
Arjav J. Chakravarti and Gerald Baumgartner and Mario Lauria

Self-Organizing Scheduling on
the Organic Grid

CRC PRESS

Boca Raton Ann Arbor London Tokyo

Contents

1 Self-Organizing Scheduling on the Organic Grid 1
Arjav Chakravarti, Gerald Baumgartner, and Mario LauriaMathWorks, Inc; Louisiana

State University; Ohio State University
1.1 Introduction . 2
1.2 Background and Related Work . 4

1.2.1 Peer-to-Peer and Internet Computing 4
1.2.2 Decentralized Scheduling 4
1.2.3 Self-Organization of Complex Systems 5
1.2.4 Strongly Mobile Agents 6

1.3 Design of an Organic Grid . 7
1.3.1 Agent Behavior . 7
1.3.2 Details of the Agent Behavior 8

1.4 Measurements . 10
1.4.1 Independent Task Application: BLAST 10
1.4.2 Communicating Tasks: Cannon’s Matrix-Matrix Multiplica-

tion . 11
1.4.3 Scalability . 12
1.4.4 Adaptive Tree Mechanism 13
1.4.5 Fault-Tolerance . 15

1.5 Conclusions and Future Work . 15

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC i

1

Self-Organizing Scheduling on the Organic
Grid

Arjav Chakravarti, Gerald Baumgartner, and Mario Lauria
MathWorks, Inc; Louisiana State University; Ohio State University

CONTENTS
1.1 Introduction. 1
1.2 Background and Related Work. 4
1.3 Design of an Organic Grid. 6
1.4 Measurements. 10
1.5 Conclusions and Future Work. 15

Acknowledgments. 17
References. 17

The Organic Grid is a biologically inspired and fully-decentralized approach to the
organization of computation that is based on the autonomousscheduling of strongly
mobile agents on a peer-to-peer network. Through the careful design of agent be-
havior, the emerging organization of the computation can becustomized for different
classes of applications.

We report our experience in adapting the general framework to run two repre-
sentative applications on our Organic Grid prototype: the NCBI BLAST code for
sequence alignment, and Cannon’s algorithm for matrix multiplication. The first is
an example of an independent task application, a type of application commonly used
for grid scheduling research because of its easily decomposable nature and absence
of intra-node communication. The second is a popular block algorithm for paral-
lel matrix multiplication, and represents a challenging application for grid platforms
because of its highly structured and synchronous communication pattern.

Agent behavior completely determines the way computation is organized on the
Organic Grid. We intentionally chose two applications at opposite ends of the dis-
tributed computing spectrum having very different requirements in terms of com-
munication topology, resource use, and response to faults.We detail the design of
the agent behavior and show how the different requirements can be satisfied. By
encapsulating application code and scheduling functionality into mobile agents, we
decouple both computation and scheduling from the underlying grid infrastructure.
In the resulting system every node can inject a computation onto the grid; the com-
putation naturally organizes itself around available resources.

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC 1

2 Self-Organizing Scheduling on the Organic Grid

1.1 Introduction

Many scientific fields, such as genomics, phylogenetics, astrophysics, geophysics,
computational neuroscience, or bioinformatics, require massive computational power
and resources, which might exceed those available on a single supercomputer. There
are two drastically different approaches for harnessing the combined resources of a
distributed collection of machines: traditional grid computing schemes and central-
ized master-worker schemes.

Research on Grid scheduling has focused on algorithms to determine an optimal
computation schedule based on the assumption that sufficiently detailed and up to
date knowledge of the system state is available to a single entity (the metasched-
uler) [1, 3, 20, 41]. While this approach results in a very efficient utilization of the
resources, it does not scale to large numbers of machines. Maintaining a global view
of the system becomes prohibitively expensive and unreliable networks might even
make it impossible.

A number of large-scale systems are based on variants of the master/workers
model [2, 6, 13, 15, 16, 21, 24, 25, 30, 31, 39, 46]. The fact that some of these systems
have resulted in commercial enterprises shows the level of technical maturity reached
by the technology. However, the obtainable computing poweris constrained by the
performance of the single master (especially for data-intensive applications) and by
the difficulty of deploying the supporting software on a large number of workers.

At a very large scale much of the conventional wisdom we have relied upon in
the past is no longer valid, and new design principles must bedeveloped. First,
very few assumptions (if any) can be made about the systems, in particular about
the amount of knowledge available about the system. Second,since the system is
constantly changing (in terms of operating parameters, andresource availability),
self-adaption is the normal mode of operation and must be built in from the start.
Third, the deployment of the components of an infrastructure is a non-trivial issue,
and should be one of the fundamental aspects of the design. Fourth, any dependence
on specialized entities such as schedulers, masters nodes,etc., needs to be avoided
unless such entities can be easily replicated in a way that scales with the size of the
system.

We propose a completely new approach to large scale computations that addresses
all these points simultaneously with a unified design methodology. While known
methods of organizing computation on large systems can be traced to techniques that
were first developed in the context of parallel computing on traditional supercom-
puters, our approach is inspired by the organization of complex systems. Nature
provides numerous examples of the emergence of complex patterns derived from the
interactions of millions of organisms that organize themselves in an autonomous,
adaptive way by following relatively simple behavioral rules. In order to apply this
approach to the organization of computation over large complex systems, a compu-
tation must be broken into small self-contained chunks, each capable of expressing
autonomous behavior in its interaction with other chunks.

Self-Organizing Scheduling on the Organic Grid 3

The notion that complex systems can be organized according to local rules is not
new. Montresor et al. [33] showed how an ant algorithm could be used to solve
the problem of dispersing tasks uniformly over a network. Similarly, the RIP rout-
ing table update protocol uses simple local rules that result in good overall routing
behavior. Other examples include autonomous grid scheduling protocols [26] and
peer-to-peer file sharing networks [19,40].

Our approach is to encapsulate computation and behavior into mobile agents,
which deliver the computation to available machines. Thesemobile agents then
communicate with one another and organize themselves in order to use the resources
effectively. We envision a system where every node is capable of contributing re-
sources for ongoing computations, and starting its own arbitrarily large computa-
tion. Once an application is started at a node, e.g., the user’s laptop, other nodes are
called in to contribute resources. New mobile agents are created that, under their
autonomous control, readily colonize the available resources and start computing.

