
Reliability Through Strong Mobility

Xiaojin Wang Jason Hallstrom Gerald Baumgartner

Dept. of Computer and Information Science
The Ohio State University

395 Dreese Lab., 2015 Neil Ave.
Columbus, OH 43210–1277

{xw, hallstro, gb}@cis.ohio-state.edu

June 17, 2001

Abstract

We argue that weak mobility is unreliable because it leads to an unnatural, non-modular programming style that is
difficult to reason about and hard to debug. We present an extension of Java with strong mobility and show how it can
be translated to weak mobility by a preprocessor. The language is designed to give programmers the same flexibility
in resolving synchronization issues as with weak mobility.

1 Motivation

As with any software system, when building distributed systems it is important that the program is designed in a
modular fashion. A modular structure of data and control flow is essential for developing a proper mental model of the
software and for reasoning about it. Without a programming language supporting such modularity, and a consequently
poor mental model, developers cannot be expected to manage the complexity of a large-scale system.

Weak mobility [1], such as in IBM’s Aglets framework [6] or in other Java-based agent frameworks [5, 8, 4], does
not allow migration of the execution state of methods (i.e., local variables and the program counter). Thedispatch
operation simply does not return. Instead, the framework allows the developer to tie code to certain mobility-related
events. In Aglets, the developer can provide callback code that will execute when an object is first created, just before
an object is dispatched, just after an object arrives at a site, etc. This results in a quite unnatural programming style.

As an example, consider a network broadcast agent that takes a message and an array of host names as input and
relays the message to the hosts. A solution in an Aglets-like framework might look as follows:

private String hosts[];
private String message;
private int i = 0;

public void onCreation(Object init) {
hosts = (String[]) ((Object[]) init)[0];
message = (String) (init[1]);

}

public void onArrival() {
System.out.println(message);

}

public void run() {
if(i == hosts.length)

dispose();
i++; // must be incremented before dispatch()

1



try {
dispatch(hosts[i-1]);

}
catch (Exception ex) {

// skip hosts that are not reachable
}

}

SinceonCreation() can only take a singleObject as argument, the user must manually package the parameters
message andhosts in an array.

A language with support for strong mobility provides an much better mental model for writing mobile agents since
it allows the programmer to express the control flow across migration within the language. Using a Java-like language
supporting strong mobility the solution to the above problem is straightforward:

public void broadcast(String message, String[] hosts) {
for(int i = 0; i < hosts.length; i++) {

try {
go(hosts[i]);
System.out.println(message);

}
catch (Exception ex) { }

}
dispose();

}

It should be clear that the first implementation violates a number of software design principles. While the code
is intended to execute a single logical action, namely the network broadcast, the program logic is scattered across
multiple methods. Perhaps even more obtrusive is the introduction of numerous fields that are more naturally suited
as local variables. This is a common blunder in disguise: the classic beginning programmer’s faux pas of introducing
global variables in place of locals. In addition, call-back methods that take arguments, such asonCreation() ,
cannot be statically type-checked.

Even for a beginning programmer the second implementation of the broadcast algorithm is immediately clear.
Conversely, even for an experienced developer it takes some time to understand the first implementation, because
part of the control flow of the agent is hidden in the agent environment and scattered across the callback methods.
While the above example is very simplistic and could be implemented more easily with remote method invocation,
it is representative of any mobile agent application with a complicated pattern of movement from host to host. With
any weak mobility library, the program logic for migrating the agent, i.e., the for-loop and the call of the method
broadcast() in the strongly mobile version, must be distributed over multiple methods. Reasoning about this
program logic in weakly mobile code is similar in complexity to reasoning about programs with goto.

It is often argued that weak mobility is preferable over strong mobility since it gives the programmer more flexi-
bility in resolving synchronization problems. For example, if the operation to migrate an agent is a primitive operation
and if two agents try to dispatch each other, a deadlock could result. Similarly, migrating a multithreaded agent can
cause problems. However, by using ago() method that might throw an exception in case of synchronization prob-
lems it is possible to give programmers the same flexibility in resolving problems as with weak mobility. On the
contrary, the simpler programming model and the more modular style of a strongly mobile agent also makes the code
for resolving synchronization problems more modular and easier to reason about.

We claim that the improved modularity of strongly mobile code results in more reliability because it is easier to
reason about the code and to debug it.

