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Abstract— Desktop grids have recently been used to perform  The planetary scale of Internet computing cannot be handled
some of the largest computations in the world and have the py traditional grid scheduling models [1], [2], [3], [4], and goes
pme”“ta' to gro"‘aby fe"et'.rl‘?".moge Oﬁjers of magnitude. .HOW.?xer’ beyond the range of current centralized and master/worker
current approaches to utilizing desktop resources require either .
centralized servers or extensive knowledge of the underlying Selutions [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. A
system, limiting their scalability. new approach is needed that can organize computation accord-

We propose a biologically inspired and fully-decentralized ing to a completely decentralized model. Given the different
approach to the organization of computation that is based on requirements of different classes of applications, such a model
:he autonotmouks ISChed‘é'.'”gl gf Str‘inglyfmc’b"e agetnts an 2 beer must be easily customizable and deployable. In addition, due
o-peer network. In a radical departure from current models, we : :
envision large-scale desktop grids in which agents autonomously {0 the extremely dynamic nature of the underlying system, any
organize themselves so as to maximize resource utilization.  realistic solution must be capable of autonomously adapting

By encapsulating computation and behavior into agents, the to current system conditions.
organization of the computation can be customized for different Nature provides numerous examples of complex systems
Slsr?;?nz ?rrfraa%[t)rlhcgﬂ(r)g s Qrteglﬁl i?g]pﬁif}gge}égﬁ|tﬁ,?:ﬂ"a‘;‘;,;?eem““'Comprising millions of organisms that organize themselves in
that naturally lends itself to a true peer-té-peer implementation an autonomous, adaptive way to produce complex pattems' In
where each node can be at the same time provider and user of these systems, the emergence of complex patterns derives from
the computing utility infrastructure. the superposition of a large number of interactions between

We demonstrate this concept with a reduced-scale proof- grganisms that have relatively simple behavior. In order to
of-concept implementation that executes a data-intensive apply this approach to the task of organizing computation

independent-task application on a set of heterogeneous, geo- .
graphically distributed machines. We present a detailed explo- over complex systems such as desktop grids, one would have

ration of the design space of our system and a performance t0 devise a way of breaking a large computation into small
evaluation of our implementation using metrics appropriate for autonomous chunks, and then endowing each chunk with the

assessing self-organizing desktop grids. appropriate behavior.
Our approach is to encapsulate computation and behavior
g INTRODUC_T'ON_ into mobile agents. A similar concept was first explored by
Some of the largest computations in the world have beMontresor et al. [15] in a project showing how an ant algo-
carried out on collections of PCs and workstations over thghm could be used to solve the problem of dispersing tasks
Internet. Tera-flop levels of computational power have begfhiformly over a network. In our approach, the behavior is
achieved by systems composed of heterogeneous compuig@igned to produce desirable patterns of execution according
resources that number in the hundreds-of-thousands to faecurrent grid engineering principles. More specifically, the
millions. These large distributed systems that allwernet  pattern of computation resulting from the synthetic behavior of
Computing are often referred to aBesktop Grids, and allow our agents reflects some general concepts about autonomous
scientists to run applications at unprecedented scales andyadl scheduling protocols studied by Kreaseck et al. [16]. Our
greatly reduced costs. While impressive, these efforts only uggproach extends previous results by showing i) how the basic
a tlny fraction of the desktops connected to the Internet. Ord@éncepts can be extended to accommodate h|gh|y dynamic
of magnitude improvements could be achieved if novel sygystems, and ii) a practical implementation of these concepts.
tems of organization of the computation were to be introduced One consequence of the encapsulation of behavior and
that overcome the limits of present systems. ~ computation into agents is that they can be easily customized
In this paper, we describe a novel infrastructure designegk different classes of applications. Another desirable con-
from scratch to maximize the utilization of large desktop gridsequence is that the underlying support infrastructure for our
The questions we have tried to answer are: system is extremely simple. Therefore, our approach naturally
o What is the best model of utilization of a system basel@énds itself to a true peer-to-peer implementation, where each
on the harvesting of idle cycles of hundreds-of-thousand®de can be at the same time provider and user of the
to millions of PCs? computing utility infrastructure. Our scheme can be easily
« How should the system be designed in order to makeatlapted to the case where the source of computation (the node
consistent with the grid computing ideals of computatiomitiating a computing job) is different from the source of the
as a ubiquitous and easily accessible utility? data.



