Arjav J. Chakravarti and Gerald Baumgartner and Mario Laauri

Self-Organizing Scheduling on
the Organic Grid

CRC PRESS
Boca Raton Ann Arbor London Tokyo

Contents

1 Self-Organizing Scheduling on the Organic Grid 1
Arjav Chakravarti, Gerald Baumgartner, and Mario LaumigathWorks, Inc; Louisiana
State University; Ohio State University

11
1.2

13

1.4

15

Introduction 2
Background and RelatedWork 4
1.2.1 Peer-to-Peer and Internet Computing 4
1.2.2 Decentralized Scheduling 4
1.2.3 Self-Organization of Complex Systems 5
1.2.4 Strongly Mobile Agents L 6
DesignofanOrganicGrid 7
1.3.1 AgentBehavior 7
1.3.2 Details of the Agent Behavior 8
Measurementso 10
1.4.1 Independent Task Application: BLAST 10
1.4.2 Communicating Tasks: Cannon’s Matrix-Matrix Muliia-

tion 11
1.4.3 Scalability 12
1.4.4 Adaptive Tree Mechanism 13
1.45 Fault-Tolerance 15
Conclusions and Future Work 15

0-8493-0052-5/00/$0.00+$.50 .
© 2001 by CRC Press LLC |

1

Self-Organizing Scheduling on the Organic
Grid

Arjav Chakravarti, Gerald Baumgartner, and Mario Lauria
MathWorks, Inc; Louisiana State University; Ohio State \émsity

CONTENTS

1.1 INtrodUCtioN. o 1

1.2 Background and Related Work. ..., 4

1.3 DesignofanOrganic Grid.............c.cooiiiiiiiiiiiii i, 6

1.4 MeEASUIEMEBNES . . .ttt e e e 10

1.5 Conclusionsand Future Work.................oo i, 15
ACKNOWIEAOMENTS. . ..o 17
REfEIENCES . .. 17

The Organic Grid is a biologically inspired and fully-dettized approach to the
organization of computation that is based on the autonorsdusduling of strongly
mobile agents on a peer-to-peer network. Through the dadegign of agent be-
havior, the emerging organization of the computation cacustomized for different
classes of applications.

We report our experience in adapting the general framewonun two repre-
sentative applications on our Organic Grid prototype: tleBNBLAST code for
sequence alignment, and Cannon'’s algorithm for matrixiplidation. The first is
an example of an independent task application, a type ofegtigin commonly used
for grid scheduling research because of its easily decoaip@sature and absence
of intra-node communication. The second is a popular bldglrahm for paral-
lel matrix multiplication, and represents a challenginglagation for grid platforms
because of its highly structured and synchronous commtimicpattern.

Agent behavior completely determines the way computasoorganized on the
Organic Grid. We intentionally chose two applications apagite ends of the dis-
tributed computing spectrum having very different reqguieats in terms of com-
munication topology, resource use, and response to fallesdetail the design of
the agent behavior and show how the different requiremeanisbe satisfied. By
encapsulating application code and scheduling functignato mobile agents, we
decouple both computation and scheduling from the undeglgrid infrastructure.
In the resulting system every node can inject a computatia the grid; the com-
putation naturally organizes itself around available ueses.

0-8493-0052-5/00/$0.00+$.50
®© 2001 by CRC Press LLC 1

2 Self-Organizing Scheduling on the Organic Grid

1.1 Introduction

Many scientific fields, such as genomics, phylogeneticspplysics, geophysics,
computational neuroscience, or bioinformatics, requiassive computational power
and resources, which might exceed those available on aassuglercomputer. There
are two drastically different approaches for harnessiegctimbined resources of a
distributed collection of machines: traditional grid camipg schemes and central-
ized master-worker schemes.

Research on Grid scheduling has focused on algorithms &ordete an optimal
computation schedule based on the assumption that sufficdetailed and up to
date knowledge of the system state is available to a singley €the metasched-
uler) [1, 3, 20, 41]. While this approach results in a very éffit utilization of the
resources, it does not scale to large numbers of machindataidang a global view
of the system becomes prohibitively expensive and undeliabtworks might even
make it impossible.

A number of large-scale systems are based on variants of #steniworkers
model [2,6,13,15,16,21, 24,25, 30, 31, 39, 46]. The fadtsbane of these systems
have resulted in commercial enterprises shows the levetbhical maturity reached
by the technology. However, the obtainable computing pasieponstrained by the
performance of the single master (especially for dataasite applications) and by
the difficulty of deploying the supporting software on a rgumber of workers.

At a very large scale much of the conventional wisdom we halied upon in
the past is no longer valid, and new design principles mustiébesloped. First,
very few assumptions (if any) can be made about the systemmarticular about
the amount of knowledge available about the system. Secinck the system is
constantly changing (in terms of operating parameters,rasdurce availability),
self-adaption is the normal mode of operation and must bk ibuirom the start.
Third, the deployment of the components of an infrastruectsira non-trivial issue,
and should be one of the fundamental aspects of the designthi-any dependence
on specialized entities such as schedulers, masters retdesneeds to be avoided
unless such entities can be easily replicated in a way tladgsavith the size of the
system.

We propose a completely new approach to large scale congngdhat addresses
all these points simultaneously with a unified design medhmgl. While known
methods of organizing computation on large systems carabedrto techniques that
were first developed in the context of parallel computing rawlitional supercom-
puters, our approach is inspired by the organization of dexnpystems. Nature
provides numerous examples of the emergence of complesrpatierived from the
interactions of millions of organisms that organize thelwesein an autonomous,
adaptive way by following relatively simple behavioralesl In order to apply this
approach to the organization of computation over large dexngystems, a compu-
tation must be broken into small self-contained chunksh eapable of expressing
autonomous behavior in its interaction with other chunks.

Self-Organizing Scheduling on the Organic Grid 3

The notion that complex systems can be organized accordilugal rules is not
new. Montresor et al. [33] showed how an ant algorithm cowdubed to solve
the problem of dispersing tasks uniformly over a networkmigirly, the RIP rout-
ing table update protocol uses simple local rules that t@sigood overall routing
behavior. Other examples include autonomous grid schaglpliiotocols [26] and
peer-to-peer file sharing networks [19, 40].