The problem with providing strong mobility in Java [3] is that the Java Virtual Machine [7] does not provide any
access to the runtime stack or to the program counter for security reasons. Any mobility library for Java can, therefore,
only provide weak mobility. For providing strong mobility, it is necessary to change the compilation model (by using
a preprocessor, by modifying the compiler, or by modifying the generated bytecode) or to modify the virtual machine.
E.g., F̈unfrocken uses a preprocessor [2], NOMADS uses a custom virtual machine [10, 9].

In the following section, we present the design of our language extension and of our library support for providing
mobility. In Section 3, we explain the design of our translation from strong mobility to weak mobility. Following an
example in Section 4, we discuss synchronization issues in Section 5, and then provide conclusions.

2



2 Language and API Design

Our support for strong mobility consists currently of the interfaceMobile and the two classesMobileObject
andContextInfo . While the design looks like a library API, it is really a language extension since our proposed
translation mechanism compiles away the interfaceMobile and the classMobileObject .

2.1 InterfaceMobile

Every mobile agent must (directly or indirectly) implement the interfaceMobile . Similar to Java RMI, a client of an
agent must access the agent through an interface variable of typeMobile or a subtype ofMobile .

InterfaceMobile is defined as follows:

public interface Mobile extends java.io.Serializable {
public void go(java.net.URL dest)

throws java.io.IOException,
com.ibm.aglet.RequestRefusedException;

}

Like Serializable , interfaceMobile is amarker interface. It indicates to a compiler or preprocessor that special
code might have to be generated for any class implementing this interface.

As explained in Section 3 below, we use the IBM Aglets library for implementing our support for strong mobility.
This is currently reflected in the list of exceptions that can be thrown bygo() . In a future version, we will add our
own exception class(es) so that the surface language is independent of the implementation.

2.2 ClassMobileObject

ClassMobileObject implements interfaceMobile and provides the two methodsgetContextInfo() and
go() . To allow programmers to override these methods, they are implemented as wrappers aroundnative imple-
mentations that are translated into weakly mobile versions.

public class MobileObject implements Mobile {
private native ContextInfo realGetContextInfo();
private native void realGo(java.net.URL dest)

throws java.io.IOException,
com.ibm.aglet.RequestRefusedException;

protected ContextInfo getContextInfo() {
return realGetContextInfo();

}
public void go(java.net.URL dest)

throws java.io.IOException,
com.ibm.aglet.RequestRefusedException {

realGo(dest);
}

}

A mobile agent class is defined by extending classMobileObject .
The methodgetContextInfo() provides any information about the context in which the agent is currently

running, including the host URL and any system objects that the host wants to make accessible to a mobile agent.
The methodgo() moves the agent to the destination with the URLdest . This method can be called ei-

ther from a client of the agent or from within the agent itself. Ifgo() is called from within an agent method
foo() , the instruction following the call togo() is executed on the destination host. Typically, an agent would
call getContextInfo() after a call togo() to get access to any system resources at the destination.

2.3 ClassContextInfo

ClassContextInfo is used for an agent to access any resources on the machine it is currently running on:

3



public class ContextInfo implements java.io.Serializable {
private java.net.URL hostURL;
public ContextInfo (java.net.URL h) { hostURL = h; }
public java.net.URL getHostURL() {

return hostURL;
}
// ...

}

Currently, we only provide a methodgetHostURL() that returns the URL of the agent environment in which the
agent is running. In a future version, we will extend classContextInfo .

For providing access to special-purpose resources such as databases, an agent environment can implement the
methodgetContextInfo() to return an object of a subclass of classContextInfo . By publishing the interface
to this object, agents can be written to access those resources.

2.4 Strongly Mobile User Code

For writing a mobile agent, the programmer must first define an interface, sayAgent , for it. This interface should
extend interfaceMobile and declare any additional methods. All additional methods must be declared to throw an
exception of typeAgletException . An implementation of the mobile agent then extends classMobileObject
and implements interfaceAgent . A client of the agent must access the agent through a variable of the interface type
Agent and through a proxy object similar as in Java RMI or in Aglets.

When calling a method on an agent, an exception will be thrown if the agent is not reachable. As in Java RMI, this
is expressed by declaring that the method might throw an exception. In our current design, we use the exception class
AgletException . In a future version, we will provide our own exception class.