The main contributions of this paper are: i) the descriptioreceives results from it best neighbors, according to band-
of a new organization principle for desktop grids whichwidth constraints. One shortcoming of this scheme is that the
combines biologically inspired models of organization, auwstructure of the tree, and consequently the performance of
tonomous scheduling, and strongly mobile agents, ii) thhe system, depends completely on the initial structure of the
demonstration of these principles as a working proof-obverlay network. This lack of dynamism is bound to affect the
concept prototype, iii) a detailed exploration of the desigperformance of the scheme and might also limit the number
space of our system, and iv) the performance evaluation of cofr machines that can participate in a computation.
ggzﬁgpu;?gsmetncs appropriate for assessing self-organm&g Salf-Organization of Complex Systems

The purpose of this work is the initial exploration of a The organization of many complex biological and social
novel concept, and as such it is not intended to give ¥¥Stems has been explained in terms of the aggregations of a
guantitative assessment of all aspects and implications of d@fge number of autonomous entities that behave according to
new approach. In particular, detailed evaluations of scalabilit§imple rules. According to this theory, complicated patterns
degree of tolerance to faults and adaptivity to rapidly changirf@n emerge from the interplay of many agents — despite

systems, have been left for future studies. the simplicity of the rules [23], [24]. The existence of this
mechanism, often referred to esergence, has been proposed

Il. BACKGROUND AND RELATED WORK to explain patterns such as shell motifs, animal coats, neural

A. Peer-to-Peer and Internet Computing structures, and social behavior. In particular, certain complex

o . ._behaviors of social insects such as ants and bees have been

The goal of utilizing the CPU cycles of idle machinesygieq in detail, and their applications to the solution of spe-
was first realized by the Worm project [17] at Xerox PARCic computer science problems has been proposed [15], [25].
Further progress was made by academic projects suchas, jeparture from the methodological approach followed in
(;ondor [9]. The growth of the Internet made Ie_lrge—scale eﬁor&revious projects, we did not try to accurately reproduce a
like .GIMPS (51, SET'@hO”.‘e [6] and folding@home .[7]n turally occurring behavior. Rather, we started with a problem
feasible. Recently, commercial solutions such as Entropia [gﬁd then designed a completely artificial behavior that would
and United Devices [18] have also been developed. result in a satisfactory solution to it. Our work was inspired

The idea of combining Internet and peer-to-peer computing, o harticular version of the emergence principle called Local

is attractive because of the potential for almost unlimitedq(iyation, Long-range Inhibition (LALI), which was recently
computational power, low cost, ease and universality of aCCe§gnyn to be responsible for the formation of a complex pattern
— the dream of a true Computational Grid. Among th%sing a clever experiment on ants [26].

technical challenges posed by such an architecture, scheduling
is one of the most formidable — how to organize computatioR. Strongly Mobile Agents
on a highly dynamic system at a planetary scale while relying To make progress in the presence of frequent reclamations
on a negligible amount of knowledge about its state. of desktop machines, current systems rely on different forms
. of checkpointing: automatic, e.g., SETI@home, or voluntary,
B. Scheduling e.g., Legion. The storage and computational overheads of
Decentralized scheduling is a field that has recently attracteleckpointing put constraints on the design of a system.
considerable attention. Two-level scheduling schemes héave avoid this drawback, desktop grids need to support the
been considered [19], [20], but these are not scalable enougdynchronous and transparent migration of processes across
for the Internet. In the scheduling heuristic described bghachine boundaries.
Leangsuksun et al. [21], every machine attempts to map taskgviobile agents [27] have relocation autonomy. These agents
on to itself as well as it best neighbors. This appears tmffer a flexible means of distributing data and code around
require that each machine have an estimate of the execut@metwork, of dynamically moving between hosts as resource
time of subtasks on each of its neighbors, as well as of theailability varies, and of carrying multiple threads of exe-
bandwidth of the links to these other machines. It is na@ution to simultaneously perform computation, decentralized
clear that their scheme is practical in large-scale and dynamicheduling, and communication with other agents.
environments. The majority of the mobile agent systems that have been
G-Commerce was a study of dynamic resource allocatiaeveloped until now are Java-based. However, the execution
on the Grid in terms of computational market economiesiodel of the Java Virtual Machine does not permit an agent to
in which applications must buy resources at a market prigezcess its execution state, which is why Java-based mobility
influenced by demand [22]. While conceptually decentralizetibraries can only provideveak mohility [28]. Weak mobility
if implemented this scheme would require the equivalent ébrces programmers to use a difficult programming style.
centralized commodity markets (or banks, auction houses, etc. By contrast, agent systems wistrong mobility provide the
where offer and demand meet, and commodity prices can hbstraction that the execution of the agent is uninterrupted,
determined. even as its location changes. Applications where agents mi-
Recently, a new autonomous and decentralized approachgtate from host to host while communicating with one another,
scheduling has been proposed to address specifically the nemds severely restricted by the absence of strong mobility.
of large grid and peer-to-peer platforms. In this bandwidtistrong mobility also allows programmers to use a far more
centric protocol, the computation is organized around a trepatural programming style.
structured overlay network with the origin of the tasks at The ability of a system to support the migration of an agent
the root [16]. Each node in the system sends tasks to aatlany time by an external thread, is ternfected mobility.