Only minimal support software is required on each node, since most of the schedul-
ing infrastructure is encapsulated along with the application code inside an agent. In
our experiments we only deployed a JVM and a mobile agent environment on each
node. The scheduling framework described in this chapter isbeing implemented as
a library that a developer will be able to adapt for his or her purposes.

Computation organizes itself on the available nodes according to a pattern that
emerges from agent-to-agent interaction. In the simplest case, this pattern is an over-
lay tree rooted at the starting node; in the case of a data intensive application, the
tree can be rooted at one or more separate, presumably well-connected machines at
a supercomputer center. More complex patterns can be developed as required by the
applications requirements, either by using different topologies than the tree, and/or
by having multiple overlay networks each specialized for a different task.

In our system, the only knowledge each agent relies upon is what it can derive from
its interaction with its neighbor and with the environment,plus an initialfriends list
needed to bootstrap the system. The nature of the information required for successful
operation is application dependent and can be customized. E.g., for our first (data-
intensive) application, both neighbor computing rate and communication bandwidth
of the intervening link were important; this information was obtained using feedback
from the ongoing computation.

Agent behavior completely determines the way computation is organized. In order
to demonstrate the feasibility and generality of this approach, we report our experi-
ence in designing agent behavior for running two representative applications on an
Organic Grid.

The first, the NCBI BLAST code for sequence alignment, is an example of an
independent task application. This type of application is commonly used for grid
scheduling research because of its easily decomposable nature and absence of intra-
node communication. The second, Cannon’s algorithm for matrix multiplication, is
a block algorithm for parallel matrix multiplication that interleaves communication
with computation. Because of its highly structured and synchronous communication
pattern it is a challenging application for grid platforms.

The most important contribution of the experiments described here is to demon-

4 Self-Organizing Scheduling on the Organic Grid

strate how the very different requirements — in terms of communication topology,
resource use, and response to faults — of each of these two applications at the oppo-
site ends of the distributed computing spectrum can be satisfied by the careful design
of agent behavior in an Organic Grid context.

1.2 Background and Related Work

This section contains a brief introduction to the critical concepts and technologies
used in our work on autonomic scheduling, as well as the related work in these
areas. These include: Peer-to-Peer and Internet computing, self-organizing systems
and the concept of emergence, and strongly mobile agents.

1.2.1 Peer-to-Peer and Internet Computing

The goal of utilizing the CPU cycles of idle machines was firstrealized by the Worm
project [23] at Xerox PARC. Further progress was made by academic projects such
as Condor [30]. The growth of the Internet made large-scale efforts like GIMPS [46],
SETI@home [39] and folding@home [15] feasible. Recently, commercial solutions
such as Entropia [13] and United Devices [44] have also been developed.

The idea of combining Internet and peer-to-peer computing is attractive because
of the potential for almost unlimited computational power,low cost, ease and uni-
versality of access — the dream of a true Computational Grid.Among the technical
challenges posed by such an architecture, scheduling is oneof the most formidable
— how to organize computation on a highly dynamic system at a planetary scale
while relying on a negligible amount of knowledge about its state.

1.2.2 Decentralized Scheduling

Decentralized scheduling has recently attracted considerable attention. Two-level
scheduling schemes have been considered [22,38], but theseare not scalable enough
for the Internet. In the scheduling heuristic described by Leangsuksun et al. [29],
every machine attempts to map tasks on to itself as well as itsK best neighbors.
This appears to require that each machine have an estimate ofthe execution time
of subtasks on each of its neighbors, as well as of the bandwidth of the links to
these other machines. It is not clear that their scheme is practical in large-scale and
dynamic environments.

G-Commerce was a study of dynamic resource allocation on theGrid in terms
of computational market economies in which applications must buy resources at a
market price influenced by demand [45]. While conceptually decentralized, if imple-
mented this scheme would require the equivalent of centralized commodity markets
(or banks, auction houses, etc.) where offer and demand meet, and commodity prices

Self-Organizing Scheduling on the Organic Grid 5

can be determined.
Recently, a new autonomous and decentralized approach to scheduling has been

proposed to address the needs of large grid and peer-to-peerplatforms. In this
bandwidth-centric protocol, the computation is organizedaround a tree-structured
overlay network with the origin of the tasks at the root [26].Each node sends tasks
to and receives results from itsK best neighbors, according to bandwidth constraints.
One shortcoming of this scheme is that the structure of the tree, and consequently the
performance of the system, depends completely on the initial structure of the overlay
network. This lack of dynamism is bound to affect the performance of the scheme
and might also limit the number of machines that can participate in a computation.

1.2.3 Self-Organization of Complex Systems

The organization of many complex biological and social systems has been explained
in terms of the aggregations of a large number of autonomous entities that behave ac-
cording to simple rules. According to this theory, complicated patterns can emerge
from the interplay of many agents — despite the simplicity ofthe rules [18,43]. The
existence of this mechanism, often referred to asemergence, has been proposed to
explain patterns such as shell motifs, animal coats, neuralstructures, and social be-
havior. In particular, complex behaviors of colonial organisms such as social insects
(e.g., ants or bees) have been studied in detail, and their applications to the solu-
tion of classic computer science problems such as task scheduling and TSP has been
proposed [4,33].

The dynamic nature and complexity of mobile ad-hoc networks(MANETs) has
motivated some research in self-organization as an approach to reducing the com-
plexity of systems installation, maintenance, and management. Self-organizing al-
gorithms for several network functions of MANETs have been proposed, includ-
ing topology control and broadcast [8, 47]. Recently, the network research com-
munity has even tried to formalize the concept of self-organization; the four design
paradigms proposed by Prehofer and Bettstetter represent afirst attempt to provide
guidelines for developing a self-organized network function [35].

In a departure from the methodological approach followed inprevious projects,
we did not try to accurately reproduce a naturally occurringbehavior. Rather, we
started with a problem and then designed a completely artificial behavior that would
result in a satisfactory solution to it.