3 Translation from Strong to Weak Mobility

For efficiency reasons it would be desirable to provide virtual machine support for strong mobility. However, a
preprocessor or compiler implementation has the advantage that the generated code can run on any Java VM, and that
it is easier to implement and to experiment with the language design. Once the semantics of the language and API,
and the translation are properly designed, virtual machine support could be added for efficiency.

We chose to design the translation mechanism for a preprocessor that translates strongly mobile code into weakly
mobile code that uses the Aglets library. This allows leveraging off of Aglets for the implementation of the transport
mechanism.

For implementing strong mobility in a preprocessor, it is necessary to save the state of a computation before moving
an agent so it can be recovered afterwards. Fünfrocken describes a translation mechanism that inserts code for saving
local variables just before moving the agent [2]. This has the disadvantage that thego() method cannot be called
from arbitrary points outside the agent.

Our translation approach is to maintain a serializable version of the computation state at all times by letting the
agent implement its own run-time stack. This increases the cost of regular computation as compared to Fünfrocken’s
approach, but it simplifies restarting the agent at the remote site.

3.1 Translation of Methods

For making the local state of a method serializable, we implement activation records of agent methods as objects. For
each agent method, the preprocessor generates a class whose instances represent the activation records for this method.

An activation record class for a method is a subclass of the abstract classFrame :

public abstract class Frame
implements Cloneable, java.io.Serializable {
public Object clone() { ... }
abstract void run();

}

4



Activation records must be cloneable for implementing recursion as explained below. The translated method code will
be generated in methodrun() .

For example, given an agent classCwith a methodfoo of the form

void foo(int x) throws AgletsException {
int y = x + 1;
go(new URL(dest));
System.out.println(y);

}

(and ignoring exception handling and synchronization for simplicity) we might generate a classFoo of activation
records forfoo of the form

class Foo extends Frame {
C This;
int x;
int y;
int pc = 0; // program counter

Foo(C t) { this.This = t; }
void setArgs(int x) { this.x = x; }
void run() {

if (pc == 0) { pc++; y = x + 1; }
if (pc == 1) { pc++; go(new URL(This.dest)); This.run1();}
if (pc == 2) { pc++; System.out.println(y); }

}
}

The parameter and the local variable of methodfoo() became fields of classFoo. In addition, we introduced a
program counter fieldpc and a variableThis for accessing fields in the agent object.

The methodrun() contains the original code offoo() together with code for incrementing the program counter
and for allowingrun() to resume computation after moving. Calls of agent methods are broken up into a call of the
generated method followed byThis.run1() , as explained below. For allowing the agent to be dispatched by code
outside the agent class, the program counter increment and the following instruction must be performed atomically,
which requires additional synchronization code.

For efficiency, the preprocessor could group multiple statements into a single statement and only allow the agent
to be moved at certain strategic locations.

3.2 Translation of Agent Classes

An agent now must carry along its own run-time stack and method table. The generated agent class contains aFrame
array as a method table and aStack of Frames as the run-time stack. When calling a method, the appropriate entry
from the method table is cloned and put on the stack. After passing the arguments, therun method executes the body
of the original methodfoo while updating the program counter.

Suppose we have an agent classAgentImpl of the form

public class AgentImpl extends MobileObject implements Agent {
int a;

public AgentImpl() { /* initialization code */ }

public void foo(int x) throws AgletsException { /* ... */ }
}

Since this class indirectly implements interfaceMobile , the preprocessor translates it into the following code:

public class AgentImpl extends Aglet {
int a;

5



Frame[] vtable = { new Foo(this) };
final int _foo = 0;
Stack stack = new Stack();

public void onCreation (Object init) {
/* initialization code */

}

public void foo(int x) {
Foo frame = (Foo) (vtable[_foo].clone());
stack.push(frame);
frame.setArgs(x);

}

public void run1() {
Frame frame = (Frame) stack.peek();
frame.run();
stack.pop();

}

class Foo extends Frame {
// as described above

}
}

The preprocessor eliminates interfaceMobile and classMobileObject and lets the agent class extend class
Aglets .

For implementing method dispatch, the agent includes a method tablevtable of typeFrame[] . The constant
_foo is the index into the method table for methodfoo . The fieldstack implements the run-time stack.