This is essential in desktop grid systems, because ownerdhe methodology we followed to design the agent behavior
need to be able to reclaim their resources. Forced mobility as follows. Using an engineering approach, we selected
is difficult to implement without strong mobility. a tree-structured overlay network as the desirable pattern of

We provide strong and forced mobility for the full Javaexecution. We empirically determined the simplest behavior
programming language by using a preprocessor that translatiest would organize the communication and task distribution
strongly mobile source code into weakly mobile source codemong mobile agents according to that pattern. We then
[29], [30]. The generated weakly mobile code maintains augmented the basic behavior in a way that introduced other

movable execution state for each thread at all times. desirable properties. With the total computation time as the
performance metric, every addition to the basic scheme was
[Il. AUTONOMIC SCHEDULING separately evaluated and its contribution to total performance,

A. Agent Behavior Design guantitatively assessed.

The organization of computation on a distributed system One such property is constant adaptation. The overlay tree
must account for the specific communication pattern of df incrementally restructured during the computation so as to
application. For the initial exploration of our scheme wddjust it to the performance of the nodes. Another property
selected a parameter-sweep template application, a clasdSofhe performance monitoring of child nodes. We assumed
applications that has been frequently studied in the contdR@t no knowledge is available on the system, therefore child

of Grid scheduling and for which a number of results ar@erformance is determined using feedback. Other functions
available. that were found to be critical for performance were the

One of the works that inspired our project was th&utomatic determination of parameters such as prefetching and

bandwidth-centric protocol proposed by Kreaseck et al. [16qz,ask size, the detection of cyples, the detection of dead nodes
in which a Grid computation is organized around a tregdnd the end of the computation.
structured overlay network with the origin of the tasks at the Although our scheme is general enough to accommodate
root. A tree overlay network represents a natural and intuitigeveral different classes of applications, we focus on the
way of distributing tasks and collecting results. The drawbadtolution to one particular problem in this paper: the scheduling
of the original scheme is that the performance and the degr@fethe independent, identical subtasks of an independent-task
of utilization of the system depend entirely on the initiappplication (ITA) whose data initially resides at one location.
assignment of the overlay network. The size of individual subtasks and of their results is large, and
In contrast, we have developed our systems to be adaptivesit transfer times cannot be neglected. The application that we
the absence of any knowledge about machine configuratioh@ve used for our experiments is NCBI's nucleotide-nucleotide
connection bandwidths, network topology, and assuming ongquence comparison tool BLAST [34].
a minimal amount of initial information. While our scheme
is also based on a tree, our overlay network keeps changing _
to adapt to system conditions. Our tree adaptation mechani&mBasic Agent Design
is driven by the perceived performance of a node’s children, . . .
measured passively as part of the ongoing computation [31].A large computational task is written as a strongly mo-
From the point of view of network topology, our system startQ"e agent. This task should be divisible into a number of
with a small amount of knowledge in the form of a ufriendsmdependent suptasks. A user starts up the computation agent
list’, and then keeps building its own overlay network orPn his/her machmg. One thread of.the agent begins executing
the fly. Information from each node’s “friends list” is sharecfubtasks sequentially. The agent is also prepared to receive
with other nodes so the initial configuration of the lists is nd¢duests for work from other machines. If the machine has any
critical. The only assumption we rely upon is that a “friend§ncomputed subtasks, and receives a request for work from
list’ is available initially on each node to prime the system@nother machine, it sends a clone of itself to the requesting
solutions for the construction of such lists have been developBtchine. The requester is now this machireiid.
in the context of peer-to-peer file-sharing [32], [33] and will The clone asks its parent for a certain number of subtasks
not be addressed in this paper. to work on,s. A thread begins to compute the subtasks. Other
The Local Activation, Long-range Inhibition (LALI) rule threads are created — when required — to communicate
is based on two types of interactions: a positive, reinforcingith the parent or other machines. When work requests are
one that works over a short range, and a negative, destructiggeived, the agent dispatches its own clone to the requester.
one that works over longer distances. We retain the LALThe computation spreads in this manner. The topology of the
principle but in a different form: we use a definition ofresulting overlay network is a tree with the originating machine
distance which is based on a performance-based metric. 3hthe root node.
our experiment, distance is based on the perceived throughpuAn agent requests its parent for more work when it has
which is some function of communication bandwidth an@xecuted its own subtasks. Even if the parent does not have
computational throughput. Nodes are initially recruited usinthe requested number of subtasks, it will respond and send its
the “friends list” in a way that is completely oblivious of child what it can. The parent keeps a record of the number of
distance, therefore propagating computation on distant nodashtasks that remain to be sent, and sends a request to its own
with same probability as close ones. During the course of tiparent. Every time a node of the tree obtain®sults, either
computation agents behavior encourages the propagationcofmputed by itself or obtained from a child, it sends them
computation among well-connected nodes while discouragimg its parent. This message includes a request for all pending
the inclusion of distant (i.e. less responsive) agents. subtasks.



