IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 35, NG, MAY 2005 1

The Organic Grid: Self-Organizing Computation
on a Peer-to-Peer Network

Arjav J. Chakravarti, Gerald Baumgartner, Mario Lauria

Abstract— Desktop grids have been used to perform some of achieved by systems composed of heterogeneous computing
the largest computations in the world and have the potential to resources that number in the hundreds-of-thousands to the
grow by several more orders of magnitude. However, current ap — yjjlions. This extreme form of distributed computing iseft
proaches to utilizing desktop resources require either centralized . . Lo
servers or extensive knowledge of the underlying system, limiting calle_d |n_ternet computingand has allowed scientists to run
their scalability. applications at unprecedented scales at a comparably modes

We propose a new design for desktop grids that relies on a cost. The desktop-based platforms on which Internet-scale
self-organizing, fully decentralized approach to the organization computations are carried out are often referred taesktop
of the computation. Our approach, called the Organic Grid, is grids. In analogy to computational grids [1], [2], these col-

a radical departure from current approaches and is modeled lections of distributed machines are glued together by arlay
after the way complex biological systems organize themselves. X - L .
Similarly to current desktop grids, a large computational task Of middleware software that provides the illusion of a singl

is broken down into sufficiently small subtasks. Each subtask is system [3], [4], [5]. While impressive, these efforts onlyels
encapsulated into a mobile agent, which is then released on thetiny fraction of the desktops connected to the Internete®ad

grid and discovers computational resources using autonomous be magnitude improvements could be achieved if novel systems

havior. In the process of “colonization” of available resources, tle f izati fh tati to be introd d th
judicious design of the agent behavior produces the emergence0 organization of the computation were to be introduce a

of crucial properties of the computation that can be tailored to Overcome the limits of present systems.

specific classes of applications. A number of large-scale systems are based on variants of
We demonstrate this concept with a reduced-scale proof- the master/workers model [6], [3], [7], [4], [5], [8], [9]1P],

of-concept implementation that executes a data-intensive [11], [12], [13]. The fact that some of these systems have

independent-task application on a set of heterogeneous, geo-r sulted in commercial enterori hows the level of feahn
graphically distributed machines. We present a detailed explo- esu co ercial Prises shows the level of 1e

ration of the design space of our system and a performance Maturity reached by the technology. However, the obtamabl
evaluation of our implementation using metrics appropriate for computing power is constrained by the performance of the

assessing self-organizing desktop grids. master (especially for data-intensive applications) apdhe
Index Terms— Mobile agents, grid scheduling, self-organizing difficulty of deploying the supporting software on a large
computation. number of workers. Since networks cannot be assumed to be

reliable, large desktop grids are designed for indepenidekt
applications with relatively long-running individual tes

By contrast, research on traditional grid scheduling has

Many scientific fields, such as genomics, phylogenetics, scused on algorithms to determine an optimal computation
trophysics, geophysics, computational neurosciencejain-b schedule based on the assumption that sufficiently detaiied
formatics, require massive computational power and ressur yp to date knowledge of the system state is available to &sing
which might exceed those available on a single supercomputentity (the metascheduler) [14], [15], [16], [17]. While ghi
There are two drastically different approaches for haingss approach results in a very efficient utilization of the reses,
the combined resources of a distributed collection of nraesi it does not scale to |arge numbers of machines. Maintaining
large-scale desktop-based master-worker schemes and mpgfobal view of the system becomes prohibitively expensive
traditional computational grid schemes. and unreliable networks might even make it impossible.

Some of the IargeSt Computations in the world have beenTo summarize, the existing approaches to harnessing ma-
carried out on collections of PCs and workstations over tr(mine resources represent different design Strategi@'icﬂgn
Internet. Tera-flop levels of computational power have begf Table I. Traditional grid approaches or Condor decide to

_ _ _ , limit the size of the system and assume a fairly reliable
Manuscript received June 15, 2004; revised October 14, .200i4 work

was partially supported by the Ohio Supercomputer CentertgRAS0036-1 network in exchange for b_emg able to run arb_itrary taskshsu
and PAS0121-1. as MPI tasks. Desktop grid approaches restrict the typeeof th

A.J. Chakravarti is with The MathWorks, Inc., Natick, MA BB0' USA. gpplication to independent (or nearly independent) tagks o
This work was done while pursuing a Ph.D. at The Ohio Statevétsity.