The constructor of classAgentImpl is translated into the methodonCreation() . Since Aglets only allows a
singleObject as argument ofonCreation() , any original constructor arguments must be packaged in an array
or vector by the preprocessor.

As described above, the original agent methodfoo() gets translated into a local classFoo of activation records.
The methodfoo() in the generated code implements the calling sequence: it allocates an activation record on the
stack, passes the arguments. The code for executing the method on the top of the stack and for popping the activation
record in methodrun1() is shared between all methods. A client must first callfoo() followed by a call to
run1() .

For resuming execution after arriving at the destination, we must also generate a methodrun() inside class
AgentImpl :

public void run() {
while (! stack.empty())

run1();
}

The Aglets environment will call this method after an agent is created and after it arrives at a remote host. If the user
provided any code forrun() in the strongly mobile version, it is translated like other methods into a classRun. In
this case the generated methodrun() contains the code to set up the activation record forRun before the while loop.

3.3 Method Call

A constructor call in a client is translated to a request to the Aglet context to create the agent and to initialize it via
onCreation() . Since Aglets does not allow methods to be called by a client, a method call has to be translated into
a message that is sent to the agent.

For example, the constructor and method calls

Agent a = new AgentImpl();
a.foo(1);

6



are translated to

AgletProxy a = TheAgletContext().createAglet(getCodeBase(), "Agent", null);
a.sendMessage(new Message("foo", fooargs);

with appropriate code for packaging up the argument tofoo as an arrayfooargs .
The generated agent class then must also contain a dispatch methodhandleMessage() that accepts the message

send and callsfoo . For details see the complete example below.

3.4 Return Values and Exceptions

Like parameter passing, return statements must be translated to pass the return value on the agent stack instead of on
the run-time stack of the Java virtual machine. For a single-threaded system, for simplicity, the return value can be
kept in a variablerv in the agent itself. A return statement

return 42;

is then translated to an assignment to this variable:

This.rv = new Integer(42);
return;

Similarly, exceptions must be implemented by passing them on the agent stack. The easiest implementation
strategy is to treat exceptions as a special kind of return value. A throw statement is implemented by assigning
the exception to the return value variablerv and by setting a boolean variableexn to true to indicate that an exception
was thrown. After a method call, the variableexn must be tested to check whether a method was thrown or whether
a normal value was returned. A try statement is then translated into an if-then-else chain that skips any code after
an exception occurred and tests the exception type withinstanceof tests to find the appropriate handler code to
execute.

4 Example: A Broadcast Agent

In this section we present the translation of a broadcast agent that takes a message and relays it to several hosts.

4.1 Strongly Mobile Interface

The user must define an interfaceAgent as follows:

public interface Agent extends Mobile {
public String bcast(String message) throws AgletException;

}

4.2 Strongly Mobile Class

The mobile agent takes an array of hosts to visit as arguments to the constructor. Callingbcast() with a message as
argument cause the agent to deliver the message to all the hosts in the array that are reachable, while keeping track of
the traveled route in a string.

public class AgentImpl extends MobileObject implements Agent {
String[] hosts;
String home;
String traveled_route;

public AgentImpl(String[] h) throws AgletException {
hosts = h;
home = getContextInfo().getHostURL().toString();

}

7



public void bcast(String message) throws AgletException {
ContextInfo c;
String hostname;
String route = "Traveled from " + home;
for (int i = 0; i < hosts.length; i++) {

try {
go(new URL(hosts[i]));
c = getContextInfo();
hostname = c.getHostURL().toString();
route = route + " to " + hostname;
System.out.println("Message from " + home +

" to " + hostname + ": " + message);
}
catch(Exception ex) {

System.out.println("Exception: " + ex);
}

}
traveled_route = route;

}
}

4.3 Generated Weakly Mobile Class

The weakly mobile code generated by our translation mechanism would look as follows:

public class AgentImpl extends Aglet {
// fields copied from the strongly mobile code
String[] hosts;
String home;
String traveled_route;

// fields for implementing the agent stack
Frame[] vtable = { new Bcast(this) };
final int _bcast = 0;
java.util.Stack stack = new java.util.Stack();
Object rv;
boolean exn;

// the callback method generated from the constructor
public void onCreation (Object init) {

String[] h = (String[]) ((Object[]) init)[0];
hosts = h;
home = getContextInfo().getHostURL().toString();