Our approach is to encapsulate computation and behaviornmabile agents,
which deliver the computation to available machines. Thasbile agents then
communicate with one another and organize themselves ér twdise the resources
effectively. We envision a system where every node is capabtontributing re-
sources for ongoing computations, and starting its owntrariily large computa-
tion. Once an application is started at a node, e.g., thésuaptop, other nodes are
called in to contribute resources. New mobile agents aratedethat, under their
autonomous control, readily colonize the available resesiand start computing.

Only minimal support software is required on each node gsinest of the schedul-
ing infrastructure is encapsulated along with the appbcaetode inside an agent. In
our experiments we only deployed a JVM and a mobile agent@mvient on each
node. The scheduling framework described in this chapteeiilsg implemented as
a library that a developer will be able to adapt for his or happses.

Computation organizes itself on the available nodes agugrid a pattern that
emerges from agent-to-agent interaction. In the simpkesg ¢his pattern is an over-
lay tree rooted at the starting node; in the case of a datasivie application, the
tree can be rooted at one or more separate, presumably evelected machines at
a supercomputer center. More complex patterns can be gedkls required by the
applications requirements, either by using different togies than the tree, and/or
by having multiple overlay networks each specialized foiffeint task.

In our system, the only knowledge each agent relies uponas itan derive from
its interaction with its neighbor and with the environmepitis an initialfriends list
needed to bootstrap the system. The nature of the informegpuired for successful
operation is application dependent and can be customizeg, f&r our first (data-
intensive) application, both neighbor computing rate asmimunication bandwidth
of the intervening link were important; this information svabtained using feedback
from the ongoing computation.

Agent behavior completely determines the way computati@anganized. In order
to demonstrate the feasibility and generality of this apphy we report our experi-
ence in designing agent behavior for running two represigatapplications on an
Organic Grid.

The first, the NCBI BLAST code for sequence alignment, is aangple of an
independent task application. This type of applicationasmmonly used for grid
scheduling research because of its easily decomposableeraatd absence of intra-
node communication. The second, Cannon’s algorithm forigatultiplication, is
a block algorithm for parallel matrix multiplication thatterleaves communication
with computation. Because of its highly structured and Byocous communication
pattern it is a challenging application for grid platforms.

The most important contribution of the experiments desctibere is to demon-

4 Self-Organizing Scheduling on the Organic Grid

strate how the very different requirements — in terms of camitation topology,

resource use, and response to faults — of each of these tioatjmms at the oppo-
site ends of the distributed computing spectrum can bfigatisy the careful design
of agent behavior in an Organic Grid context.

1.2 Background and Related Work

This section contains a brief introduction to the criticahcepts and technologies
used in our work on autonomic scheduling, as well as theaglatork in these
areas. These include: Peer-to-Peer and Internet comps#ifgprganizing systems
and the concept of emergence, and strongly mobile agents.

1.2.1 Peer-to-Peer and Internet Computing

The goal of utilizing the CPU cycles of idle machines was fiestlized by the Worm
project [23] at Xerox PARC. Further progress was made byemézprojects such
as Condor [30]. The growth of the Internet made large-sdédete like GIMPS [46],
SETI@home [39] and folding@home [15] feasible. Recentiynmercial solutions
such as Entropia [13] and United Devices [44] have also begaldped.

The idea of combining Internet and peer-to-peer compusraftractive because
of the potential for almost unlimited computational powew cost, ease and uni-
versality of access — the dream of a true Computational Guidong the technical
challenges posed by such an architecture, scheduling isfahe most formidable
— how to organize computation on a highly dynamic system daagpary scale
while relying on a negligible amount of knowledge about tege.

1.2.2 Decentralized Scheduling

Decentralized scheduling has recently attracted coraidferattention. Two-level
scheduling schemes have been considered [22, 38], butdheset scalable enough
for the Internet. In the scheduling heuristic described kgigsuksun et al. [29],
every machine attempts to map tasks on to itself as well as iest neighbors.
This appears to require that each machine have an estim#te ekecution time
of subtasks on each of its neighbors, as well as of the barlwitdthe links to
these other machines. It is not clear that their scheme ®&ipahin large-scale and
dynamic environments.

G-Commerce was a study of dynamic resource allocation orGtiigk in terms
of computational market economies in which applicationstuwy resources at a
market price influenced by demand [45]. While conceptualbedéralized, if imple-
mented this scheme would require the equivalent of cent@icommodity markets
(or banks, auction houses, etc.) where offer and demand emesktommaodity prices

Self-Organizing Scheduling on the Organic Grid 5

can be determined.

Recently, a new autonomous and decentralized approaclinéalsing has been
proposed to address the needs of large grid and peer-toptetésrms. In this
bandwidth-centric protocol, the computation is organiaedund a tree-structured
overlay network with the origin of the tasks at the root [2Bhch node sends tasks
to and receives results from ksbest neighbors, according to bandwidth constraints.
One shortcoming of this scheme is that the structure of #e &ind consequently the
performance of the system, depends completely on thelisitizcture of the overlay
network. This lack of dynamism is bound to affect the perfance of the scheme
and might also limit the number of machines that can padieijin a computation.

1.2.3 Self-Organization of Complex Systems

The organization of many complex biological and socialeyst has been explained
in terms of the aggregations of a large number of autonomtittes that behave ac-
cording to simple rules. According to this theory, compiéchpatterns can emerge
from the interplay of many agents — despite the simplicityhaf rules [18,43]. The
existence of this mechanism, often referred t®amrgencehas been proposed to
explain patterns such as shell motifs, animal coats, netmattures, and social be-
havior. In particular, complex behaviors of colonial orgams such as social insects
(e.g., ants or bees) have been studied in detail, and thglicapons to the solu-
tion of classic computer science problems such as task stthgénd TSP has been
proposed [4, 33].

The dynamic nature and complexity of mobile ad-hoc netwdfMBNETS) has
motivated some research in self-organization as an apprimac=ducing the com-
plexity of systems installation, maintenance, and managenmSelf-organizing al-
gorithms for several network functions of MANETs have beeoppsed, includ-
ing topology control and broadcast [8, 47]. Recently, thevoek research com-
munity has even tried to formalize the concept of self-oizgtion; the four design
paradigms proposed by Prehofer and Bettstetter repredest attempt to provide
guidelines for developing a self-organized network fusre{i35].