C. Maintenance of Child-lists result-burst burst size, to be greater than 1. A better measure

A node cannot have an arbitrarily large number of childred®r the performance of a child is the time taken by a node to
Since the data transfer times of the subtasks are large, a n9§&inT* (R+1) results. However, andR should not be set to
might have to wait for a very long time for its request to b&/€"Y large values because the overlay network would take too
satisfied. Therefore, each node has a fixed number of childr&RUch time to take form and to get updated.

c. The number of children also should not be too small so as Fault Tolerance
to avoid deep trees and long delays in data propagation. ) )

These children are ranked on the basis of their performancelf the parent of a node were to become inaccessible due
The performance metric is application-dependent. For an ITAQ machme.or link failures, the node and its own descendants
a child is evaluated on the basis of the rate at which it sendsW@uld be disconnected from the tree. A node must be able to
results. When a child sendsresults, the node measures th€ontact its parent's ancestors if necessary. Every node keeps
time-interval since the last time it sentresults. The final @ list of a of its ancestors. This list is updated every time its
result-rate of this child is calculated as an average of ti&@rent sends it a message. . _
last R such time-intervals. This ranking is a reflection of the A child waits a certain user-defined time for a response after
performance of not just a child, but of the entire subtree witfending a message to its parent —aktk node in its ancestor-
the child node at its root. list. If the parent is able to respond, it will. The child will

In addition toc children, a node can also be the parenpof receive the response, check whether its request was satisfied

potential children. These are children which this node has néith any subtasks, and begin waiting again if that is not the
yet been able to evaluate. When a potential child does sef@f€- If no response is obtained within the timeout period, the
enough results to this node, it is added to the list of the node&8§ild sends a message to tree-(1)-th node in that list. This
children. If the node now has more thashildren, the slowest 90€s on until an ancestor responds to this node’s request. The
child, sc, is removed from the child-list. As described below@ncestor becomes the parent of the current node and normal
scis then given a list of other nodes, which it can contact to trgPeration resumes. If a node’s ancestor-list goes down to size
and get back into the tree. The current node keeps a recékdthe computation agent on that node self-destructs and a
of the lasto former children, andsc is now placed in this Stationary agent begins to send out requests for work to a list
list. Nodes are removed from this list once a sufficient, use®f friends.

defined time period elapses. For that interval of time, messages

from sc will be ignored. This avoids thrashing and excessive Cydles in the Overlay Network

dynamism in the tree. Even though the overlay network should be a tree, failures
_ could cause the formation of a cycle of nodes. This cycle of
D. Restructuring of the Overlay Network nodes will eventually run out of subtasks to compute. This