}

// the Aglets mechanism for allowing clients to call agent methods
public boolean handleMessage(Message msg) {

if (msg.sameKind("bcast")) {
bcast(msg.getArg());
run1();
return true;

}
else

return false;
}

// run the method on top of the agent stack
public void run1() {

8



Frame frame = (Frame) stack.peek();
frame.run();
stack.pop();

}

// continue execution of the methods on the stack after arrival
public void run() {

while (! stack.empty())
run1();

}

// the method for setting up the frame and passing the parameters for bcast
void bcast(Object init) {

Bcast frame = (Bcast) (vtable[_bcast].clone());
stack.push(frame);
frame.setArgs(init);

}

// the frame class for method bcast
class Bcast extends Frame {

AgentImpl This;
String message;
ContextInfo c;
String hostname;
String route;
int i;
int pc = 0;

Bcast(AgentImpl t) { this.This = t; }

void setArgs (Object init) {
message = (String) ((Object[]) init)[0];

}

// the run method generated from the body of bcast
void run() {

if (pc == 0) { pc++; route = "Traveled from " + This.home; }
if (pc == 1) { pc++; i = 0; }
while (((pc==2) && (i < This.hosts.length)) || ((pc >= 3) && (pc <= 9))) {

// try block
if (pc == 2) { pc++; dispatch(new URL(This.hosts[i])); }
if ((pc == 3) && This.exn) { pc = 7; } // handle exception
if (pc == 3) { pc++; c = getContextInfo(); }
if (pc == 4) { pc++; hostname = c.getHostURL().toString(); }
if (pc == 5) { pc++; route = route + " to " + hostname;}
if (pc == 6) {

pc == 9;
System.out.println("Message from " + This.home + " to "

+ c.getHostURL().toString() + ": " + message);
}

// catch(Exception ex)
if (((pc == 7) && (This.rv instanceof Exception)) || (pc == 8)) {

if (pc == 7) { pc++; ex = This.rv; This.exn = false; }
if (pc == 8) { pc++; System.out.println("Exception: " + ex); }

}
if (pc == 9) { pc = 2; i++; }

} // end of while
if (pc == 2) { pc = 10; This.traveled_route = route; }

9



}
} // end of class Bcast

} // end of class Agent

5 Synchronization Issues

So far, we have only described the translation mechanism for single-threaded control of the agent, either by a single
thread within the agent or by a single thread outside of the agent. For a multithreaded system, we need some modifi-
cations: we must ensure that the program counter is incremented atomically with the following instruction; we must
prevent two agents from dispatching one another at the same time; and we must translate user-specified synchronized
blocks.

Critics of strongly mobile languages cite the difficulty of synchronization control as a motivating factor when
arguing against the development of such languages. We concede that synchronization control is difficult to program,
but offer an approach that we believe is no more taxing than programming for a weakly mobile system, or even for a
traditional (non-mobile) system.

5.1 Protection of Agent Stacks

It is imperative that an agent cannot be dispatched by another thread between incrementing the program counter and
executing the following statement. If the program counter increment and the following statement were not executed
atomically, a thread could be dispatched after the program counter increment and incorrectly miss execution of the
statement upon arrival. Since by definition this type of synchronization need not be maintained across VM boundaries,
standard Java synchronization techniques are used. For a single-threaded agent, we simply synchronize on the agent
object itself. For method calls, we only need to protect the call to set up the activation record. The actual execution of
run1() does not need to be synchronized since by then a new activation record with its ownpc will be on top of the
stack:

synchronized(This) { pc++; go(new URL(This.dest)); } This.run1();

For preventing the agent from being dispatched between the program counter increment and the next instruction,
the call ofrealGo() in MobileObject.go() must also be synchronized on the agent object.

If two agents try to dispatch one another, this synchronization code could lead to a deadlock. Agenta would
synchronize on itself for executing the statementb.go(dest) which would require synchronization onb to protect
the integrity ofb’s stack. If similarlyb would executea.go(dest) , a deadlock would result. To prevent this, the
call of realGo() is synchronized on the agent context instead of on the caller.

public class MobileObject implements Mobile {
// ...
public void go(java.net.URL dest)

throws java.io.IOException,
com.ibm.aglet.RequestRefusedException {

synchronized(TheAgentContext) { synchronized(this) { realGo(dest); }}
}

}

The only time any thread synchronizes on two objects is in the call ofrealGo() , in which case the first synchro-
nization is on the agent context. Deadlocks are, therefore, prevented.