I. INTRODUCTION

Email: Arjav.Chakravarti@mathworks.com fairly large task granularity in exchange for being ableua r
G. Baumgartner is with the Department of Computer Science,sian& 0N very large numbers of machines with potentially unrddéiab
State University, Baton Rouge, LA 70803, USA. Email: gb@sscedu network connections. The best of both worlds, arbitrarkgas

M. Lauria is with the Department of Computer Science and Engi- dl b f hi . t ible b th
neering, The Ohio State University, Columbus, OH 43210, U&#ail: and large numbers ol machines, 1S not possible because the

lauria@cse.ohio-state.edu central task scheduler would become a bottleneck.
0000-0000/00/$00.0&) 2005 IEEE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 35, NG, MAY 2005

Large desktop grids Small desktop grids| Traditional grids
(e.g., BOINC) (Condor) (e.g., Globus) Organic Grid
Network large, unreliable small, reliable small, reliable large, unreliable
Task granularity large medium to large | medium to large|| medium to large
Task model independent task any any any
Task scheduling centralized centralized centralized decentralized
TABLE |

CLASSIFICATION OF APPROACHES TOLARGE-SCALE COMPUTATION

We present a new approach to grid computing, called teemputation into agents is that they can be easily custamize
Organic Grid, that does not have the restrictions of eitifer for different classes of applications. Another desirabba-c
the existing approaches. By using a decentralized, adaptsequence is that the underlying support infrastructureotor
scheduling scheme, we attempt to allow arbitrary tasks $gstem is extremely simple. Therefore, our approach nitura
be run on large numbers of machines or in conditions withnds itself to a true peer-to-peer implementation, whaehe
unreliable networks. Our approach can be used to broaden tioele can be at the same time provider and user of the
class of applications that can be run on a large desktopgrid,computing utility infrastructure. Our scheme can be easily
to extend a traditional grid computing approach to machinaslapted to the case where the source of computation (the node
with unreliable connections. The tradeoff of our approagh initiating a computing job) is different from the source bkt
that the distributed scheduling scheme may not result in data.
good resource usage as with a centralized scheduler. The main contributions of this paper are: i) the description

The Organic Grid project is an effort to redesign fronof a new organization principle for desktop grids which
scratch the infrastructure for distributed computationdesk- combines biologically inspired models of organization; au
top grids. Our middleware represents a radical departumomous scheduling, and strongly mobile agents, ii) the
from current grid or Peer-to-Peer concepts, and does npt rdemonstration of these principles as a working proof-of-
on existing grid technology. In designing our Organic Grigoncept prototype, iii) a detailed exploration of the dasig
infrastructure we have tried to address the following goast space of our system, and iv) the performance evaluation of ou

« What is the best model of utilization of a system base#fSign using metrics appropriate for assessing self-cngan

on the harvesting of idle cycles of hundreds-of-thousan8§Sktop grids. _ _ o _

to millions of PCs? The purpose of this work is the initial exploration of a
« How should the system be designed in order to makeNPVvel concept, and as such it is not intended to give a

consistent with the grid computing ideals of computatiofuantitative assessment of all aspects and implicatior®iof

as a ubiquitous and easily accessible utility? new approach. In particular, detailed evaluations of skt

. f tol faul tivi idly chaggi
Nature provides numerous examples of complex syster%%gree of tolerance to faults, adaptivity to rapidly chaggi

- - . . systems, or security issues have been left for future sfudie
comprising millions of organisms that organize themseines
an autonomous, adaptive way to produce complex patterns. In
these systems, the emergence of complex patterns derras fr Il. BACKGROUND AND RELATED WORK
the superposition of a large number of interactions betwe@n Peer-to-Peer and Internet Computing

organisms that have relatively simple behavior. In order to 14 goal of utilizing the CPU cycles of idle machines

apply this approach to the task of organizing computatiQ, first realized by the Worm project [20] at Xerox PARC.
over complex systems such as desktop grids, one would h@\Riher progress was made by academic projects such as
to devise a way of breaking a large computation into small,qqr [8]. The growth of the Internet made large-scalertsfo
autonomous chunks, and then endowing each chunk with {he, mps [7], SETI@home [3] and folding@home [4]
appropriate behavior. _ feasible. Recently, commercial solutions such as Entrffjia

~ Our ap_proach is to el_"ncapsulate computation and behaviply United Devices [21] have also been developed.

into mobile agents. A S|m|lar_concept was first explored by The idea of combining Internet and peer-to-peer computing
Montresor et al. [18] in a project showing how an ant algqs attractive because of the potential for almost unlimitech-
rithm could be used to solve the problem of dispersing taskgational power, low cost, ease and universality of aceess
uniformly over a network. In our approach, the behavior igie gream of a true computational grid. Among the technical
designed to produce desirable patterns of execution a0prdehg|ienges posed by such an architecture, scheduling is one
to current grid engineering principles. More specificatlye of the most formidable — how to organize computation on a
pattern of computation resulting from the synthetic bebaef highly dynamic system at a planetary scale while relying on

our agents reflects some general concepts about autonon@%g"gime amount of knowledge about its state.
grid scheduling protocols studied by Kreaseck et al. [12]r O

approach extends previous results by showing i) how thecbasi)

concepts can be extended to accommodate highly dynarRic Scheduling

systems, and ii) a practical implementation of these cascep Decentralized scheduling is a field that has recently dtichc
One consequence of the encapsulation of behavior armhsiderable attention. Two-level scheduling schemes hav