In a departure from the methodological approach followegrivious projects,
we did not try to accurately reproduce a naturally occurtepavior. Rather, we
started with a problem and then designed a completely @tifiehavior that would
result in a satisfactory solution to it.

Our work is somewhat closer to the self-organizing compantatoncept explored
in the Co-Fields project [32]. The idea behind Co-Field®iditive the organization
of autonomous agents through artificial potential fields.

Our work was inspired by a particular version of the emerggurinciple called
Local Activation, Long-range Inhibition (LALI) [42]. The ALI rule is based on
two types of interactions: a positive, reinforcing one tiatks over a short range,
and a negative, destructive one that works over longerrdista We retain the LALI
principle but in a different form: we use a definition of dista which is based on a
performance-based metric. Nodes are initially recruitgidgia friends list (a list of
some other peers on the network) in a way that is completdlyiobs of distance,

6 Self-Organizing Scheduling on the Organic Grid

therefore propagating computation on distant nodes wighstime probability as
close ones. During the course of the computation the agdravil encourages
the propagation of computation among well-connected nathde discouraging the
inclusion of distant (i.e., less responsive) agents.

1.2.4 Strongly Mobile Agents

To make progress in the presence of frequent reclamaticthsstop machines, cur-
rent systems rely on different forms of checkpointing: audtic, e.g., SETI@home,
or voluntary, e.g., Legion. The storage and computationeitteads of checkpoint-
ing put constraints on the design of a system. To avoid tlaw/dack, desktop grids
need to support the asynchronous and transparent migaftppocesses across ma-
chine boundaries.

Mobile agents [28] have relocation autonomy. These agdfasaflexible means
of distributing data and code around a network, of dynaryicaloving between
hosts as resource availability varies, and of carrying iplelthreads of execution to
simultaneously perform computation, decentralized sgliregl and communication
with other agents. There have been some previous attempse tmobile agents for
grid computing or distributed computing [5,17, 34, 36].

The majority of the mobile agent systems that have been degdluntil now are
Java-based. However, the execution model of the Java Vaehine does not per-
mit an agent to access its execution state, which is why Basad mobility libraries
can only provideveak mobility{14]. Weakly mobile agent systems, such as IBM'’s
Aglets framework [27] do not migrate the execution state ethnds. Thego()
method, used to move an agent from one virtual machine tchanaimply does
not return. When an agent moves to a new location, the threadsntly executing
in it are killed without saving their state. The lifeless ages then shipped to its
destination and restarted there. Weak mobility forces rammgners to use a difficult
programming style, i.e., the use of callback methods, toaacfor the absence of
migration transparency.

By contrast, agent systems wiglirong mobilityprovide the abstraction that the
execution of the agent is uninterrupted, even as its locatimnges. Applications
where agents migrate from host to host while communicatiitly @ne another, are
severely restricted by the absence of strong mobility. riétnmobility also allows
programmers to use a far more natural programming style.

The ability of a system to support the migration of an agerdrat time by an
external thread, is termddrced mobility This is essential in desktop grid systems,
because owners need to be able to reclaim their resourcegdrmobility is difficult
to implement without strong mobility.

We provide strong and forced mobility for the full Java praigming language by
using a preprocessor that translates an extension of Jakastndng mobility into
weakly mobile Java code that explicitly maintains the exiecustate for all threads
as a mobile data structure [11, 12]. For the target weaklyilmaode we currently
use IBM’s Aglets framework [27]. The generated weakly melgbde maintains a
movable execution state for each thread at all times.

Self-Organizing Scheduling on the Organic Grid 7

1.3 Design of an Organic Grid

The purpose of this section is to describe the architecthitheoproof-of-concept,
small-scale prototypes of the Organic Grid we have buileso f

1.3.1 Agent Behavior

In designing the behavior of the mobile agents, we faced lgesic issues of per-
forming a distributed computation in a dynamic environmedistribution of the
data, discovery of new nodes, load balancing, collectiothefresults, tolerance to
faults, detection of task completion. The solutions forheatthese issues had to
be cast in terms of one-to-one interactions between pamgefts and embedded in
the agent behavior. Using an empirical approach, we degdlgpme initial design
decisions and we then refined them through an iterative psockimplementation,
testing on our experimental testbed, performance anakggiesign and new imple-
mentation. To facilitate the process we adopted a modukigden which different
aspects of the behavior were implemented as separate ahideviified routines.

As a starting point in our design process, we decided to argahe computa-
tion around a tree-based overlay network that would simptid balancing and
the collection of results. Since such a network does not @tithe beginning of
the computation, it has to be built on the fly as part of the egj¢ake-over of the
system.

In our system, a computational task represented by an agemntially submitted
to an arbitrary node in the overlay network. If the task is lage to be executed
by a single agent in a reasonable amount of time, agents lafiedhemselves and
migrate to other nodes; the clones will be assigned a smatlbseof the task by the
initiating agent. The new agents will complete the subtais&sthey were assigned
and return the results to their parent. They will also, imtatone and send agents to
available nodes and distribute subtasks to them. The gvedavork is constituted
by the connections that are created between agents as tipeitadion spreads out.

For our preliminary work we used the Java-based Aglets wedility library, on
top of which we added our own strong mobility library. An Atdeenvironment is
set up when a machine becomes available (for example whendbhkine has been
idle for some time; in our experiments we assumed the mashmbe available at
all times).

Every machine has a list of théRLs of other machines that it could ask for work.
This list is known as thdriend-list It is used for constructing the initial overlay
network. The problem of how to generate this initial list waxt addressed in our
work; one could use one of the mechanisms used to createsiistk in tools such
as Gnutella, CAN [37], and Chord [40].

The environment creates a stationary agent, which asksitdre$ for work by
sending them messages. If a request arrives at a machinkahato computation
running on it, the request is ignored. Nothing is known alkibet configurations

8 Self-Organizing Scheduling on the Organic Grid

of the machines on the friend-list, or of the bandwidths ¢enaies of the links to
them, i.e., the algorithm is zero-knowledge and appropfiat dynamic, large-scale
systems.