Our work is somewhat closer to the self-organizing computation concept explored
in the Co-Fields project [32]. The idea behind Co-Fields is to drive the organization
of autonomous agents through artificial potential fields.

Our work was inspired by a particular version of the emergence principle called
Local Activation, Long-range Inhibition (LALI) [42]. The LALI rule is based on
two types of interactions: a positive, reinforcing one thatworks over a short range,
and a negative, destructive one that works over longer distances. We retain the LALI
principle but in a different form: we use a definition of distance which is based on a
performance-based metric. Nodes are initially recruited using a friends list (a list of
some other peers on the network) in a way that is completely oblivious of distance,

6 Self-Organizing Scheduling on the Organic Grid

therefore propagating computation on distant nodes with the same probability as
close ones. During the course of the computation the agent behavior encourages
the propagation of computation among well-connected nodeswhile discouraging the
inclusion of distant (i.e., less responsive) agents.

1.2.4 Strongly Mobile Agents

To make progress in the presence of frequent reclamations ofdesktop machines, cur-
rent systems rely on different forms of checkpointing: automatic, e.g., SETI@home,
or voluntary, e.g., Legion. The storage and computational overheads of checkpoint-
ing put constraints on the design of a system. To avoid this drawback, desktop grids
need to support the asynchronous and transparent migrationof processes across ma-
chine boundaries.

Mobile agents [28] have relocation autonomy. These agents offer a flexible means
of distributing data and code around a network, of dynamically moving between
hosts as resource availability varies, and of carrying multiple threads of execution to
simultaneously perform computation, decentralized scheduling, and communication
with other agents. There have been some previous attempts touse mobile agents for
grid computing or distributed computing [5,17,34,36].

The majority of the mobile agent systems that have been developed until now are
Java-based. However, the execution model of the Java Virtual Machine does not per-
mit an agent to access its execution state, which is why Java-based mobility libraries
can only provideweak mobility[14]. Weakly mobile agent systems, such as IBM’s
Aglets framework [27] do not migrate the execution state of methods. Thego()
method, used to move an agent from one virtual machine to another, simply does
not return. When an agent moves to a new location, the threads currently executing
in it are killed without saving their state. The lifeless agent is then shipped to its
destination and restarted there. Weak mobility forces programmers to use a difficult
programming style, i.e., the use of callback methods, to account for the absence of
migration transparency.

By contrast, agent systems withstrong mobilityprovide the abstraction that the
execution of the agent is uninterrupted, even as its location changes. Applications
where agents migrate from host to host while communicating with one another, are
severely restricted by the absence of strong mobility. Strong mobility also allows
programmers to use a far more natural programming style.

The ability of a system to support the migration of an agent atany time by an
external thread, is termedforced mobility. This is essential in desktop grid systems,
because owners need to be able to reclaim their resources. Forced mobility is difficult
to implement without strong mobility.

We provide strong and forced mobility for the full Java programming language by
using a preprocessor that translates an extension of Java with strong mobility into
weakly mobile Java code that explicitly maintains the execution state for all threads
as a mobile data structure [11, 12]. For the target weakly mobile code we currently
use IBM’s Aglets framework [27]. The generated weakly mobile code maintains a
movable execution state for each thread at all times.

Self-Organizing Scheduling on the Organic Grid 7

1.3 Design of an Organic Grid

The purpose of this section is to describe the architecture of the proof-of-concept,
small-scale prototypes of the Organic Grid we have built so far.

1.3.1 Agent Behavior

In designing the behavior of the mobile agents, we faced the classic issues of per-
forming a distributed computation in a dynamic environment: distribution of the
data, discovery of new nodes, load balancing, collection ofthe results, tolerance to
faults, detection of task completion. The solutions for each of these issues had to
be cast in terms of one-to-one interactions between pairs ofagents and embedded in
the agent behavior. Using an empirical approach, we developed some initial design
decisions and we then refined them through an iterative process of implementation,
testing on our experimental testbed, performance analysis, redesign and new imple-
mentation. To facilitate the process we adopted a modular design in which different
aspects of the behavior were implemented as separate and well identified routines.

As a starting point in our design process, we decided to organize the computa-
tion around a tree-based overlay network that would simplify load balancing and
the collection of results. Since such a network does not exist at the beginning of
the computation, it has to be built on the fly as part of the agents’ take-over of the
system.

In our system, a computational task represented by an agent is initially submitted
to an arbitrary node in the overlay network. If the task is toolarge to be executed
by a single agent in a reasonable amount of time, agents will clone themselves and
migrate to other nodes; the clones will be assigned a small section of the task by the
initiating agent. The new agents will complete the subtasksthat they were assigned
and return the results to their parent. They will also, in turn, clone and send agents to
available nodes and distribute subtasks to them. The overlay network is constituted
by the connections that are created between agents as the computation spreads out.

For our preliminary work we used the Java-based Aglets weak mobility library, on
top of which we added our own strong mobility library. An Aglets environment is
set up when a machine becomes available (for example when themachine has been
idle for some time; in our experiments we assumed the machines to be available at
all times).

Every machine has a list of theURLs of other machines that it could ask for work.
This list is known as thefriend-list. It is used for constructing the initial overlay
network. The problem of how to generate this initial list wasnot addressed in our
work; one could use one of the mechanisms used to create similar lists in tools such
as Gnutella, CAN [37], and Chord [40].

The environment creates a stationary agent, which asks the friends for work by
sending them messages. If a request arrives at a machine thathas no computation
running on it, the request is ignored. Nothing is known aboutthe configurations

8 Self-Organizing Scheduling on the Organic Grid

of the machines on the friend-list, or of the bandwidths or latencies of the links to
them, i.e., the algorithm is zero-knowledge and appropriate for dynamic, large-scale
systems.

A large computational task is written as a strongly mobile agent. This task should
be divisible into a number of independent and identical subtasks by simply dividing
the input data. A user sets up the agent environment on his/her machine and starts
up the computation agent. One thread of the agent begins executing subtasks se-
quentially. This agent is now also prepared to receive requests for work from other
machines. On receiving such a request, it checks whether it has any uncomputed sub-
tasks, and if it does, it creates a clone of itself and sends that clone to the requesting
machine. The requester is now this machine’schild.