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 35, NG, MAY 2005 3

been considered [22], [23], but these are not scalable énowd checkpointing: automatic, e.g., SETI@home, or voluptar
for the Internet. In the scheduling heuristic described bs.g., Legion. The storage and computational overheads of
Leangsuksun et al. [24], every machine attempts to map taskeckpointing put constraints on the design of a system.
on to itself as well as it best neighbors. This appears tolo avoid this drawback, desktop grids need to support the
require that each machine have an estimate of the executamynchronous and transparent migration of processessacros
time of subtasks on each of its neighbors, as well as of theachine boundaries.
bandwidth of the links to these other machines. It is not Mobile agents [30] have relocation autonomy. These agents
clear that this information will be available in large-sea@nd offer a flexible means of distributing data and code around
dynamic environments. a network, of dynamically moving between hosts as resource
G-Commerce was a study of dynamic resource allocati@vailability varies, and of carrying multiple threads ofeex
on a grid in terms of computational market economies icution to simultaneously perform computation, decerzedli
which applications must buy resources at a market priseheduling, and communication with other agents. There hav
influenced by demand [25]. While conceptually decentralizedeen some previous attempts to use mobile agents for grid
if implemented this scheme would require the equivalent ébmputing or distributed computing [31], [32], [33], [34].
centralized commodity markets (or banks, auction houseg, e The majority of the mobile agent systems that have been
where offer and demand meet, and commodity prices can d@veloped until now are Java-based. However, the execution
determined. model of the Java Virtual Machine does not permit an agent to
Recently, a new autonomous and decentralized approactateess its execution state, which is why Java-based mpobilit
scheduling has been proposed to address specifically tlos ndioraries can only provideveak mobility[35]. Weak mobility
of large grid and peer-to-peer platforms. In this bandwidthiorces programmers to use a difficult programming style.
centric protocol, the computation is organized around e-tre By contrast, agent systems wistrong mobilityprovide the
structured overlay network with the origin of the tasks aibstraction that the execution of the agent is uninterdjpte
the root [19]. Each node in the system sends tasks to agkn as its location changes. Applications where agents mi-
receives results from it best neighbors, according to bandgrate from host to host while communicating with one angther
width constraints. One shortcoming of this scheme is thait tare severely restricted by the absence of strong mobility.
structure of the tree, and consequently the performance Stfong mobility also allows programmers to use a far more
the system, depends completely on the initial structurénef tnatural programming style.
overlay network. This lack of dynamism is bound to affect the The ability of a system to support the migration of an agent
performance of the scheme and might also limit the numbar any time by an external thread, is termfecced mobility

of machines that can participate in a computation. This is essential in desktop grid systems, because owners
need to be able to reclaim their resources. Forced mobility
C. Se|f-0rganiza’[ion of Comp|ex Systems is difficult to implement without strong mObIlIty

The organization of many complex biological and social we proyidel strong ar;)d fofced mobility for tht(; Tltl Ja\iat
systems has been explained in terms of the aggregations 4ygoramming language by using a preprocessor that trassia

large number of autonomous entities that behave accordin extension of Java with strong mobility into weakly mobile
simple rules. According to this theory, complicated pam;er‘]ava code that explicitly maintains the execution stateafor

can emerge from the interplay of many agents — despl reads as a mobile data structure [36], [37]. For the target
the simplicity of the rules [26], [27]. The existence of thi eakly mobile code we currently use IBM's Aglets framework

mechanism, often referred to amergencehas been proposed 38]. Tthe g(in;arafted we:l;lﬁ/ mzb”f Cli)(tj'e maintains a movable
to explain patterns such as shell motifs, animal coats,erlleu‘?Xecu lon state for each thread at all imes.
structures, and social behavior. In particular, certaimpgiex
behaviors of social insects such as ants and bees have been I1l. AUTONOMIC SCHEDULING
studied in detail, and their applications to the solutiorspé- A. Overview
cific computer science problems has_ been proposed [18], [Z.S]One of the works that inspired our project was the
In a departure from the methodological approach followed g] . .