A large computational task is written as a strongly mobileragThis task should
be divisible into a number of independent and identical asist by simply dividing
the input data. A user sets up the agent environment on histhehine and starts
up the computation agent. One thread of the agent beginsitaixgsubtasks se-
guentially. This agent is now also prepared to receive retguer work from other
machines. On receiving such a request, it checks whethas iy uncomputed sub-
tasks, and if it does, it creates a clone of itself and seratscthne to the requesting
machine. The requester is now this machirofigd.

A clone is ready to do useful work as soon as it reaches a neatidoc It asks
its parent for a certain number of subtaske work on. When the parent sends the
subtasks, one of this agent’s threads begins to compute Bémer threads are cre-
ated as needed to communicate with the parent or to respoeduests from other
machines. When such a request is received, the agent clealsaitd dispatches its
own clone to the requester. The computation spreads in tuiger. The topology of
the resulting overlay network is a tree with the originatingchine at the root node.

When the subtasks on a machine have been completely exethéedient on that
machine requests more subtasks to work an from its paremt.p@tent attempts to
comply. Even if the parent does not have the requested nuafitseibtasks, it will
respond and send its child what it can. The parent keeps adre€the number of
subtasks that remain to be sent, and sends a request foitésiseio its own parent.

Every time a node of the tree obtains sonresults, either computed by itself or
obtained from a child, it needs to send the results to itsrpané also sends along
a measurement of the time that has elapsed since the last ioraputedr results.
The results and the timing measurement are packaged inhgle shessage. At this
point, the node also checks whether its own — or any of itdebil’s — requests
were not fully satisfied. If that is the case, a request forrdmaining number of
subtasks is added to the message and the entire messagetisteemode’s parent.
The parent then uses the timing measurements to comparestfegrpance of its
children and to restructure the overlay network. The timimegasurement was built
into the agent behavior in order to provide some feedbacksoown performance
(in terms of both computational power and communicatiordipadth).

1.3.2 Details of the Agent Behavior

Maintenance of Child-lists A node cannot have an arbitrarily large number of
children because this will adversely affect the synchratnin delay at that node.
Since the data transfer times of the independent subtaskiame, a node might
have to wait for a very long time for its request to be satisfidterefore, each node
has a fixed nhumber of childrer, The number of children also should not be too
small so as to avoid deep trees which will lead to long delaysopagating the data
from the root to the leaf nodes. These children are ranketidyate at which they
send in results. When a child sendsrinesults with the time that was required to

Self-Organizing Scheduling on the Organic Grid 9

obtain them, its ranking is updated. This ranking is a refd@ctf the performance
of not just a child node, but of the entire subtree with thddchode as its root. This
ranking is used in the restructuring of the tree as desciiledaiv.

Restructuring of the Overlay Network The topology of a typical overlay network
is a tree with the root being the node where the original cdatfmn was injected. It
is desirable for the best-performing nodes to be close toabie This minimizes the
communication delay between the root and the best nodeghanime that these
nodes need to wait for their requests to be handled by the rblois principle to
improve system throughput is applicable down the trege d.mechanism is required
to structure the overlay network such that the nodes withnieest throughput are
closer to the root, while those with low throughput are nbarleaves.

A node periodically informs its parent about its best-perfimg child. The parent
then checks whether its grandchild is present in its lisoofrfer children. If not, it
adds the grandchild to its list of potential children andstiiis node that it is willing
to consider the grandchild. The node then informs the gtaitdithat it should now
contact its grandparent directly. This results in fast rsogercolating towards the
root of the tree.

When a node updates its child-list and decides to removeadtgesit child,sg, it
does not simply discard the child. It sergtsa list of its other children, whiclsc
attempts to contact in turn. $fichad earlier been propagated to this node, a check is
made as to whetheCs original parent is still a child of this node. In that cases
original parentpp, is placed first in the list of nodes being sent $orto attempt to
contact. Sincescwasop's fastest child at some point, there is a good chance that it
will be accepted byp again.

Fault Tolerance A node depends on its parent to supply it with new subtasks to
work on. However, if the parent were to become inaccessildetd machine or link
failures, the node and its own descendents would be unabedoy useful work. A
node must be able to change its parent if necessary; evegykaegs a list o& of its
ancestors in order to accomplish this. A node obtains thisribm its parent every
time the parent sends it a message. The updates to the arlegtke into account
the possibility of the topology of the overlay network champfrequently.

A child waits a certain user-defined time for a response afteding a message
to its parent — the-th node in its ancestor-list. If the parent is able to regpdn
will, irrespective of whether it has any subtasks to sendtiifd at this moment or
not. The child will receive the response, check whetheleitiest was satisfied with
any subtasks, and begin waiting again if that is not the case.

If no response is obtained within the timeout period, thédal@moves the current
parent from its ancestor-list and sends a message tathé){st node in that list.
This goes on until either the size of the list becomes 0, orraestor responds to
this node’s request.

If a node’s ancestor-list does go down to size 0, the nodedaszans of obtaining
any work to do. The mobile agent that computes subtasksmgtine agent environ-

10 Self-Organizing Scheduling on the Organic Grid

ment that no useful work is being done by this machine, ana sleéf-destructs. Just
as before, a stationary agent begins to send out request®fkito a list of friends.

However, if an ancestor does respond to a request, it bectiragsarent of the
current node and sends a new ancestor-list of siwethis node. Normal operation
resumes with the parent sending subtasks to this node anadtie sending requests
and results to its parent.

Prefetching A potential cause of slowdown in the basic scheduling schdeie
scribed earlier is the delay at each node due to its waitingiéav subtasks. This
is because it needs to wait while its requests propagateaifréh to the root and
subtasks propagate down the tree to the node.

We found that it is beneficial to use prefetching for redudimgtime that a node
waits for subtasks. A node determines that it should redqumsdttasks from its par-
ent. The node then makes an optimistic prediction of how ngartasks it might
require in the future and requests- i(¢) subtasks from its parent. When a node
finishes computing one set of subtasks, more subtasks atiyragailable for it to
work on, even as a request is submitted to the parent. Thidealing of computa-
tion and communication reduces the time for which a nodelés id

While prefetching will reduce the delay in obtaining new st to work on, it
also increases the amount of data that needs to be tramk& ragime from the root
to the current node, thus increasing the synchronizatitaydend data transfer time.
This is why excessively aggressive prefetching will end eggrming worse than a
scheduling scheme with no prefetching.

