
\[\Delta = O(r) \]
\[\Sigma = O(1) \]
\[\beta \leq O(1) \]

\[\text{stretch: } O(\frac{1}{L}) \]
\[C : O(C^* \frac{\log n}{L^2}) \]

\[\text{stretch: } O(r) \]
\[C : O(C^* \cdot r \log n) \]

\[(L=\text{min. node sep.}) \]
\[(r=\text{size of hole.}) \]
Wrap Up

– Embedding Parameters: $\gamma, R, \Delta, \Sigma, \beta$.

– Good embeddings: Good embedding parameters.

– Diffusive Routing: stretch $= O(1)$; $C = O(C^* \log n)$.

simple, scalable, efficient, near-optimal, general

Ongoing: Can we remove the dependence on γ.