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Abstract. Object-oriented and functional programming languages dif-
fer with respect to the types of problems that can be expressed naturally.
We argue that a programming language should provide support for both
programming styles so that the best style can be chosen for a given
problem. We present the language support for functional programming
in Brew, a successor language of Java we are currently developing. The
salient features are closure object and multimethod dispatch, together
with syntax for function types and function definitions. We demonstrate
that these features can be smoothly integrated with the object-oriented
features of the language and outline their implementation.

1 Introduction

Most mainstream object-oriented languages, including Java [9] and C++ [20],
feature classes, objects as class instances, visibility constraints, and subtyping
through a run-time dispatch on a designated receiver argument. These features
make it easy to encapsulate implementation details, to abstract over implemen-
tation types, and to refine existing data structures by adding new subclasses.

However, object-oriented languages do not provide good support for abstract-
ing over control, and single dispatch makes it difficult to define new operations
on an existing data structure. The object-oriented style of defining a method at
the root of the hierarchy and overriding it in subclasses requires classes to be
modified when adding a new method. The Visitor pattern [8] simplifies adding
new operations, but it must be anticipated when designing the class hierarchy
and it precludes further refinements of the data structure.

By contrast, statically typed functional languages, such as ML [19, 18] and
Haskell [10], make it easy to abstract over control through higher-order functions
and to define new operations on an existing data structure.

Functional languages, however, do not provide adequate support for encapsu-
lation and abstraction over implementation types and make it difficult to refine
existing data structures. Adding a new variant to an existing data type requires
all functions operating on this data type to be modified. As a consequence, ML
must treat the exception type exn specially to allow new exception constructors
to be added.



Many programming problems are more naturally solved in either a functional
or in an object-oriented language and may be awkward to solve in a language
from the other family. Also, the way in which data structures evolve over time,
by adding new variants or new operations, is dictated by the application. It
would be desirable if both sets of language mechanisms were provided in the
same programming language.

The need for functional language mechanisms in object-oriented languages is
demonstrated by the variety of design patterns and C++ frameworks for imple-
menting closures. The design patterns Strategy, State, and Command [8] work
around the lack of closures by encapsulating functional behavior in classes with a
single public method. Laufer designed a framework for implementing higher order
functions in C++ [13]. The FC++ library [16, 15] builds on Laufer’s framework
and implements a large part of the Haskell Standard Prelude by using templates
in C++. FACT! [23] and the Lambda Library [11] use the preprocessor and
templates to add lambda expression syntax to C++.

Because of the lack of templates, these approaches would not work for Java;
it is necessary to modify the language. On the other hand, language support is
desirable since it simplifies the syntax and provides better type-checking. The
Pizza language [21] extends Java with syntax for function types and anonymous
functions as well as templates. However their syntax for function types does not
fit well into the language and, like the C++ library approaches, they provide
no mechanism for defining functions by cases as in ML or Haskell. Also, like
functional languages, the functional subsets of these approaches do not allow
the data structure to be refined without modifications to existing code.

We are currently developing Brew as a successor language to Java. In previ-
ous research, we have analyzed object-oriented design patterns for gaining insight
into what language features would be needed in better object-oriented languages
[2]. Since the solutions of design patterns are influenced by the chosen implemen-
tation language, an analysis of the solutions indicates possible improvements to
the language. We are designing Brew based on Java syntax but with an object
model derived from this analysis of design patterns. In addition to the support
for functional programming, Brew will provide a separation of subtyping from
code reuse and a representation of classes as first-class objects.

In this paper, we present how object closures and multimethods allow sup-
port for functional programming to be included seamlessly in an object-oriented
language. The notion of multimethods presented here is from Half & Half [1],
an extension of Java (and predecessor of Brew) with retroactive abstraction and
multimethods. We do not yet provide support for parametric polymorphism,
but are planning to add it once the proposed extension of Java with generics [3]
stabilizes.

Section 2 discusses in more detail why support for functional programming
is desirable. The functional aspects of Brew’s design are discussed in Section 3.
Section 4 demonstrates the support for functional programming in Brew through
examples. Following is an outline of the implementation in Section 5, and Sec-
tion 6 provides conclusions.