1.4 Measurements

We have demonstrated the applicability of our scheduling@gch using two very
different types of applications, the National Center foot®chnology Information
(NCBI) basic local alignment search tool (BLAST) code fagsence alignment [10],
and Cannon’s algorithm for parallel matrix multiplicatif®]. In this section, we
summarize the results of these experiments, with emphasaanon’s algorithm.

1.4.1 Independent Task Application: BLAST

For our initial experiments, we used BLAST, an applicatibattis representative
of a class of applications commonly used in grid schedulasgarch called aim-
dependent task applicatigior ITA) [10]. The lack of communication between the
tasks of an ITA simplifies scheduling, because there are netrints on the order
of evaluation of the tasks.

The application consisted of 320 tasks, each matching andi8&KB sequence
agains a 512KB chunk of a data base. When arriving at a node pdenament in-

Self-Organizing Scheduling on the Organic Grid 11

OR\G\N’ ‘
@.
Q ": _Q ’* ’. ORIGIN,)
oY e o e
® ® ®
5 ® O o L. ¥e
o— ® o ®
. s — IS CHILD OF
FIGURE 1.1 FIGURE 1.2
BLAST: Original Configuration of Final Node Organization,
Machines Result-burst size=3, With Child

Propagation

stalls the BLAST executable and then repeatedly requestsasks from its parent
and returns the results to its parent until no more tasks\aiaale. If the agent
receives requests for work from an idle machine, it sendsaecdf itself to the idle
machine. The computation thus spreads out from its sourtieeiiorm of a tree.
The source distributes the data in the form of computatienbtasks that flow down
the tree; results flow towards the root. This same tree sireietas also used as the
overlay network for making scheduling decisions. In gehehere could be sepa-
rate overlay networks: for data distribution, for schedgliand for communication
between subtasks. For this application, there is no contation between subtasks
while the overlay trees for data distribution and schedyutiverlap.

We ran the experiments with an arbitrary initial configuratof the overlay net-
work as shown in Figure 1.1. To simulate the effect of hetenagty, we introduced
delays in the application code resulting in fast, mediung slow nodes. We per-
formed a variety of experiments with different parametdrswr scheduling algo-
rithm, such as the width of the overlay tree or the number sfilte over which to
average the performance of a node, and measured the runmecgnd the time
needed for the computation to reach all nodes. The parasntiat resulted in the
best performance were a maximum tree width of 5 and a restdt bize of 3. Fig-
ure 1.2 shows the resulting overlay tree at the end of the atatipn, in which most
of the fast nodes had been propagated closer to the root.

1.4.2 Communicating Tasks: Cannon’s Matrix-Matrix Multiplication

For demonstrating the generality of the self-organizingrepch and the flexibility
of the Organic Grid scheduling framework, we selected arsg@epplication at the
opposite end of the spectrum, characterized by a highlyaegand synchronous pat-
tern of communication — Cannon’s matrix multiplication atghm [7]. Cannon’s
algorithm employs a square processor grid of &ize p x p in which computation is

12 Self-Organizing Scheduling on the Organic Grid

alternated (and can be interleaved) with communicatior ifhial node waits until
k machines are available for the computation. Each procéssbe grid then gets
one tile of each of the argument matrices. After multiplythgse tiles, one of the
argument matrices is rotated along the first dimension optbeessor grid, the other
argument matrix is rotated along the second dimension optbeessor grid. Each
processor gets new tiles of the argument matrices and addeghlt of multiplying
these tiles to its tile of the result matrix. The algorithmnténates aftep of these
tile multiplications.

This application employs three different overlay networkstar topology for data
distribution, a torus for the communication between slistaand the tree overlay
of the scheduling framework. The metric used for restrututhe tree was the
time to multiply two matrix tiles. While for the ITA the resater constraint was the
communication bandwidth of the root, for Cannon’s algamti was the number of
machines that belong to the torus. Below we report a substteofesults of our
experiment; more results are available in [9]

Three aspects of the Organic Grid implementation of Carmmrtrix multiplica-
tion were sought to be evaluated: i) performance and sdiyali) fault-tolerance
and iii) decentralized selection of compute nodes. A goagluation of this ap-
plication required tight control over the experimentalgraeters. The experiments
were therefore performed on a Beowulf cluster of homogesédnux machines,
each with dual AMD Athlon MP processors (1.533 GHz) and 2 GBramory.
When necessary, artificial delays were introduced to sirawdieterogeneous envi-
ronment. The accuracy of the experiments was improved btiphyihg the matrices
16 times instead of just once.

1.4.3 Scalability

We performed a scalability evaluation by running the agpian on various sizes of
tori and matrices. The tree adaptation mechanism was tamlyadisabled in order
to eliminate its effect on the experiments.

Table 1.1, and Figure 1.4 present a comparison of the rurtimmesg of 16 rounds
of matrix multiplications on tori with 1, 2 and 4 agents alaarh dimension. Super-
linear speedups are observed with larger numbers of nodesibe of the reduction
in cache effects with a decrease in the size of the tilesdtareach machine.

Matrix Single Agent 4 x 4 Agent Grid
Size (MB) || Tile (MB) | Time (sec)|| Tile (MB) | Time (sec)| Speedup|
1 1 75 0.0625 34 2.2
4 4 846 0.25 43 19.7
16 16 14029 1 454 30.9

Table 1.1: Running Time on 1 and 16 Machines, 16 Rounds

Self-Organizing Scheduling on the Organic Grid 13

feslre
‘ ’ Q 15625
O‘ Q 3125
‘ ‘ Q - 625
J.’ Q ;g? 125
o} Jice :
e Lok 5 nIE
2 :Z; ! Size of Ma[:nces (MB) *
= KNOWS ABOUT FIGURE 1-4
FIGURE 1.3 Running Time on 1, 4 and 16
Cannon: Original Configuration of Machines, 16 Rounds
Machines

ORIGIN

O east
@ sov
O o
FIGURE 1.5 FIGURE 1.6
Original Tree Overlay Original Torus Overlay

1.4.4 Adaptive Tree Mechanism

We then made use of the adaptive tree mechanism to selecesthevmilable ma-
chines for the torus in a decentralized manner. The feedbamiby each child to its
parent was the time taken by the child to complete its twoiptevtile multiplica-
tions.

