Improving the Performance Competitive Ratios of Transactional Memory Contention Managers

Gokarna Sharma
Costas Busch

Louisiana State University, USA
STM Systems

• Progress is ensured through contention management (CM) policy

• Performance is generally evaluated by competitive ratio

 \[\text{Competitive ratio} = \frac{\text{makespan of my CM policy}}{\text{makespan of optimal CM policy}} \]

• Makespan primarily depends on the TM workload

 – arrival times, execution time durations, release times, read/write sets

• Challenge

 – How to schedule transactions such that it reduces the makespan?
Related Work

• Mostly empirical evaluation

• Theoretical Analysis
 – [Guerraoui et al., PODC’05]
 • Greedy Contention Manager, Competitive Ratio = $O(s^2)$ (s is the number of shared resources)

 – [Attiya et al., PODC’06]
 • Improved the competitive ratio of Greedy to $O(s)$

 – [Schneider & Wattenhofer, ISAAC’09]
 • RandomizedRounds Contention Manager, Competitive Ratio = $O(C \cdot \log n)$ (C is the maximum number of conflicting transactions and n is the number of transactions)

 – [Attiya & Milani, OPODIS’09]
 • Bimodal scheduler, Competitive Ratio = $O(s)$ (for bimodal workload with equi-length transactions)
Our Contributions

• Balanced TM workloads

• Two polynomial time contention management algorithms that achieve competitive ratio very close to $O(\sqrt{s})$ in balanced workloads

 -- **Clairvoyant** – Competitive ratio = $O(\sqrt{s})$

 -- **Non-Clairvoyant** – Competitive ratio = $O(\sqrt{s} \cdot \log n)$ w.h.p.

• Lower bound for transaction scheduling problem
Roadmap

• Balanced workloads

• CM algorithms and proof intuitions

• Lower bound and proof intuition
Balanced Workloads

• A transaction is balanced if:

 \[
 \frac{|R_w(Ti)|}{|R(Ti)|} \leq \beta, \quad \frac{1}{s} \leq \beta \leq 1
 \]

 is some constant called balancing ratio

 \[
 |R(Ti)| = |R_w(Ti)| + |R_r(Ti)|,
 \]

 where \(|R_w(Ti)| \) and \(|R_r(Ti)| \) are number of writes and reads to shared resources by \(T_i \), respectively.

• For read-only transaction, \(|R_w(Ti)| = 0 \), and for write-only transaction, \(|R_r(Ti)| = 0 \)

• A workload is balanced if:

 It contains only balanced transactions
Algorithms

• **Clairvoyant**
 – Clairvoyant in the sense it requires knowledge of dynamic conflict graph to resolve conflicts
 – Competitive ratio = $O(\sqrt{s})$

• **Non-Clairvoyant**
 – Non-Clairvoyant in the sense it does not require knowledge of conflict graph to resolve conflicts
 – Competitive ratio = $O(\sqrt{s} \cdot \log n)$ with high probability
 – Competitive ratio $O(\log n)$ factor worse than **Clairvoyant**
Proof Intuition (1/2)

• Knowing ahead the execution times (τ) and total number of shared resource accesses ($|R(T_i)|$) of transactions

• Intuition
 – Divide transactions into $\ell+1$ groups according to execution time, where $\ell = \lceil \log(\tau_{\text{max}}/\tau_{\text{min}}) \rceil$.
 – Again divide each group into $\kappa + 1$ subgroups according to shared resource accesses needed, where $\kappa = \lceil \log(s) \rceil$.
 – Assign a total order among the groups and subgroups.
Proof Intuition (2/2)

• **Analysis**

 – For a subgroup A_{ij}, competitive ratio = $O(\min(\lambda^j, \frac{s/\beta}{\lambda^j}))$, where $\lambda^j = 2^{j+1} - 1$

 – For a group A_i, competitive ratio = $O(\sqrt{(s/\beta)})$ after combining competitive ratios of all the subgroups

 – After combining competitive ratios of all groups, competitive ratio = $O(\ell \cdot \sqrt{(s/\beta)})$

 – For $\ell = O(1)$ and $\beta = O(1)$, competitive ratio = $O(\sqrt{s})$

• $O(\log n)$ factor in **Non-Clairvoyant** due to the use of random priorities to resolve conflicts
Lower Bound (1/2)

• We prove the following theorem
 – Unless NP \(\subseteq\) ZPP, we cannot obtain a polynomial time transaction scheduling algorithm such that for every input instance with \(\beta = 1\) and \(\ell = 1\) of the TRANSACTION SCHEDULING problem the algorithm achieves competitive ratio smaller than \(O((\sqrt{s})^{1-\varepsilon})\) for any constant \(\varepsilon > 0\).

• Proof Intuition
 – Reduce the NP-Complete graph coloring problem, VERTEX COLORING, to the transaction scheduling problem, TRANSACTION SCHEDULING

 – Use following result [Feige & Kilian, CCC’96]
 • No better than \(O(n^{(1-\varepsilon)})\) approximation exists for VERTEX COLORING, for any constant \(\varepsilon > 0\), unless NP \(\subseteq\) ZPP
Lower Bound (2/2)

• Reduction: Consider input graph $G = (V, E)$ of VERTEX COLORING, where $|V| = n$ and $|E| = s$

• Construct a set of transactions T such that
 – For each $v \in V$, there is a respective transaction $T_v \in T$
 – For each $e \in E$, there is a respective resource $R_e \in R$

• Let G' be the conflict graph for the set of transactions T
 – G' is isomorphic to G, for $\beta = 1$, $\tau_{\min} = \tau_{\max} = 1$, and $\ell = 1$
 – Valid k-coloring in G implies makespan of step k in G' for T

• Algorithm *Clairvoyant* is tight for $\beta = O(1)$ and $\ell = O(1)$
Conclusions

• Balanced TM workloads

• Two new randomized CM algorithms that exhibit competitive ratio very close to $O(\sqrt{s})$ in balanced workloads

• Lower bound of $O(\sqrt{s})$ for transaction scheduling problem
Thank You!!!

[Full paper to appear in OPODIS 2010]