The topology of the overlay network is a tree and it i$ituation is avoided by having each node examine its ancestor
desirable for the best-performing nodes to be close to the rolét on receiving it from its parent. If a node finds itself in that
This principle is applicable down the entire tree. In the case #8t, it knows that a cycle has occurred and its computation
an ITA, this minimizes the communication delay between thgent self-destructs.
root and the best nodes, i.e., the overlay network is structuredf the cycle involves a very large number of nodes, the
so that the nodes with the highest throughput are close to tA@cestor-list may be too small to include the current node.
root, pushing those with low throughput towards the leavesA node also keeps track of the total time that has elapsed

A node periodica”y informs |tS parent about |ts bestS|n.Ce it |'aS't rece|Ved'a Subtask. If that time exceeds a user-
performing child. The parent then checks whether its grang€fined limit, a cycle is assumed to have taken shape and the
child is present in its list of former children. If not, it adds thecomputation agent on the node destroys itself.
grandchild to its list of potential children and tells this nod A
that it is willing to consider the grandchild. The node the(li-" Termination
instructs its child to contact its grandparent directly. The root of the tree determines when the computation has

When a node updates its child-list and decides to remot@/minated. It sends a termination message to each of its
its slowest child,sc, it does not simply discard the child.actual, potential and former children. The computation agent
It prepares a list of its children in descending order ofn the root then self-destructs. The children of the root do the
performance, i.e., slowest node first. The list is senstp Same. Termination messages spread down to the leaves and
which attempts to contact those nodes in turn. Since the fit§€ computation terminates. There are two scenarios in which
nodes that are contacted are the slower ones, the tree is sodigffination could be incomplete:
to be kept balanced. « A termination message might not reach a node. The

_ situation is the same as that described in Subsection IlI-F.
E. Sze of Result Burst « Consider that computation agents are executing on nodes

Each agent of an ITA ranks its children on the basis of the nl and n2. nl receives a termination message, 2t
time taken to send some results to this node. The time required does not because of a failure. The agentnardestroys
to obtain just one result-burst, or a result-burst of size 1, might itself. n1 now sends request messages to its friends. If
not be a good measure of the performance of a child. Nodes one of these isn2, a clone ofn2's agent is sent to
might make poor decisions about which children to keep and nl. An unchecked spread of computation will not occur
discard. The child propagation algorithm benefits from using because agents send out clones only if they do not have
the average oR result-burst intervals and from settimgthe any uncomputed subtasksl andn2 will eventually run
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[ Parameter Name | Parameter Valug
Maximum children 5 2
Maximum potential children| 5 18
Result-burst size 3 "
Self-adjustment linear Y »
Number of subtasks 1 $ %g
initially requested Z 1
Child-propagation On § 10

TABLE | 5

ORIGINAL PARAMETERS

out of subtasks and destroy themselves as explained in
Subsection IlI-F. 0 50 100 150 200 250 300 350 400

Time(sec)

I. Sef-adjustment of Task List Sze Fig. 3. Code Ramp-up

A node always requests a certain number of subtasks and

obtains their results before requesting more subtasks to wdYg'® Performed on a cluster of eighteen heterogeneous ma-

on. However, in an ITA-type application, the utilization of achmes at different locations around Ohio. The machines ran

high-performance machine may be poor because it is 0 ;
Inux or Solaris.

requesting a fixed number of subtasks at a time. h licati h
A node may request more subtasks in order to increase the! '€ application we used to test our system was the gene

utilization of its resources. A node requests a certain numbggduence similarity search tool, NCBI's nucleotide-nucleotide
of subtaskst, that it will compute itself. Once it has finished PLAST [34]: an independent-task application. The task was

computing thet subtasks, it compares the average time #§ Maich a 256KB sequence against 320 data chunks, each

compute a subtask on this run to that of the previous ruflf Sizé 512KB. Each subtask was to maich the sequence

Depending on whether it performed better, worse or about tfgainst one chunk. All eighteen machines would have offered
same, the node requesi®), d(t) or t subtasks for its next good performance as they all had fast connections to the

run, wherei and d are increasing and decreasing functiondNt€rnet, high processor speeds and large memories. In order to
respectively. obtain more heterogeneity in their performance, we introduced