We experimented with a desktop grid of 20 agents in Figure Thgse 20 agents
then formed a tree overlay network, of which the first 16 totaonthe distribution
agent were included in a torus with 4 agents along each dioenthe remaining
agents acted as extras in case any faults occurred. Thal in¢é and torus can be
seen in Figures 1.5 and 1.6 with 4 slow nodes in the torus amttd, éast nodes.

The structure of the tree continually changed and the hgfepmance nodes
were pushed up towards the root. When a fast, extra node fdwatcbhe of its

14 Self-Organizing Scheduling on the Organic Grid

ORIGIN

oRIGIN %

O FAST ‘
@ = 000
O EXTRA
FIGURE 1.7 FIGURE 1.8
Tree Overlay Before Fourth Swap Torus Overlay After Fourth Swap
T Stage | Swap position Avg. Tile
on Torus Mult. Time (sec)
1-3 - 10
4 12 13
5 - 15
. 6 13,15 15
Slow Nodes| Extra Nodes| Time (Sec) 742 B 14
4 0 898 43 12 14
0 0 462 4447 12 13
4 4 759 438-64 - 7
Table 1.2: Running Time of 16 Table 1.3: Performance at Different
Rounds on 4x4 Grid, 16MB Matrix, Stages of Experiment, 4x4 Agent Grid

1MB Tiles, Adaptive Tree

children was slower than itself and part of the torus, ii@éd a swap of roles. The
topology of the tree and the torus before and after the fosmthp are shown in
Figures 1.7 and 1.8.

Each matrix multiplication on théxz4 agent grid had 4 tile multiplication stages;
our experiment consisted of 16 rounds — 64 stages. A tileiptictition took 7 sec.
on a fast node and 14 sec. on a slow one. Table 1.3 presentecitagja execution
time of these stages. This began at 10 sec., then incread@dster. before the first
swap took place. The fast nodes were inserted into the toristages 4, 6 and 43.
Once the slow nodes had been swapped out, the system reduioathds until all
the 16 agents sped up and reached high steady-state panf@nighe effect of this
on overall running time can be seen in Table 1.2.

While the adaptive tree mechanism undoubtedly results imfanpeance improve-
ment in the presence of high-performance extra nodes gtialsoduces some over-
head. Nodes provide feedback to their parents who, in tamk their children and
propagate the best ones. We first ran the Cannon applicatibawany extra nodes
present, and then disabled the adaptive tree mechanismsierand set of experi-

Self-Organizing Scheduling on the Organic Grid 15

No Adaptation Adaptation
Slow Nodes| Extra Nodes| Time (sec)| Slow Nodes| Extra Nodes| Time (sec)
4 0 898 4 0 899
0 0 454 0 0 462

Tallble 1.4: Overhead of Adaptive Tree, 16 Rounds, 4x4 Grit/jB &1atrix, 1MB
Tiles

No. of Failures| Failures on Column Failures on Diagonal

Positions| Time (sec)| Positions| Time (sec)
0 - 454 - 454
1 5 466 5 466
2 5,9 479 6,9 464
3 5,9,13 486 6,9, 12 540

Table 1.5: Running Time of 16 Rounds on 4x4 Grid, 16MB Mattik|B Tiles

ments. The overhead of this mechanism was negligible, abe&apen in Table 1.4.

1.4.5 Fault-Tolerance

We introduce crash failures by bringing down some machinesg application ex-
ecution. We were interested in observing the amount of thaethe system would
stall in the presence of failures. Different numbers ofufiegs were introduced at dif-
ferent positions on the torus. When multiple nodes on the saotenn crash, they
are replaced in parallel. The replacements for crashes dsgarmhl occur sequen-
tially.

The system recovers rapidly from failures on the same columardiagonal, as can
be seen in Table 1.5. For a small number of crashes (1 or 2§ ihéttle difference
in the penalty of crashes on columns or diagonals. Thisreiffee increases for 3
crashes, and we expect it to increase further for larger eusntf crashes on larger
tori.

1.5 Conclusions and Future Work

We have designed a desktop grid in which mobile agents acetagieliver applica-
tions to idle machines. The agents also contain a schedalgayithm that decides
which task to run on which machine. Using simple scheduligsin each agent,
a tree-structured overlay network is formed and restrectaynamically, such that
well performing nodes are brought closer to important reses) thus improving the
performance of the overall system.

We have demonstrated the applicability of our schedulifgese with two very
different styles of applications, an independent taskiaptibn, a BLAST executable,

16 Self-Organizing Scheduling on the Organic Grid

and an application in which individual nodes need to comcabe, a Cannon-style
matrix multiplication application.

Because of the unpredictability of a desktop grid, the salddoes not have
any a priori knowledge of the capabilities of the machineshernetwork connec-
tions. For restructuring the overlay network, the schedidies on measurements
of the performance of the individual nodes and makes schefdecisions using
application-specific cost functions. In the case of BLASTgve the data was prop-
agated along the same overlay tree, nodes with higher thpptgvere moved closer
to the root to minimize congestion. In the case of Cannorgsrithm, where the
data came from a separate data center, the fastest nodesneeee closer to the
root, to prevent individual slow nodes from slowing down émgire application.

The common aspect in scheduling the tasks for these vemrelift applications
is that access to a resource needs to be managed. In the d&sa%T, the critical
resource is the available communication bandwidth at to¢ aad at intermediate
nodes in the tree. If a node has too many children, commuaithecomes a bottle-
neck. Conversely, if a node has too few children, the treefnes too deep and the
communication delay between the root and the leaves too bimg goal for BLAST
was, therefore, to limit the width of the tree and to propadagh-throughput nodes
closer to the root. In the case of Cannon’s algorithm, thécatiresource is the com-
munication torus. Since any slow node participating in tireg would slow down
the entire application, the goal is to propagate the fasesatbser to the root and to
keep the slower nodes further from the root.