A clone is ready to do useful work as soon as it reaches a new location. It asks
its parent for a certain number of subtaskss to work on. When the parent sends the
subtasks, one of this agent’s threads begins to compute them. Other threads are cre-
ated as needed to communicate with the parent or to respond torequests from other
machines. When such a request is received, the agent clones itself and dispatches its
own clone to the requester. The computation spreads in this manner. The topology of
the resulting overlay network is a tree with the originatingmachine at the root node.

When the subtasks on a machine have been completely executed,the agent on that
machine requests more subtasks to work an from its parent. The parent attempts to
comply. Even if the parent does not have the requested numberof subtasks, it will
respond and send its child what it can. The parent keeps a record of the number of
subtasks that remain to be sent, and sends a request for thosetasks to its own parent.

Every time a node of the tree obtains somer results, either computed by itself or
obtained from a child, it needs to send the results to its parent. It also sends along
a measurement of the time that has elapsed since the last timeit computedr results.
The results and the timing measurement are packaged into a single message. At this
point, the node also checks whether its own — or any of its children’s — requests
were not fully satisfied. If that is the case, a request for theremaining number of
subtasks is added to the message and the entire message is sent to the node’s parent.
The parent then uses the timing measurements to compare the performance of its
children and to restructure the overlay network. The timingmeasurement was built
into the agent behavior in order to provide some feedback on its own performance
(in terms of both computational power and communication bandwidth).

1.3.2 Details of the Agent Behavior

Maintenance of Child-lists A node cannot have an arbitrarily large number of
children because this will adversely affect the synchronization delay at that node.
Since the data transfer times of the independent subtasks are large, a node might
have to wait for a very long time for its request to be satisfied. Therefore, each node
has a fixed number of children,c. The number of children also should not be too
small so as to avoid deep trees which will lead to long delays in propagating the data
from the root to the leaf nodes. These children are ranked by the rate at which they
send in results. When a child sends inr results with the time that was required to

Self-Organizing Scheduling on the Organic Grid 9

obtain them, its ranking is updated. This ranking is a reflection of the performance
of not just a child node, but of the entire subtree with the child node as its root. This
ranking is used in the restructuring of the tree as describedbelow.

Restructuring of the Overlay Network The topology of a typical overlay network
is a tree with the root being the node where the original computation was injected. It
is desirable for the best-performing nodes to be close to theroot. This minimizes the
communication delay between the root and the best nodes, andthe time that these
nodes need to wait for their requests to be handled by the root. This principle to
improve system throughput is applicable down the tree, i.e., a mechanism is required
to structure the overlay network such that the nodes with thehighest throughput are
closer to the root, while those with low throughput are near the leaves.

A node periodically informs its parent about its best-performing child. The parent
then checks whether its grandchild is present in its list of former children. If not, it
adds the grandchild to its list of potential children and tells this node that it is willing
to consider the grandchild. The node then informs the grandchild that it should now
contact its grandparent directly. This results in fast nodes percolating towards the
root of the tree.

When a node updates its child-list and decides to remove its slowest child,sc, it
does not simply discard the child. It sendssc a list of its other children, whichsc
attempts to contact in turn. Ifschad earlier been propagated to this node, a check is
made as to whethersc’s original parent is still a child of this node. In that case,sc’s
original parent,op, is placed first in the list of nodes being sent forsc to attempt to
contact. Sincescwasop’s fastest child at some point, there is a good chance that it
will be accepted byopagain.

Fault Tolerance A node depends on its parent to supply it with new subtasks to
work on. However, if the parent were to become inaccessible due to machine or link
failures, the node and its own descendents would be unable todo any useful work. A
node must be able to change its parent if necessary; every node keeps a list ofa of its
ancestors in order to accomplish this. A node obtains this list from its parent every
time the parent sends it a message. The updates to the ancestor-list take into account
the possibility of the topology of the overlay network changing frequently.

A child waits a certain user-defined time for a response aftersending a message
to its parent — thea-th node in its ancestor-list. If the parent is able to respond, it
will, irrespective of whether it has any subtasks to send itschild at this moment or
not. The child will receive the response, check whether its request was satisfied with
any subtasks, and begin waiting again if that is not the case.

If no response is obtained within the timeout period, the child removes the current
parent from its ancestor-list and sends a message to the (a - 1)-st node in that list.
This goes on until either the size of the list becomes 0, or an ancestor responds to
this node’s request.

If a node’s ancestor-list does go down to size 0, the node has no means of obtaining
any work to do. The mobile agent that computes subtasks informs the agent environ-

10 Self-Organizing Scheduling on the Organic Grid

ment that no useful work is being done by this machine, and then self-destructs. Just
as before, a stationary agent begins to send out requests forwork to a list of friends.

However, if an ancestor does respond to a request, it becomesthe parent of the
current node and sends a new ancestor-list of sizea to this node. Normal operation
resumes with the parent sending subtasks to this node and this node sending requests
and results to its parent.

Prefetching A potential cause of slowdown in the basic scheduling schemede-
scribed earlier is the delay at each node due to its waiting for new subtasks. This
is because it needs to wait while its requests propagate up the tree to the root and
subtasks propagate down the tree to the node.

We found that it is beneficial to use prefetching for reducingthe time that a node
waits for subtasks. A node determines that it should requestt subtasks from its par-
ent. The node then makes an optimistic prediction of how manysubtasks it might
require in the future and requestst + i(t) subtasks from its parent. When a node
finishes computing one set of subtasks, more subtasks are readily available for it to
work on, even as a request is submitted to the parent. This interleaving of computa-
tion and communication reduces the time for which a node is idle.

While prefetching will reduce the delay in obtaining new subtasks to work on, it
also increases the amount of data that needs to be transferred at a time from the root
to the current node, thus increasing the synchronization delay and data transfer time.
This is why excessively aggressive prefetching will end up performing worse than a
scheduling scheme with no prefetching.