2 Motivation

2.1 Functions

The class construct is designed for creating multiple instances of a class that con-
tain state. Several design patterns employ classes for different purposes, though.
E.g., the Singleton pattern [8] ensures that only a single instance of a class gets
created by hiding the constructor and by letting the class maintain its own single
instance. The complexity of the Singleton pattern suggests that language sup-
port for defining a singleton object may be desirable [2]. We propose to use an
object construct of the form

object 0 implements I {
int x = 42;
int foo(int i) { ... }

}

Like instances of a class, singleton objects can be assigned to interface references
or passed to methods and can be defined by inheritance. Singleton objects can be
considered instances of class Object but do not have a class as implementation
type.

The design patterns Strategy, State, and Command [8] employ the classes for
encapsulating behavior, typically a single method without state. Again, since this
is not the intended use of the class construct, and since these design patterns are
fairly common and complex, this suggests that a language construct for defining
functions outside of classes may be desirable.

Function would also be desirable for abstracting over behavior. For example,
the higher-order function map applies a functional argument to every element of
a list and returns the list of results. Similarly, foldr applies a binary function
successively to all the elements of a list:

fun map f nil = nil
| map £ (h::t) = (£ h) :: (map f t)

fun foldr £ b nil = b
| foldr £ b (h::t) = £ (h, foldr £ b t)

While iterators in an object-oriented language can be used for traversing a col-
lection data structure such as a list and performing an operation on every list
element, they are not as flexible and as succinct as higher-order functions.

2.2 Closures

In addition to a function construct, it would be desirable to have static scop-
ing and a closure mechanism that allows functions to capture their statically
enclosing environment at the time the function is defined. For example, using
static scoping and the above function foldr, the cross product of two lists can
be computed as follows:



fun crossProduct (11, 12) =
foldr (fn (x, p) => foldr (fn (y, @ => (x, y) :: @ p 12)
|
11

For a given x, the inner foldr starts with the list of pairs p and successively adds
the pairs (x, y) for all y in 12. The parameter q of the anonymous function is
used for accumulating the resulting list of pairs. The outer foldr starts with the
empty list and calls the inner foldr for each x in 12 to add all the pairs with
first element x to its accumulator p. It is difficult to express such algorithms as
succinctly without the use of closures and higher-order functions.

Closures also allow functions to be defined by currying functions with higher
arity. The function add below takes an integer x as argument and returns a
function that adds x to its argument. This way add3 can be defined as a unary
function that adds 3 to its argument.

fun add x =
fny=>x+y

val add3 = add 3

Finally, closures allow the definition of infinite and lazy data structures. For
example, a lazy list or stream can be defined as either the empty stream Nil
or as a stream Cons(h,f) consisting of a first element h and a function f that
computes the rest of the stream on demand:

datatype ’a Stream = Nil
| Cons of ’a * (unit -> ’a Stream)

The infinite list even of all even integers can then be defined using a helper
function evenFrom that constructs the stream:

fun evenFrom n = Cons (n, fn () => evenFrom (n + 2))

val even = evenFrom 0

The elements of this stream only get constructed when trying to access them.
E.g., using the function take,

fun take (Nil, n) = nil
| take (Cons (h, t), n) =
if n = 0 then nil else h :: (take (t (), n-1))

the call take (even, 5) constructs the first five even integers and returns them
as the list [0,2,4,6,8].

A more elaborate example that uses streams to test whether two trees have
the same fringe, i.e., the same leaves in a pre-order traversal, is used as a moti-
vating example for Laufer’s C++ framework [13] and for FC++ [15].

Unlike Haskell, we do not advocate making lazy evaluation the default evalu-
ation mechanism, since it can result in unpredictable memory usage. If lazy data
structures are needed, they are straightforward to implement using closures.



2.3 Multimethods

Another useful feature of modern functional languages is that they allow func-
tions to be defined by an enumeration of cases. E.g., the ML definitions of map
and foldr above both contain one case for the empty list and one case for a
non-empty list. Instead of a parameter name, a parameter pattern can be speci-
fied that is matched at run time against the argument. This programming style
makes function definitions more readable and more succinct.

However, the semantics of pattern matching in ML would be undesirable for
inclusion in an object-oriented language. If multiple patterns are applicable for
matching against a given argument, ML chooses the case in textual order. E.g.,
in the factorial function

fun fac 0 = 1
| fac n =n * fac (n - 1)

both cases would be applicable if the argument 0 is passed, but the first one will
be selected. This sequential evaluation order has the disadvantage that functions
operating on a data structure must be modified when a new variant is added to
the data structure.