By selecting the appropriate parameters to our schedulgayithm, an applica-
tion developer can tune the scheduling algorithm to theagttaristics of an individ-
ual application. This choice of parameters includes cairgs on how the overlay
tree should be formed, e.g., the maximum width of the treé sametric with which
the performance of individual nodes can be compared to dednich nodes to prop-
agate up in the tree. Our scheduling scheme is inherentlyttderant. If a node in
the overlay tree fails, the tree will be restructured towllther nodes to continue
participating in the application. If a task is lost becauka failing node, it will even-
tually be assigned to another node. However, in the casenofremication between
tasks, such as in Cannon’s algorithm, it is necessary foappéication developer to
write application-specific code to recover from a failed @@ahd to reestablish the
communication overlay network.

In the near future we plan to harness the computing powerlefrichchines by
running the agent platform inside a screen saver. Since gtingpresources can
become unavailable (e.g., if a user wiggles the mouse tdrtetmthe screen saver),
we are planning to extend our scheduling cost functionsapiately to allow agents
to migrate a running computation, while continuing the camination with other
agents.

We are also planning to investigate combinations of distet, zero-knowledge
scheduling with more centralized scheduling schemes todwgpthe performance
for parts of the grid with known machine characteristicani&ir as in networking,
where decentralized routing table update protocols sudRIRscoexist with more
centralized protocols such as OSPF, we envision a grid irchvhi decentralized

Self-Organizing Scheduling on the Organic Grid 17

scheduler would be used for unpredictable desktop machinieite a centralized
scheduler would be used for, say, a Globus host.

The system described here is a reduced scale proof-of-pbitoplementation.
Clearly, our results need to be validated on a large scatersysin addition to a
screen saver-based implementation, we are planning ttetraction of a simulator.
Some important aspects of the Organic Grid approach thatireto be investigated
are more advanced forms of fault detection and recoverygdyinamic behavior of
the system in relation to changes in the underlying systeh tlle management of
the friends lists.

Acknowledgments

This research was done when all authors were at The Ohio Bratersity. It
was partially supported by the Ohio Supercomputer CentmtgrPAS0036-1 and
PAS0121-1.

References

[1] D. Abramson, J. Giddy, and L. Kotler, “High performance graetric modeling with Nimrod/G:
Killer application for the global grid?” ifProc. Intl. Parallel and Distributed Processing Symp.
May 2000, pp. 520-528.

[2] Berkeley Open Infrastructure for Network Computing (B@@). [Online]. Available: http:
//boinc.berkeley.edu/

[3] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. faan, S. Figueira, J. Hayes,
G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A.& D. Zagorodnov, “Adaptive
computing on the grid using AppLeSFEEE Transactions on Parallel and Distributed Systems
vol. 14, no. 4, pp. 369-382, 2003.

[4] E. Bonabeau, M. Dorigo, and G. Theraul&wyarm Intelligence: From Natural to Atrtificial Sys-
tems Oxford University Press, Santa Fe Institute Studies irStiences of Complexity, 1999.

[5] J.Bradshaw, N. Suri, A. J. @as, R. Davis, K. M. Ford, R. R. Hoffman, R. Jeffers, and T. Reic
herzer, “Terraforming cyberspac&bmputervol. 34, no. 7, pp. 48-56, July 2001.

[6] D.Buaklee, G. Tracy, M. K. Vernon, and S. Wright, “Neartiopal adaptive control of a large grid
application,” inProceedings of the International Conference on Supercdmguune 2002, pp.
315-326.

[7] L. Cannon, “A cellular computer to implement the kalman fil&gorithm,” Ph.D. dissertation,
Montana State University, 1969.

[8] A. Cerpaand D. Estrin, “ASCENT: Adaptive self-configugisEnsor networks topologie$sEEE
Transactions on Mobile Computingol. 3, no. 3, pp. 272-285, 2004.

[9] A.J. Chakravarti, G. Baumgartner, and M. Lauria, “Applion-specific scheduling for the Or-
ganic Grid,” in Proceedings of the 5th IEEE/ACM International Workshop aid @omputing
(GRID 2 004) Pittsburgh, November 2004, pp. 146-155.

18

(20]

[11]

[12]

[13]

(14]

(15]
(16]

(17]

(18]

[19]
[20]

[21]

(22]
(23]

(24]

(25]

[26]

[27]
(28]

[29]

Self-Organizing Scheduling on the Organic Grid

——, “The Organic Grid: Self-organizing computation opeer-to-peer network,” iRroceedings
of the International Conference on Autonomic ComputintEEE Computer Society, May 2004,
pp. 96-103.

A. J. Chakravarti, X. Wang, J. O. Hallstrom, and G. Baurtrger, “Implementation of strong
mobility for multi-threaded agents in Java,” Proceedings of the International Conference on
Parallel Processing |IEEE Computer Society, Oct. 2003, pp. 321-330.

——, “Implementation of strong mobility for multi-threadedjents in Java,” Dept. of Computer
and Information Science, The Ohio State University, Techp.RESU-CISRC-2/03-TR06, Feb.
2003.

A. A. Chien, B. Calder, S. Elbert, and K. Bhatia, “Entraparchitecture and performance of an
enterprise desktop grid systend,” Parallel and Distributed Computingol. 63, no. 5, pp. 597—
610, 2003.

G. Cugola, C. Ghezzi, G. P. Picco, and G. Vigna, “Anatgzimobile code languages,” in
Mobile Object Systems: Towards the Programmable Interset Lecture Notes in Computer
Science, J. Vitek, Ed., no. 1222. Springer-Verlag, 1996, $$-110. [Online]. Available:

http://www.polito.itrpicco/papers/ecoop96.ps.gz

folding@home. [Online]. Available: http://foldinganford.edu

J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuet&endor-G: A computation manage-
ment agent for multi-institutional grids,” iRroc. IEEE Symp. on High Performance Distributed
Computing (HPDC)San Francisco, CA, August 2001, pp. 7-9.