1.4 Measurements

We have demonstrated the applicability of our scheduling approach using two very
different types of applications, the National Center for Biotechnology Information
(NCBI) basic local alignment search tool (BLAST) code for sequence alignment [10],
and Cannon’s algorithm for parallel matrix multiplication[9]. In this section, we
summarize the results of these experiments, with emphasis on Cannon’s algorithm.

1.4.1 Independent Task Application: BLAST

For our initial experiments, we used BLAST, an application that is representative
of a class of applications commonly used in grid scheduling research called anin-
dependent task application(or ITA) [10]. The lack of communication between the
tasks of an ITA simplifies scheduling, because there are no constraints on the order
of evaluation of the tasks.

The application consisted of 320 tasks, each matching a given 256KB sequence
agains a 512KB chunk of a data base. When arriving at a node, a mobile agent in-

Self-Organizing Scheduling on the Organic Grid 11

ORIGIN

FAST

MEDIUM

SLOW

KNOWS ABOUT

FIGURE 1.1
BLAST: Original Configuration of

Machines

FAST

MEDIUM

SLOW

IS CHILD OF

IS POTENTIAL CHILD OF

ORIGIN

FIGURE 1.2
Final Node Organization,

Result-burst size=3, With Child
Propagation

stalls the BLAST executable and then repeatedly requests new tasks from its parent
and returns the results to its parent until no more tasks are available. If the agent
receives requests for work from an idle machine, it sends a clone of itself to the idle
machine. The computation thus spreads out from its source inthe form of a tree.
The source distributes the data in the form of computationalsubtasks that flow down
the tree; results flow towards the root. This same tree structure was also used as the
overlay network for making scheduling decisions. In general, there could be sepa-
rate overlay networks: for data distribution, for scheduling, and for communication
between subtasks. For this application, there is no communication between subtasks
while the overlay trees for data distribution and scheduling overlap.

We ran the experiments with an arbitrary initial configuration of the overlay net-
work as shown in Figure 1.1. To simulate the effect of heterogeneity, we introduced
delays in the application code resulting in fast, medium, and slow nodes. We per-
formed a variety of experiments with different parameters of our scheduling algo-
rithm, such as the width of the overlay tree or the number of results over which to
average the performance of a node, and measured the running time and the time
needed for the computation to reach all nodes. The parameters that resulted in the
best performance were a maximum tree width of 5 and a result burst size of 3. Fig-
ure 1.2 shows the resulting overlay tree at the end of the computation, in which most
of the fast nodes had been propagated closer to the root.

1.4.2 Communicating Tasks: Cannon’s Matrix-Matrix Multiplication

For demonstrating the generality of the self-organizing approach and the flexibility
of the Organic Grid scheduling framework, we selected a second application at the
opposite end of the spectrum, characterized by a highly regular and synchronous pat-
tern of communication — Cannon’s matrix multiplication algorithm [7]. Cannon’s
algorithm employs a square processor grid of sizek = p×p in which computation is

12 Self-Organizing Scheduling on the Organic Grid

alternated (and can be interleaved) with communication. The initial node waits until
k machines are available for the computation. Each processorin the grid then gets
one tile of each of the argument matrices. After multiplyingthese tiles, one of the
argument matrices is rotated along the first dimension of theprocessor grid, the other
argument matrix is rotated along the second dimension of theprocessor grid. Each
processor gets new tiles of the argument matrices and adds the result of multiplying
these tiles to its tile of the result matrix. The algorithm terminates afterp of these
tile multiplications.

This application employs three different overlay networks: a star topology for data
distribution, a torus for the communication between subtasks, and the tree overlay
of the scheduling framework. The metric used for restructuring the tree was the
time to multiply two matrix tiles. While for the ITA the resource constraint was the
communication bandwidth of the root, for Cannon’s algorithm it was the number of
machines that belong to the torus. Below we report a subset ofthe results of our
experiment; more results are available in [9]

Three aspects of the Organic Grid implementation of Cannon’s matrix multiplica-
tion were sought to be evaluated: i) performance and scalability, ii) fault-tolerance
and iii) decentralized selection of compute nodes. A good evaluation of this ap-
plication required tight control over the experimental parameters. The experiments
were therefore performed on a Beowulf cluster of homogeneous Linux machines,
each with dual AMD Athlon MP processors (1.533 GHz) and 2 GB ofmemory.
When necessary, artificial delays were introduced to simulate a heterogeneous envi-
ronment. The accuracy of the experiments was improved by multiplying the matrices
16 times instead of just once.

1.4.3 Scalability

We performed a scalability evaluation by running the application on various sizes of
tori and matrices. The tree adaptation mechanism was temporarily disabled in order
to eliminate its effect on the experiments.

Table 1.1, and Figure 1.4 present a comparison of the runningtimes of 16 rounds
of matrix multiplications on tori with 1, 2 and 4 agents alongeach dimension. Super-
linear speedups are observed with larger numbers of nodes because of the reduction
in cache effects with a decrease in the size of the tiles stored at each machine.

Matrix Single Agent 4× 4 Agent Grid
Size (MB) Tile (MB) Time (sec) Tile (MB) Time (sec) Speedup

1 1 75 0.0625 34 2.2
4 4 846 0.25 43 19.7

16 16 14029 1 454 30.9

Table 1.1: Running Time on 1 and 16 Machines, 16 Rounds

Self-Organizing Scheduling on the Organic Grid 13

SLOW

FAST

KNOWS ABOUT

ORIGIN

FIGURE 1.3
Cannon: Original Configuration of
Machines

5

25

125

625

3125

15625

1 4 16

T
im

e(
se

c)

Size of Matrices (MB)

Single Agent
2 x 2 Agent Grid
4 x 4 Agent Grid

FIGURE 1.4
Running Time on 1, 4 and 16

Machines, 16 Rounds

ORIGIN

FAST

SLOW

IS CHILD OF

EXTRA

FIGURE 1.5
Original Tree Overlay

ORIGIN

SEND TILES

EXTRA

FAST

SLOW

FIGURE 1.6
Original Torus Overlay

1.4.4 Adaptive Tree Mechanism

We then made use of the adaptive tree mechanism to select the best available ma-
chines for the torus in a decentralized manner. The feedbacksent by each child to its
parent was the time taken by the child to complete its two previous tile multiplica-
tions.