If the cases defining a function were disjoint and could be textually separated,
then adding a variant to a data structure would only require adding a new case
to the function definition without modifying existing code. This semantics can
be captured very well with multimethods, except that multimethods only allow
dispatching on an argument type instead of matching the argument against a
pattern.

Multimethods provide run-time dispatch on multiple arguments, which al-
lows for flexibility both in extending the type hierarchy and in extending the
operations on the type hierarchy. This simplifies designs for which the Visitor
pattern [8] was originally intended, as it allows operations on an existing type
hierarchy to be added as multimethods without changing the existing type hier-
archy.

For example, suppose we are given the following type hierarchy for arithmetic
expressions:

abstract class Exp { }
class IntLiteral extends Exp { ... }
class PlusExp extends Exp { ... }

we would like to define an evaluation function as a list of cases as follows:

int eval(IntLiteral x) { ... }
int eval (PlusExp x) {...}%

When calling eval on an argument of type Exp, the appropriate case should
be selected at run time based on the dynamic type of the argument. This is in
contrast to overloading, which selects a method based on the static types of the
arguments.



It should be possible, to add functions, e.g., a print function, without modi-
fying the data structure. It should also be possible to add new variants to the data
structure, e.g., a class MinusExp, together with a method int eval (MinusExp)
without modifying the existing code of eval. Of course, it should be possible to
type-check multimethods statically.

This problem is known as the extensibility problem or as the expression prob-
lem [22, 6, 12, 24, 7] A more detailed description of how this problem can be
solved using multimethods can be found in [1].

The presence of both multiple dispatch and closures would allow us to add
generic traversals, such as map or fold functions, to existing type hierarchies in
a functional style.

3 Language Design

3.1 Singleton Objects

For declaring a singleton object that is not an instance of a class Brew uses an
object construct that is similar to a Java class declaration, except that the new
keyword object is used instead of class and that static constructs (including
constructors) are not permitted. If an initializer is provided (a single block in
the body of the object declaration), it is run exactly once immediately after
the object has been created. The following example is a declaration that binds
an object with members counter and count to the identifier 0. This binding
cannot be changed while the name 0 is in scope (i.e., it is implicitly final in
Java terminology):

object 0 implements Serializable {
private int counter = 0;
int count() { return counter++; }

}

The object construct will be refined later in this section, but in its current form
it is already useful since it makes the implementation of the Singleton pattern
trivial.

3.2 Functions

We use syntax for function types that follows the C-family convention of putting
the result type in front of a parenthesized list of argument types. Here are two
example types:

int (float) // 1
int (float) (int, int) // 2

On the first line is the type of a function with a parameter of type float that
returns a result of type int. The second example is the type of a higher-order
function that takes two int arguments and returns a function from float to
int. This is the reverse of the notation used in the ML-family, where the types
in this example would be written as follows:



float -> int (x 1 %)
(int * int) -> float -> int (*x 2 %)

Function types are treated like interface types, where each interface defines a
method named with the keyword apply — analogous to operator () in C++—
of the appropriate type. The types shown above are equivalent to the following
explicit interface declarations:

interface int(float) { int apply(float); } // 1
interface int(float) (int) { int(float) apply(int, int); } // 2

The converse is true, too: an object implementing any interface containing a
method called apply can be assigned to a variable of the corresponding function
type. This allows programmers to declare type synonyms:

interface StringOp extends String(String) {7

A variable of a function type can be assigned either (i) a static method
qualified by the name of the class or singleton object that contains it; or (ii) the
partial application of a non-static method to an object (passed to the implicit
this argument of that method); or — the most general case — (iii) a singleton
object or class instance that implements the function type:

int (float) f = Math.round; // (1)
char (int) g = "Hello, world!".charAt; // (ii)
String () h = anObject.toString; // (ii)

object 0 implements int(float) {
int apply(float x) {
return Math.round(x);

}
}
f = 0.apply; // (1)
f =0; // (iii)

We introduce syntactic sugar to make case (iii) more palatable. Brew provides
the programmer with the illusion that all functions are objects of an appropriate
interface type (though the compiler may choose to represent them differently as
we will discuss in Section 5). The declaration of object 0 in the last example
can be written equivalently as

int 0(float x) {
return Math.round(x);

}
An anonymous function (lambda abstraction) simply omits the function name:

int (float x) { return Math.round(x); }



Higher-order functions, especially operations on homogeneous collections, in
a statically typed functional language usually go together with a powerful type
system that at the very least allows for parametric polymorphism. So far, we did
not include genericity in our design, but we are planning to adopt the proposed
genericity model for Java [3] once it stabilizes and to extend it to our function
syntax.