R. Ghanea-Hercock, J. Collis, and D. Ndumu, “Co-opegatobile agents for distributed parallel
processing,” inThird International Conference on Autonomous Agents AA9dineapolis, MN:
ACM Press, May 1999.

A. Gierer and H. Meinhardt, “A theory of biological path formation,’Kybernetik vol. 12, pp.
30-39, 1972.

Gnutella. [Online]. Available: http://www.gnutelizom

A. S. Grimshaw and W. A. Wulf, “The Legion vision of a woviie virtual computer,Comm. of
the ACM vol. 40, no. 1, pp. 39-45, Jan. 1997.

E. Heymann, M. A. Senar, E. Lugque, and M. Livny, “Adaptiseheduling for master-worker
applications on the computational grid,” Broc. of the First Intl. Workshop on Grid Computing
2000, pp. 214-227.

H. James, K. Hawick, and P. Coddington, “Scheduling petelent tasks on metacomputing sys-
tems,” inProceedings of Parallel and Distributed Computing Systehug. 1999.

J. A. H. John F. Shoch, “The "Worm” programs — early expecie with a distributed computa-
tion,” Comm. of the ACIWol. 25, no. 3, pp. 172-180, Mar. 1982.

N. T. Karonis, B. Toonen, and |. Foster, “MPICH-G2: A dnénabled implementation of the
message passing interfacdgurnal of Parallel and Distributed Computingol. 63, no. 5, pp.
551-563, 2003.

T. Kindberg, A. Sahiner, and Y. Paker, “Adaptive Pagbdm under Equus,” iProceedings of the
2nd International Workshop on Configurable Distributedt€ys Mar. 1994, pp. 172-184.

B. Kreaseck, L. Carter, H. Casanova, and J. Ferrantetd#omous protocols for bandwidth-
centric scheduling of independent-task applicationsPrioceedings of the International Parallel
and Distributed Processing Symposiufypr. 2003, pp. 23-25.

D. B. Lange and M. OshimaProgramming & Deploying Mobile Agents with Java Aglets
Addison-Wesley, 1998.

——, “Seven good reasons for mobile agen8dmmunications of the ACMol. 42, no. 3, pp.
88-89, Mar. 1999.

C. Leangsuksun, J. Potter, and S. Scott, “Dynamic taskpmagpalgorithms for a distributed het-
erogeneous computing environment,”Rmoc. Heterogeneous Computing Workshépr. 1995,
pp. 30-34.

Self-Organizing Scheduling on the Organic Grid 19

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

(43]
[44]
(45]
[46]

[47]

M. Litzkow, M. Livny, and M. Mutka, “Condor — a hunter otlle workstations,” irProceedings
of the 8th International Conference of Distributed CompgtSystemsJune 1988, pp. 104-111.

M. Maheswaran, S. Ali, H. J. Siegel, D. A. Hensgen, andcRsreund, “Dynamic matching and
scheduling of a class of independent tasks onto heterogsmeonputing systems,” ifroceedings
of the 8th Heterogeneous Computing Workshgm. 1999, pp. 30—-44.

M. Mamei and F. Zambonelli, “Co-Fields: a Physically liveg Approach to Distributed Motion
Coordination,"IEEE Pervasive Computingol. 3, no. 2, April 2004.

A. Montresor, H. Meling, and O. Babaoglu, “Messor: Leaalancing through a swarm of au-
tonomous agents,” iRroceedings of 1st Workshop on Agent and Peer-to-PeerrS8gster. Lec-
ture Notes in Artificial Intelligence, no. 2530. Springeeflag, July 2002, pp. 125-137.

B. Overeinder, N. Wijngaards, M. van Steen, and F. BmaZiMulti-agent support for Internet-
scale Grid management,” iAISB’'02 Symposium on Al and Grid Computin@. Rana and
M. Schroeder, Eds., April 2002, pp. 18-22.

C. Prehofer and C. Bettstetter, “Self-OrganizatiorCommunication Networks: Principles and
Design Paradigms/EEE Communications Magazineol. 43, no. 7, pp. 78-85, July 2005.

O. Rana and D. Walker, “The Agent Grid: Agent-based vese integration in PSEs,” iti6th
IMACS World Congress on Scientific Computation, Appliedhdatatics and SimulatiorLau-
sanne, Switzerland, August 2000.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. I&refA scalable content addressable
network,” in Proceedings of ACM SIGCOMM'Q2001, pp. 161-172.

J. Santoso, G. D. van Albada, B. A. A. Nazief, and P. M. fad, “Hierarchical job scheduling
for clusters of workstations,” iProc. Conf. Advanced School for Computing and Imagihme
2000, pp. 99-105.

SETI@home. [Online]. Available: http://setiathoméissrkeley.edu

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and Hld&aishnan, “Chord: A scalable peer-
to-peer lookup service for internet applications,Qonf. on Applications, Technologies, Architec-
tures, and Protocols for Computer CommunicatiodBan Diego, CA, 2001, pp. 149-160.

I. Taylor, M. Shields, and I. WangdGrid Resource Management Kluwer, June 2003, ch. 1 -
Resource Management of Triana P2P Services.

G. Theraulaz, E. Bonabeau, S. C. Nicolis, R. V. Sol, Wiféassi, S. Blanco, R. Fournier, J.-L.
Joly, P. Fernndez, A. Grimal, P. Dalle, and J.-L. Deneubot8gatial patterns in ant colonies,”
PNAS vol. 99, no. 15, pp. 9645-9649, 2002.

A. Turing, “The chemical basis of morphogenesRifilos. Trans. R. Soc. Londpvol. 237, no. B,
pp. 37-72, 1952.

United Devices, “Grid computing solutions.” [Onlinéjvailable: http://www.ud.com

R. Wolski, J. Plank, J. Brevik, and T. Bryan, “Analyzingarket-based resource allocation strate-
gies for the computational gridfhtl. J. of High-performance Computing Applicationsl. 15,
no. 3, pp. 258-281, 2001.

G. Woltman, “GIMPS: The great internet mersenne prime cear[Online]. Available:
http://www.mersenne.org/prime.htm

J. Wu and |. Stojmenovic, “Ad Hoc NetworkdEEE Computervol. 37, no. 2, pp. 29-13, Febru-
ary 2004.