We experimented with a desktop grid of 20 agents in Figure 1.3. These 20 agents
then formed a tree overlay network, of which the first 16 to contact the distribution
agent were included in a torus with 4 agents along each dimension; the remaining
agents acted as extras in case any faults occurred. The initial tree and torus can be
seen in Figures 1.5 and 1.6 with 4 slow nodes in the torus and 4 extra, fast nodes.

The structure of the tree continually changed and the high-performance nodes
were pushed up towards the root. When a fast, extra node found that one of its

14 Self-Organizing Scheduling on the Organic Grid

ORIGIN

FAST

SLOW

IS CHILD OF

EXTRA

IS POTENTIAL CHILD OF

FIGURE 1.7
Tree Overlay Before Fourth Swap

ORIGIN

SEND TILES

EXTRA

FAST

SLOW

FIGURE 1.8
Torus Overlay After Fourth Swap

Slow Nodes Extra Nodes Time (sec)
4 0 898
0 0 462
4 4 759

Table 1.2: Running Time of 16
Rounds on 4x4 Grid, 16MB Matrix,
1MB Tiles, Adaptive Tree

Stage Swap position Avg. Tile
on Torus Mult. Time (sec)

1–3 - 10
4 12 13
5 - 15
6 13,15 15

7–42 - 14
43 12 14

44–47 12 13
48-64 - 7

Table 1.3: Performance at Different
Stages of Experiment, 4x4 Agent Grid

children was slower than itself and part of the torus, it initiated a swap of roles. The
topology of the tree and the torus before and after the fourthswap are shown in
Figures 1.7 and 1.8.

Each matrix multiplication on the4x4 agent grid had 4 tile multiplication stages;
our experiment consisted of 16 rounds — 64 stages. A tile multiplication took 7 sec.
on a fast node and 14 sec. on a slow one. Table 1.3 presents the average execution
time of these stages. This began at 10 sec., then increased to13 sec. before the first
swap took place. The fast nodes were inserted into the torus on stages 4, 6 and 43.
Once the slow nodes had been swapped out, the system required4 rounds until all
the 16 agents sped up and reached high steady-state performance. The effect of this
on overall running time can be seen in Table 1.2.

While the adaptive tree mechanism undoubtedly results in a performance improve-
ment in the presence of high-performance extra nodes, it also introduces some over-
head. Nodes provide feedback to their parents who, in turn, rank their children and
propagate the best ones. We first ran the Cannon application without any extra nodes
present, and then disabled the adaptive tree mechanism for asecond set of experi-

Self-Organizing Scheduling on the Organic Grid 15

No Adaptation Adaptation
Slow Nodes Extra Nodes Time (sec) Slow Nodes Extra Nodes Time (sec)

4 0 898 4 0 899
0 0 454 0 0 462

Table 1.4: Overhead of Adaptive Tree, 16 Rounds, 4x4 Grid, 16MB Matrix, 1MB
Tiles

No. of Failures Failures on Column Failures on Diagonal
Positions Time (sec) Positions Time (sec)

0 - 454 - 454
1 5 466 5 466
2 5, 9 479 6, 9 464
3 5, 9, 13 486 6, 9, 12 540

Table 1.5: Running Time of 16 Rounds on 4x4 Grid, 16MB Matrix,1MB Tiles

ments. The overhead of this mechanism was negligible, as canbe seen in Table 1.4.

1.4.5 Fault-Tolerance

We introduce crash failures by bringing down some machines during application ex-
ecution. We were interested in observing the amount of time that the system would
stall in the presence of failures. Different numbers of failures were introduced at dif-
ferent positions on the torus. When multiple nodes on the samecolumn crash, they
are replaced in parallel. The replacements for crashes on a diagonal occur sequen-
tially.

The system recovers rapidly from failures on the same columnand diagonal, as can
be seen in Table 1.5. For a small number of crashes (1 or 2), there is little difference
in the penalty of crashes on columns or diagonals. This difference increases for 3
crashes, and we expect it to increase further for larger numbers of crashes on larger
tori.

1.5 Conclusions and Future Work

We have designed a desktop grid in which mobile agents are used to deliver applica-
tions to idle machines. The agents also contain a schedulingalgorithm that decides
which task to run on which machine. Using simple scheduling rules in each agent,
a tree-structured overlay network is formed and restructured dynamically, such that
well performing nodes are brought closer to important resources, thus improving the
performance of the overall system.

We have demonstrated the applicability of our scheduling scheme with two very
different styles of applications, an independent task application, a BLAST executable,

16 Self-Organizing Scheduling on the Organic Grid

and an application in which individual nodes need to communicate, a Cannon-style
matrix multiplication application.

Because of the unpredictability of a desktop grid, the scheduler does not have
any a priori knowledge of the capabilities of the machines orthe network connec-
tions. For restructuring the overlay network, the scheduler relies on measurements
of the performance of the individual nodes and makes scheduling decisions using
application-specific cost functions. In the case of BLAST, where the data was prop-
agated along the same overlay tree, nodes with higher throughput were moved closer
to the root to minimize congestion. In the case of Cannon’s algorithm, where the
data came from a separate data center, the fastest nodes weremoved closer to the
root, to prevent individual slow nodes from slowing down theentire application.

The common aspect in scheduling the tasks for these very different applications
is that access to a resource needs to be managed. In the case ofBLAST, the critical
resource is the available communication bandwidth at the root and at intermediate
nodes in the tree. If a node has too many children, communication becomes a bottle-
neck. Conversely, if a node has too few children, the tree becomes too deep and the
communication delay between the root and the leaves too long. The goal for BLAST
was, therefore, to limit the width of the tree and to propagate high-throughput nodes
closer to the root. In the case of Cannon’s algorithm, the critical resource is the com-
munication torus. Since any slow node participating in the torus would slow down
the entire application, the goal is to propagate the fast nodes closer to the root and to
keep the slower nodes further from the root.