3.3 Closures

For providing closures, we simply allow objects to be arbitrarily nested and let
them capture their lexically enclosing environment. For example, if an object is
defined inside a method and returned by the method, the object still has access
to the local variables and the parameters of the method after the method re-
turns. Unlike with inner classes in Java, we also allow objects to access non-local
variables of a built-in type. Because functions are treated as objects, function
closures are simply a special case of object closures.

As a simple example, consider currying of addition. The following code uses
syntactic sugar for functions, including an anonymous function:

int(int) add(int x) {
return
int (int y) { return x+y; }; // anonymous function
}
int answer = add(11) (31);

Recall that this is equivalent to the following piece of code, which uses object
syntax instead of function syntax and introduces a type synonym:

interface Adder {
int apply(int y);
}

object add {
Adder apply(int x) {
object addx implements Adder { // object closure
public int apply(int y) {
return x+y; // capture non-local x
}
}

return addx;

}
int answer = add.apply(11).apply(31);
3.4 Multiple dispatch

An abstract method in a base class provides a uniform interface to all concrete
implementations in derived classes. For run-time dispatch based on additional



arguments we need a similar notion in order to provide a single entry-point
that then dispatches through to the appropriate special case. This is commonly
referred to as the generic function, which is implemented by one or more mul-
timethods. A generic function is declared via a function header modified by the
keyword generic. Its multimethods must share its name and provide implemen-
tations for all possible combinations of arguments passed to the generic function.
At run time, dispatch proceeds in two steps: single-argument dispatch on the des-
ignated receiver argument is carried out first, followed by symmetric dispatch on
the remaining arguments, which selects the most specific multimethod for the
run-time types of the arguments.

As an example, consider the following class hierarchy for implementing lists.
Since we do not yet have support for templates, list elements pointed to by the
heads of Cons nodes are declared to be of type Object.

abstract class List {}
class Nil extends List {}
class Cons extends List {
private Object hd;
private List  tl1;
Cons(0Object h, List t) { hd = h; t1 = t; }
Object getHd() { return hd; }
List getTl() { return tl; }
}

Multimethods allow us to define functions operating on this data structure in a
similar style as in a functional language.

object ListOps {
generic List append(List, List); // generic function
List append(Nil 11, List 12) { // first multimethod
return 12;
}
List append(Cons 11, List 12) { // second multimethod
return new Cons(1l1l.getHd(), append(11.getT1(), 12));
}
}

For guaranteeing run-time type safety, the compiler must ensure that for
any combination of arguments of the generic function there is exactly one most-
specific applicable multimethod. For allowing this type-check to be performed
statically, previous approaches to multimethods restricted the parameter types
of generic functions to be class types [5, 17].

However, since function types are interface types, we need to allow interface
types as parameter types of generic functions and of multimethods so that higher-
order functions can be defined by cases. For avoiding a global type-check we need
to introduce constraints on the visibility of these types (for details see [1]). A
sufficient, but slightly too restrictive, condition is to demand that no interface



type that appears as parameter type of a generic function or a multimethod can
be public. A non-public interface type is visible only within its package, hence
the set of its subtypes can be determined by package-level program analysis,
which, depending on the compilation model, can happen at compile time or at
link-time.

What this effectively means is that non-public interface types are enumerated
types, much like ML datatypes. This has been used in the above example, which
does not contain a multimethod to deal with the case where the first argument
has run-time type List, but is neither a subtype of Nil nor of Cons, because List
is partitioned into Nil and Cons and cannot be extended outside its package.

4 Further Examples

4.1 Higher-Order Functions

Suppose we implemented lists as a class hierarchy with an abstract superclass
List and two subclasses Cons and Nil as above.

Using the proposed syntax for function types and function definitions it is
straightforward to define the higher-order functions map and foldr as multi-
methods on the List hierarchy.

generic List map(Object(Object), List);
List map(Object(Object) £, Nil 1) { return 1; }
List map(Object(Object) £, Cons 1) {

return new Cons(f(l.getHd()), map(f, 1l.getT1()));
}

generic Object foldr(Object(Object, Object), Object, List);

Object foldr(Object(Object, Object) f, Object b, Nil 1) {
return b;

}

Object foldr(Object(Object, Object) f, Object b, Cons 1) {
return f(1.getHd(), foldr(f, b, 1.getT1()));