This synchronization mechanism ensures that only one agent can migrate at a time. If two agentsa andb try to
dispatch one another, the first one, saya, will succeed. By the timeb tries to dispatcha, a is already on a different
host. The call toa.go() will, therefore, throw an exception that must be handled byb.

This synchronization mechanism could be extended to multithreaded agents. In this case, each thread would have
its own execution stack. Instead of on the agent, we would have to synchronize on the thread. In effect, the threads
would become agents. When migrating an agent, we would have to ensure that all thread are in a safe state. This can
be done by maintaining a counting semaphore whose count indicates how many thread are currently running.

10



5.2 Synchronization Blocks

The Java semantics for synchronized blocks or synchronized methods is that the lock is released when the agent is
migrated. When users use synchronization in an agent to protect the agents internal data structure, this protection,
however, must extend across machine boundaries, to prevent the data structure from being corrupted after arrival.

The idea is to take the notion of a synchronized code block, and allow a thread to migrate within the code block,
retaining the synchronization lock throughout the migration. This then extends the concept of a synchronized block
across machine boundaries, enabling a programming style familiar to Java programmers.

Though it may appear under different guises, there is really only one synchronization primitive offered through
Java: the synchronized code block. Before entering a synchronized portion of code, which may span an entire method,
a thread must acquire a lock on a particular object or class. Once the lock is acquired, the thread enters the protected
region, executes the code block, and finally releasing the lock. In this manner mutual exclusion is maintained, and
in some cases atomicity. Whether a thread exits a synchronized section normally or after a call togo() , the object
lock is released. For weakly mobile languages this is a non-issue since code never executes beyond the call togo() .
When a call togo() appears at the end of a synchronized code block, there is no distinction between exiting a thread
normally or after dispatch.

In strongly mobile systems, however, a call togo() may appear at any point within a synchronized block. Since
the lock is released upon dispatch, this enables other threads to enter the block before the original thread continues
execution at the new site. The original thread then waits for the new thread to finish execution before re-acquiring
the lock and proceeding. These semantics do not preserve the notion of a synchronized code block. Consider the
following example:

public class AgentImpl() extends MobileObject implements Agent{
int i = 0;

public AgentImpl() { }

public void synchronized foo(URL dest) {
i++;
go(dest);
if (i == 1) System.out.println("Synchronized!");

}
}

As foo() is a synchronized method, when it is invoked the calling thread must first acquire a lock on an instance
of AgentImpl . Using traditional Java synchronization semantics all calls tofoo() should result in the message
"Synchronized!" being displayed tostdout once the thread reaches the new host. This need not be the case,
however. If threadA calls foo() and reaches the call togo() , it immediately loses the lock upon dispatch. If a
different thread on the destination site should callfoo() before the original thread continues execution, the original
thread will have the variablei equal to 2 when the thread reaches theprintln() statement.

The difficulties stem from the fact that object locks are not stored within the object during serialization, but rather
hidden within the virtual machine. To tackle this problem we introduce serializable locks. Consider the following
classMobileMutex designed to maintain synchronization locks across VM boundaries:

public class MobileMutex implements java.io.Serializable {
boolean locked = false;

public MobileMutex() {}

public synchronized void lock() {
if(!locked)

locked = true;
else {

while(true) {
try {

wait();
locked = true;

11



break;
}
catch(InterruptedException ex) { }

}
}

}

public synchronized void unlock() {
locked = false;
notify();

}
}

Client programmers using this extension continue to use the standardsynchronized keyword to enforce syn-
chronization constraints. To these developers it appears that object locks are in fact preserved across dispatch.

The transparency is achieved by introducing serializable locks in place of the standard Java object locks. During
the translation phase an object of typeMobileMutex is introduced for each object that requires synchronization.
Whenever a programmer requests object locking through the use of the Javasynchronized keyword, the lock is
actually taken out via a call tolock() on the associatedMobileMutex object. In this way synchronized blocks, and
methods, are eliminated from the original source, and re-implemented using the new serializable locking mechanism.
The overhead is minimal, and preserves synchronization semantics while the agent is on the move.

6 Performance

We have performed some preliminary measurements to estimate the cost of the described translation mechanism. We
compared hand-translated strongly mobile agents to equivalent weakly mobile agents in Aglets.