delays in the application code so that we could simulate the
J. Prefetching effect of slower machines and slower network connections. We
A node determines that it should requéstubtasks from divided the machines into fast, medium and slow categories
its parent. It also makes an optimistic prediction of how marky introducing delays in the application code. _
subtasks it might require in future by using thieinction that ~ As shown in Figure 4, the nodes were initially organized
is used for self-adjustmentti(t) subtasks are then requestedandomly. The dotted arrows indicate the directions in which
from the parent. When a node finishes computing one set §guest messages for work were sent to friends. The only thing
subtasks, more subtasks are readily available for it to work od,machine knew about a friend was WRL. We ran the com-
even as a request is submitted to the parent. putation with the parameters described in Table I. Linear self-
While prefetching will reduce the delay in obtaining newadjustment means that the increasing and decreasing functions
subtasks to work on, it also increases the amount of data tihtthe number of subtasks requested at each node are linear.
needs to be transferred at a time from the root to the curreffie time required for the code and the first subtask to arrive
node, thus increasing the synchronization delay and dakthe different nodes can be seen in Figure 3. This is the same
transfer time. This is why excessively aggressive prefetchifgr all the experiments.
will result in a performance degradation.

ORNWAUTON®O

Agl et s weak mobility agent environment on top of either

A. Comparison with Knowledge-based Scheme

IV. MEASUREMENTS The purpose of these tests is to evaluate the quality of
We have conducted experiments to evaluate the performanhe configuration which is autonomously determined by our
of each aspect of our scheduling scheme. The experimeatheme for different initial conditions.
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TABLE I TABLE Ill () past
EFFECT OFPRIORKNOWLEDGE EFFECT OFCHILD PROPAGATION . MEDIUM ‘

Two experiments were conducted using the parameters in Q-
Table I. In the first, we manually created a good initial
configuration assuming a priori knowledge of system param- T IScnbor
eters. We then ran the application, and verified that the final |~ |SPOTENTIAL CHILD OF , _ _
configuration did not substantially depart from the initial ond 9. 6. Final Node Organization, Result-burst size=3, No Child Propagation
We consider a good configuration to be one in which fast nodes

are nearer the root. Figures 1 and 2 represent the start and goglations that are made by nodes on the basis of one result

of this experiment. The final tree configuration shows that fagfe poor. The nodes’ child-lists change frequently and are far
nodes are kept near the root and that the system is constaitly\ iqeal as in Figure 7.

re-evaluating every node for possible relocation (as shown By theare is a qualitative improvement in the child-lists as

the three rightmost children which are under evaluation by thee resyit-burst size increases. The structure of the resulting

root). . . overlay networks for result-burst sizes 3 is in Figures 5.
We began the second experiment with the completely rafiwever, with very large result-bursts, it takes longer for

dom configuration shown in Figure 4. The resulting configyne ree overlay to form and adapt, thus slowing down the
ration shown in Figure 5 is substantially similar to the goo xperiment. This can be seen in Figure 8.

configurations of the previous experiment; if the execution
time had been longer, the migration towards the root of tHe. Prefetching and Initial Task Size
two fast nodes at depths 2 and 3 would have been complete.The gata ramp-up time is the time required for subtasks to
. . reach every single node. Prefetching has a positive effect on
B. Effect of Child Propagation this. The minimum number of subtasks that each node requests
We performed our computation with the child-propagatioglso affects the data ramp-up. The greater this number, the
aspect of the scheduling scheme disabled. Comparisons of gteater the amount of data that needs to be sent to each node,
running times and topologies are in Table Ill and Figures 5 anghd the slower the data ramp-up. This can be seen in Table V.
6. The child-propagation mechanism results in a 32% improve- Prefetching does impro\/es the ramp-up, but of paramount
ment in the running time. The reason for this improvement ignportance is its effect on the overall running time of an exper-
the difference in the topologies. With child-propagation turnegent. This is also closely related to the minimum number of
on, the best-performing nodes are closer to the root. Subtaskmtasks requested by each node. Prefetching improves system
and results travel to and from these nodes at a faster rate, titt®ughput when the minimum number of subtasks requested
improving system throughput. is one. As the minimum number of subtasks requested by a
. node increases, more data needs to be transferred at a time
C. Result-burst size from the root to this node, and the effect of prefetching be-
The experimental setup in Table | was again used. Wmmes negligible. As this number increases further, prefetching
then ran the experiment with different result-burst sizes. Trectually causes a degradation in throughput. Table V and
running times have been tabulated in Table IV. The chilligure 9 summarize these results.
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1 3050
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TABLE IV
EFFECT OFRESULT-BURSTSIZE
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. MEDIUM

. sLow
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O FAST

. MEDIUM (
. stow No. of Ramp-up Ramp-up Running Running
—— ISCHILD OF Subtasks| Time (sec) Time (sec) Time (sec) Time (sec)