}

Using foldr, our syntax for anonymous functions, and static scoping, the
crossProduct function can be defined as follows:

List crossProduct(List 11, List 12) {

return
foldr(List (Object x, List p) {
return
foldr(List (Object y, List q) {
return
new Cons(new Pair(x,y), q);
}, p, 12);

}, new Nil(), 11);



4.2 Internal Iterators

Since any object with an apply method can be used as a function, we can
write accumulator objects that maintain state across function calls. For exam-
ple, given an integer list class IntList with an internal iterator method void
foreach(void(int)), we can sum the elements of the list by passing the fol-
lowing object add as argument to foreach:

IntList il;
object add implements void(int) {
private int total = 0;
public void apply(int x) { total += x; }
public int getTotal() { return total; }
}
il.foreach(add);
int sum = add.getTotal();

In the absence of templates and, therefore, parametric polymorphic higher-
order functions, such internal iterators can be used for type-safe iteration over
the elements of a collection class.

4.3 The Expression Problem
Suppose we are given the following class hierarchy for arithmetic expressions:

abstract class Exp { }
class IntlLiteral extends Exp {
int value;

// etc.
}
class PlusExp extends Exp {
Exp left;
Exp right;
// etc.
}

It is straightforward to add operations on the data structure without mod-
ifications to existing code by defining these operations as multimethods. For
example, we might add a function for evaluating expression trees:

object Evaluator {
generic int eval(Exp x);
int eval(IntLiteral x) {
return x.value;
}
int eval(PlusExp x) {
return eval(x.left) + eval(x.right);

}



If later we extend the data structure by adding a new subclass

class MinusExp extends Exp {
Exp left;
Exp right;
// etc.

}

we do not need to modify the existing operations on the data structure. We can
simply extend these operations through inheritance:

object ExtendedEvaluator extends Evaluator {
int eval (MinusExp x) {
return eval(x.left) - eval(x.right);

X

5 Implementation

Work on the implementation of a Brew compiler is in progress. The compilation
process can best be conceptualized as a translation of Brew into Java. This
idea is borrowed from Pizza [21], and in fact Pizza’s approach for implementing
function closures will be extended to object closures.

For the object construct the compiler constructs a Java class with an ap-
propriately mangled name and ensures that exactly one instance of that class is
created. For closure objects that have access to the local variables of the lexically
surrounding method, the compiler creates an additional field in the object for
each method variable that the object accesses.

If the object does not access any variables in the enclosing method, it can
be allocated outside the method. Under the same conditions a nested function
is translated to a Java method, which is more efficient if the function is never
assigned to a variable of function type.

In case a method or a Brew function represented as a method is assigned to a
variable of function type (or if assignment conversion from a method to a function
type is required in function calls, returns, or casts), the method must first be
wrapped by an adapter object. This is similar to the generation of wrappers
for implementing structural subtyping [14]. For example, the following piece of
Brew code

int (float) f = Math.round;
is, conceptually, first transformed into

object _o42 implements int(float) {
public int apply(float x) { return Math.round(x); }

}
int (float) f = _o42;



and ends up in Java as

interface brew_funtype_17 {
int apply(float x);
}
class brew_obj_o42 implements brew_funtype_17 {
public static instance = new brew_obj_o42;
public int apply(float x) { return Math.round(x); }
}

brew_funtype_17 f = brew_obj_o42.instance;

For implementing multiple dispatch, multimethods are translated into pro-
tected methods with a mangled name. A generic function is then translated into
an if-then-else chain that tests the argument types using instanceof and dis-
patches to one of the appropriate multimethods. The optimal if-then-else chain
is generated using the algorithm by Chambers and Chen [4]. Further details on
our multimethod implementation can be found in [1].

6 Conclusions

We have described the language support for functional programming in the pro-
gramming language Brew. We are developing Brew as a successor language of
Java. The support for functional programming, consisting of syntax for func-
tion types and function definitions, closures, and multimethods, is seamlessly
integrated with the object-oriented features of the language.

Brew’s object model is being designed based on an analysis of design pat-
terns [2] and will feature support for retroactive abstraction over existing type
hierarchies [14], a separation of subtyping from code reuse through inheritance,
closure objects, multimethods [1], and an object representation of classes. In
this paper, we have highlighted closure objects and multimethod dispatch and
have demonstrated using examples that this combination provides good sup-
port for functional programming. By adopting the proposed extension of Java
with generics [3] once it stabilizes, we will also be able to support parametric
polymorphism for functions.
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