For an agent that goes to a remote host, performs some simple computation on large arrays in a tight loop, and
returns to the originating host, the tests and increments of the program counter result in on overhead of 45%. With
synchronization, the overhead was 80%.

For an agent that uses a recursive method to count down from 100 to 0, the strongly mobile code was slower
by a factor of 6.1. Repeatedly calling an empty method resulted in a factor of 173 (!), but this appears to be due to
optimizations in the virtual machine that we do not perform in our translation mechanism or due to additional garbage
collections.

For these measurements, we did not perform any optimizations of the weakly mobile code resulting from our
translation. The cost for incrementing the program counter and for synchronization can be reduced by combining
multiple statements into one synchronized block with synchronized blocks ending at method calls:

synchronized(This) {
pc++;
x = 31;
y = 11;
foo (x + y);

}
This.run1();

As long as there is no non-terminating computation within a synchronized block, this does not change the semantics
of strong mobility, it only results in the dispatch being delayed.

Method calls can be optimized through tail-call optimization. Since Java code typically is not highly recursive, we
do not expect the average performance penalty to be worse than a factor of two or three, possibly less than that.

7 Conclusions

We have argued that strong mobility is important for developing mobile code in a modular fashion and, therefore, for
making this code reliable. We have outlined a translation scheme that translates strongly mobile code into weakly

12



mobile code. As the target language for the preprocessor we use Java with IBM’s Aglets library. The API for the
strongly mobile code and the translation mechanism are designed to give programmers full flexibility in dealing with
any synchronization problems through exception handling.

References

[1] Gianpaolo Cugola, Carlo Ghezzi, Gian Pietro Picco, and Giovanni Vigna. Analyzing mobile code languages. In
Jan Vitek, editor,Mobile Object Systems: Towards the Programmable Internet, number 1222 in Lecture Notes
in Computer Science, pages 93–110. Springer-Verlag, 1996.

[2] Stefan F̈unfrocken. Transparent migration of Java-based mobile agents: Capturing and reestablishing the state of
java programs. In Kurt Rothermel and Fritz Hohl, editors,Proceedings of the Second International Workshop on
Mobile Agents (MA ’98), volume 1477 ofLecture Notes in Computer Science, pages 26–37, Stuttgart, Germany,
9–11 September 1998. Springer-Verlag.

[3] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The Java Language Specification. The Java Series.
Addison-Wesley, Reading, Massachusetts, 2nd edition, 2000.

[4] Thomas Gschwind. Comparing object oriented mobile agent systems. In Ciarán Bryce, editor,6th ECOOP
Workshop on Mobile Object Systems, Sophia Antipolis, France, 13 June 2000. To be published in Springer
Lecture Notes in Computer Science.

[5] Joseph Kiniry and Daniel Zimmerman. A hands-on look at Java mobile agents.IEEE Internet Computing,
1(4):68–77, August 1997.

[6] Danny B. Lange and Mitsuru Oshima.Programming & Deploying Mobile Agents with Java Aglets. Addison-
Wesley, 1998.

[7] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The Java Series. Addison-Wesley,
Reading, Massachusetts, 1996.

[8] Luis Moura Silva, Guiherme Soares, Paulo Martins, Victor Batista, and Luis Santos. The performance of mobile
agent platforms. InProceedings of the First International Symposium on Agent Systems and Applications and
Third International Symposium on Mobile Agents, pages 270–271. IEEE, 1999.

[9] Niranjan Suri, Jeffrey M. Bradshaw, Maggie R. Breedy, Paul T. Groth, Gregory A. Hill, and Renia Jeffers. Strong
mobility and fine-grained resource control in nomads. InProceedings of the Second International Symposium
on Agent Systems and Applications / Fourth International Symposium on Mobile Agents, pages 79–92, Zurich,
September 2000.

[10] Niranjan Suri, Jeffrey M. Bradshaw, Maggie R Breedy, Paul T. Groth, Gregory A. Hill, Renia Jeffers, and Tim-
othy S. Mitrovich. An overview of the NOMADS mobile agent system. In Ciarán Bryce, editor,6th ECOOP
Workshop on Mobile Object Systems, Sophia Antipolis, France, 13 June 2000. To be published in Springer
Lecture Notes in Computer Science.

13