By selecting the appropriate parameters to our scheduling algorithm, an applica-
tion developer can tune the scheduling algorithm to the characteristics of an individ-
ual application. This choice of parameters includes constraints on how the overlay
tree should be formed, e.g., the maximum width of the tree, and a metric with which
the performance of individual nodes can be compared to decide which nodes to prop-
agate up in the tree. Our scheduling scheme is inherently fault tolerant. If a node in
the overlay tree fails, the tree will be restructured to allow other nodes to continue
participating in the application. If a task is lost because of a failing node, it will even-
tually be assigned to another node. However, in the case of communication between
tasks, such as in Cannon’s algorithm, it is necessary for theapplication developer to
write application-specific code to recover from a failed node and to reestablish the
communication overlay network.

In the near future we plan to harness the computing power of idle machines by
running the agent platform inside a screen saver. Since computing resources can
become unavailable (e.g., if a user wiggles the mouse to terminate the screen saver),
we are planning to extend our scheduling cost functions appropriately to allow agents
to migrate a running computation, while continuing the communication with other
agents.

We are also planning to investigate combinations of distributed, zero-knowledge
scheduling with more centralized scheduling schemes to improve the performance
for parts of the grid with known machine characteristics. Similar as in networking,
where decentralized routing table update protocols such asRIP coexist with more
centralized protocols such as OSPF, we envision a grid in which a decentralized

Self-Organizing Scheduling on the Organic Grid 17

scheduler would be used for unpredictable desktop machines, while a centralized
scheduler would be used for, say, a Globus host.

The system described here is a reduced scale proof-of-concept implementation.
Clearly, our results need to be validated on a large scale system. In addition to a
screen saver-based implementation, we are planning the construction of a simulator.
Some important aspects of the Organic Grid approach that remain to be investigated
are more advanced forms of fault detection and recovery, thedynamic behavior of
the system in relation to changes in the underlying system, and the management of
the friends lists.

Acknowledgments

This research was done when all authors were at The Ohio StateUniversity. It
was partially supported by the Ohio Supercomputer Center grants PAS0036-1 and
PAS0121-1.

References
[1] D. Abramson, J. Giddy, and L. Kotler, “High performance parametric modeling with Nimrod/G:

Killer application for the global grid?” inProc. Intl. Parallel and Distributed Processing Symp.,
May 2000, pp. 520–528.

[2] Berkeley Open Infrastructure for Network Computing (BOINC). [Online]. Available: http:
//boinc.berkeley.edu/

[3] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J. Hayes,
G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su,and D. Zagorodnov, “Adaptive
computing on the grid using AppLeS,”IEEE Transactions on Parallel and Distributed Systems,
vol. 14, no. 4, pp. 369–382, 2003.

[4] E. Bonabeau, M. Dorigo, and G. Theraulaz,Swarm Intelligence: From Natural to Artificial Sys-
tems. Oxford University Press, Santa Fe Institute Studies in theSciences of Complexity, 1999.

[5] J. Bradshaw, N. Suri, A. J. Cañas, R. Davis, K. M. Ford, R. R. Hoffman, R. Jeffers, and T. Reich-
herzer, “Terraforming cyberspace,”Computer, vol. 34, no. 7, pp. 48–56, July 2001.

[6] D. Buaklee, G. Tracy, M. K. Vernon, and S. Wright, “Near-optimal adaptive control of a large grid
application,” inProceedings of the International Conference on Supercomputing, June 2002, pp.
315–326.

[7] L. Cannon, “A cellular computer to implement the kalman filteralgorithm,” Ph.D. dissertation,
Montana State University, 1969.

[8] A. Cerpa and D. Estrin, “ASCENT: Adaptive self-configuring sEnsor networks topologies,”IEEE
Transactions on Mobile Computing, vol. 3, no. 3, pp. 272–285, 2004.

[9] A. J. Chakravarti, G. Baumgartner, and M. Lauria, “Application-specific scheduling for the Or-
ganic Grid,” in Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing
(GRID 2 004), Pittsburgh, November 2004, pp. 146–155.

18 Self-Organizing Scheduling on the Organic Grid

[10] ——, “The Organic Grid: Self-organizing computation on apeer-to-peer network,” inProceedings
of the International Conference on Autonomic Computing. IEEE Computer Society, May 2004,
pp. 96–103.

[11] A. J. Chakravarti, X. Wang, J. O. Hallstrom, and G. Baumgartner, “Implementation of strong
mobility for multi-threaded agents in Java,” inProceedings of the International Conference on
Parallel Processing. IEEE Computer Society, Oct. 2003, pp. 321–330.

[12] ——, “Implementation of strong mobility for multi-threadedagents in Java,” Dept. of Computer
and Information Science, The Ohio State University, Tech. Rep. OSU-CISRC-2/03-TR06, Feb.
2003.

[13] A. A. Chien, B. Calder, S. Elbert, and K. Bhatia, “Entropia: architecture and performance of an
enterprise desktop grid system,”J. Parallel and Distributed Computing, vol. 63, no. 5, pp. 597–
610, 2003.

[14] G. Cugola, C. Ghezzi, G. P. Picco, and G. Vigna, “Analyzing mobile code languages,” in
Mobile Object Systems: Towards the Programmable Internet, ser. Lecture Notes in Computer
Science, J. Vitek, Ed., no. 1222. Springer-Verlag, 1996, pp. 93–110. [Online]. Available:
http://www.polito.it/∼picco/papers/ecoop96.ps.gz

[15] folding@home. [Online]. Available: http://folding.stanford.edu

[16] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke, “Condor-G: A computation manage-
ment agent for multi-institutional grids,” inProc. IEEE Symp. on High Performance Distributed
Computing (HPDC), San Francisco, CA, August 2001, pp. 7–9.

[17] R. Ghanea-Hercock, J. Collis, and D. Ndumu, “Co-operating mobile agents for distributed parallel
processing,” inThird International Conference on Autonomous Agents AA99. Mineapolis, MN:
ACM Press, May 1999.