Prefetching| No prefetching| Prefetching| No prefetching

= IS POTENTIAL CHILD OF

Fig. 8. Node Organization, Result-burst size=8

= IS POTENTIAL CHILD OF

1 406 590 2308 2520
2 825 979 2302 2190
Fig. 7. Node Organization, Result-burst size=1 5 939 1575 584 5197
TABLE V
E. Salf-Adjustment EFFECT OFPREFETCHING ANDMINIMUM NUMBER OF SUBTASKS

We ran an experiment using the configuration in T_ablet 0 experiments: one with the good initial configuration of
and then did the same using constant and exponential self:

. X . ; gure 1, and the other using a star topology — every non-
33’3“??\2”%22ﬁ“gg;'g;igdir?f tTf;eblléne\}’:}r Oan?é Igﬁqg‘iﬂ% r\?vit ot node was adjacent to the root at the beginning of the
exponential self-adjustment is appreciably faster than that wi periment itself. The maximum sizes of the child-lists were

linear or constant self-adjustment. The aggressive appro { to 5 and 20, respectively. Since the overlay networks
/ ' 99 PP re already organized such that there would be little change
performs better because nodes prefetch a larger amount.

. i?'their topology as the computation pro ressed, there was
Srl]JbtaSkS, and subtasks quickly reach the nodes farthest frﬂﬂﬁimal imppac%f these changes on thg o?/erall running time
the root. .

We also compared the running times of the three runs WhiTh(—;- effect of the si_ze_ of the child-list was then clearly observed
. ; ; ; in Table VIII. Similar results were observed even when the
are in Table VI. Interestingly, the run with the exponential sel Child-propagation mechanisms were turned off.
adjustment performed poorly with respect to the other runs.
This is due to nodes prefetching extremely large numbers
of subtasks. Nodes now spend more time waiting for their
requests to be satisfied, resulting in a degradation in thewe have designed an autonomic scheduling algorithm in
throughput at that node. which multi-threaded agents with strong mobility form a tree-
The linear case was expected to perform better than tbguctured overlay network. The structure of this tree is varied
constant one, but the observed difference was insignificadinamically such that the nodes that currently exhibit good
We expect this difference to be more pronounced with longeerformance are brought closer to the root, thus improving
experimental runs and a larger number of subtasks. the performance of the system.
, We experimented with scheduling a massively parallel appli-
F. Number of children cation whose data initially resides at one location, and whose
We experimented with different child-list sizes and foungubtasks have considerable data transfer times. The experi-
that the data ramp-up time with the maximum number ghents were conducted on a set of machines distributed across
children set to 5 was less than that with the maximum numb@hio. Nodes were evaluated on the basis of their throughput.
of children set to 10 or 20. These results are in Table VII. Thiextensive analysis of the performance of the scheme’s various
root is able to take on more children in the latter cases amechanisms show the feasibility of the approach.
the spread of subtasks to nodes that were originally far from There has been some research on the problem of assigning
the root takes less time. friend-lists [32], [33], and we will consider how best to
Instead of exhibiting better performance, the runs whesply this to our own work. We will also experiment with
large numbers of children were allowed, had approximatelgcorporating an interruptible-communication mechanism [16]
the same total running time as the run with the maximummto our scheme.
number of children set to 5. This is because children have toWhile this paper concentrated on a scheduling scheme
wait for a longer time for their requests to be satisfied. for independent-task applications, we will experiment with
In order to obtain a better idea of the effect of severadapting the algorithm for a wide class of applications. It is our
children waiting for their requests to be satisfied, we raimtention to present a desktop grid user with a simple software

V. CONCLUSIONS ANDFUTURE WORK
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Fig. 9. Effect of Prefetching and Min. No. of Subtasks
Self-adjustment| Ramp-up Running
Function Time (sec)| Time (sec)
Linear 1068 2302
Constant 1142 2308
Exponential 681 2584
TABLE VI

EFFECT OFSELF-ADJUSTMENT FUNCTION

(18]

[16]

[17]

[18]

interface that will allow him/her to customize the schedulingt®!
schemes to the characteristics of an application.

The experimental platform was a set of 18 heterogeneoias]
machines. In future, we plan to harness the computing power
of idle machines across the Internet — at the Ohio State
University in particular — to create a desktop grid of a scale1i]

of the tens or hundreds of thousands. Researchers will then be

free to deploy scientific applications on this system.
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