[18] A. Gierer and H. Meinhardt, “A theory of biological pattern formation,”Kybernetik, vol. 12, pp.
30–39, 1972.

[19] Gnutella. [Online]. Available: http://www.gnutella.com

[20] A. S. Grimshaw and W. A. Wulf, “The Legion vision of a worldwide virtual computer,”Comm. of
the ACM, vol. 40, no. 1, pp. 39–45, Jan. 1997.

[21] E. Heymann, M. A. Senar, E. Luque, and M. Livny, “Adaptivescheduling for master-worker
applications on the computational grid,” inProc. of the First Intl. Workshop on Grid Computing,
2000, pp. 214–227.

[22] H. James, K. Hawick, and P. Coddington, “Scheduling independent tasks on metacomputing sys-
tems,” inProceedings of Parallel and Distributed Computing Systems, Aug. 1999.

[23] J. A. H. John F. Shoch, “The ”Worm” programs — early experience with a distributed computa-
tion,” Comm. of the ACM, vol. 25, no. 3, pp. 172–180, Mar. 1982.

[24] N. T. Karonis, B. Toonen, and I. Foster, “MPICH-G2: A grid-enabled implementation of the
message passing interface,”Journal of Parallel and Distributed Computing, vol. 63, no. 5, pp.
551–563, 2003.

[25] T. Kindberg, A. Sahiner, and Y. Paker, “Adaptive Parallelism under Equus,” inProceedings of the
2nd International Workshop on Configurable Distributed Systems, Mar. 1994, pp. 172–184.

[26] B. Kreaseck, L. Carter, H. Casanova, and J. Ferrante, “Autonomous protocols for bandwidth-
centric scheduling of independent-task applications,” inProceedings of the International Parallel
and Distributed Processing Symposium, Apr. 2003, pp. 23–25.

[27] D. B. Lange and M. Oshima,Programming & Deploying Mobile Agents with Java Aglets.
Addison-Wesley, 1998.

[28] ——, “Seven good reasons for mobile agents,”Communications of the ACM, vol. 42, no. 3, pp.
88–89, Mar. 1999.

[29] C. Leangsuksun, J. Potter, and S. Scott, “Dynamic task mapping algorithms for a distributed het-
erogeneous computing environment,” inProc. Heterogeneous Computing Workshop, Apr. 1995,
pp. 30–34.

Self-Organizing Scheduling on the Organic Grid 19

[30] M. Litzkow, M. Livny, and M. Mutka, “Condor — a hunter of idle workstations,” inProceedings
of the 8th International Conference of Distributed Computing Systems, June 1988, pp. 104–111.

[31] M. Maheswaran, S. Ali, H. J. Siegel, D. A. Hensgen, and R.F. Freund, “Dynamic matching and
scheduling of a class of independent tasks onto heterogeneous computing systems,” inProceedings
of the 8th Heterogeneous Computing Workshop, Apr. 1999, pp. 30–44.

[32] M. Mamei and F. Zambonelli, “Co-Fields: a Physically Inspired Approach to Distributed Motion
Coordination,”IEEE Pervasive Computing, vol. 3, no. 2, April 2004.

[33] A. Montresor, H. Meling, and O. Babaoglu, “Messor: Load-balancing through a swarm of au-
tonomous agents,” inProceedings of 1st Workshop on Agent and Peer-to-Peer Systems, ser. Lec-
ture Notes in Artificial Intelligence, no. 2530. Springer-Verlag, July 2002, pp. 125–137.

[34] B. Overeinder, N. Wijngaards, M. van Steen, and F. Brazier, “Multi-agent support for Internet-
scale Grid management,” inAISB’02 Symposium on AI and Grid Computing, O. Rana and
M. Schroeder, Eds., April 2002, pp. 18–22.

[35] C. Prehofer and C. Bettstetter, “Self-Organization inCommunication Networks: Principles and
Design Paradigms,”IEEE Communications Magazine, vol. 43, no. 7, pp. 78–85, July 2005.

[36] O. Rana and D. Walker, “The Agent Grid: Agent-based resource integration in PSEs,” in16th
IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation, Lau-
sanne, Switzerland, August 2000.

[37] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content addressable
network,” inProceedings of ACM SIGCOMM‘01, 2001, pp. 161–172.

[38] J. Santoso, G. D. van Albada, B. A. A. Nazief, and P. M. A. Sloot, “Hierarchical job scheduling
for clusters of workstations,” inProc. Conf. Advanced School for Computing and Imaging, June
2000, pp. 99–105.

[39] SETI@home. [Online]. Available: http://setiathome.ssl.berkeley.edu

[40] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A scalable peer-
to-peer lookup service for internet applications,” inConf. on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications, San Diego, CA, 2001, pp. 149–160.

[41] I. Taylor, M. Shields, and I. Wang,Grid Resource Management. Kluwer, June 2003, ch. 1 -
Resource Management of Triana P2P Services.

[42] G. Theraulaz, E. Bonabeau, S. C. Nicolis, R. V. Sol, V. Fourcassi, S. Blanco, R. Fournier, J.-L.
Joly, P. Fernndez, A. Grimal, P. Dalle, and J.-L. Deneubourg,“Spatial patterns in ant colonies,”
PNAS, vol. 99, no. 15, pp. 9645–9649, 2002.

[43] A. Turing, “The chemical basis of morphogenesis,”Philos. Trans. R. Soc. London, vol. 237, no. B,
pp. 37–72, 1952.

[44] United Devices, “Grid computing solutions.” [Online].Available: http://www.ud.com

[45] R. Wolski, J. Plank, J. Brevik, and T. Bryan, “Analyzingmarket-based resource allocation strate-
gies for the computational grid,”Intl. J. of High-performance Computing Applications, vol. 15,
no. 3, pp. 258–281, 2001.

[46] G. Woltman, “GIMPS: The great internet mersenne prime search.” [Online]. Available:
http://www.mersenne.org/prime.htm

[47] J. Wu and I. Stojmenovic, “Ad Hoc Networks,”IEEE Computer, vol. 37, no. 2, pp. 29–13, Febru-
ary 2004.