: . . andwidth-centric protocol proposed by Kreaseck et al],[19
previous projects, we did not try to accurately reproduce.a

. : ; in° which a grid computation is organized around a tree-
naturally occurring behavior. Rather, we started with bjim ?tructured overlay network with the origin of the tasks a th

?:sdurthﬁ]n:i?ggzgtsrcosrglﬂ tei(t)?]lyt(?ri?ﬂgilr tﬁgﬁ(vﬁ;;hiitsgi?groot. A tree overlay network represents a natural and im&uit
y ' way of distributing tasks and collecting results. The drack

by a pe}rucular version of the_gmergence prmmple calledalo of the original scheme is that the performance and the degree
Activation, Long-range Inhibition (LALI), which was rectyn S . —
of utilization of the system depend entirely on the initial

shown to be responsible for the formation of a complex patter

using a clever experiment on ants [29] assignment of the overlay network.
9 P ' In contrast, we have developed our systems to be adaptive in

the absence of any knowledge about machine configurations,
D. Strongly Mobile Agents connection bandwidths, network topology, and assuming onl
To make progress in the presence of frequent reclamatiasninimal amount of initial information. While our scheme
of desktop machines, current systems rely on different $orris also based on a tree, our overlay network keeps changing

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 35, NG, MAY 2005 4

. . receive request for s subtasks fromnode c
to adapt to system conditions. Our tree adaptation meatmanis; ¢ nay b‘; the node itsel f

is driven by the perceived performance of a node’s childreirf, subtask_list.size>=s

measured passively as part of the ongoing computation [:%g)l].‘;;gsemj—S“bt asks(s)

From the point of view of network topology, our system starts ¢ send_subt asks(subt ask_| i st . si ze)

with a small amount of knowledge in the form of a “friends out st andi ng_subt ask_queue.

list", and then keeps building its own overlay network on pa?gggc,s——subt ask_list. size)

the fly. Information from each node’s “friends list” is shdre send_r equest (out st andi ng_subt ask_queue.

with other nodes so the initial configuration of the lists & n total _subt asks)

critical. The only assumption we rely upon is that a “friends

list” is available initially on each node to prime the systenFig. 1. Behavior of Node on Receiving Request

solutions for the construction of such lists have been apesd

in the context of peer-to-peer file-sharing [40], [41] andl wi

not be addressed in this paper. neglected. The application that we have used for our exper-
The Local Activation, Long-range Inhibition (LALI) rule iments is NCBI's nucleotide-nucleotide sequence comparis

is based on two types of interactions: a positive, reinfayci tool BLAST [42].

one that works over a short range, and a negative, destuctivOuUr choice of using an ITA for our proof-of-concept im-

one that works over longer distances. We retain the LAIRlementation follows a common practice in grid scheduling

principle but in a different form: we use a definition offésearch. However our scheme is general enough to accom-

distance which is based on a performance-based metric.ni@date other classes of applications. In a recent article we

our experiment, distance is based on the perceived thramghpave demonstrated using a fault-tolerant implementatibn o

which is some function of communication bandwidth anf§annon’s matrix multiplication algorithm that our schedgl

computational throughput. Nodes are initially recruitesing Scheme can be adapted to applications with communicating

the “friends list” in a way that is completely oblivious oftasks [43], [44].

distance, therefore propagating computation on distadesio

with same probability as close ones. During the course of tBe Basic Agent Design

computat?on agents behavior encourages thg prqpagation 0,& large computational task is encapsulated in a strongly
computation among well-connected nodes while dISCOugﬁ‘g'ﬁwbile agent. This task should be divisible into a number of

the inclusion of distant (i.e. less respor_lswe) agents. .independent subtasks. A user starts the computation agent o
The methodology we followed to design the agent behawm

. foll Wi | q d | & s/her machine. One thread of the agent begins executing
IS ash ° dOW.S' bl e selecte fa tree-s';ructuvr\zla (r)]veray NEIWOL btasks sequentially. The agent is also prepared to eeceiv
as the desirable pattern of execution. We then empirica ¥quests for work from other machines. If the machine has any

determined the simplest behavior that would organize trﬂj‘ﬁcomputed subtasks, and receives a request for work from

commqnlcatlon and task distribution among moblle. agents other machine, it sends a clone of itself to the requesting
according to that pattern. We then augmented the basic behay, ..o The requester is now this machirgild

ior in a way that introduced other desirable properties.hwit The clone asks its parent for a certain number of subtasks

the _tptal computatipn time as the performance metric, ev d work on, s. A thread begins to compute the subtasks.

addm_on to the basic scheme was separatgly evaluated Sa‘r:iffher threads are created — when required — to communicate

contribution to total pgrformancg, quantltauv.ely' asedss with the parent or other machines. When work requests are
One such property is the continuous monitoring of the PYeceived, the agent dispatches its own clone to the requeste

fo_rr_nance O.f the child nodes. We_assumed thf_it no knowledgerﬁe computation spreads in this manner. The topology of the
initially available on the system, instead passive feeki@m resulting overlay network is a tree with the originating imiae

child nodes is used to measure their effective performan%q,the root node
e.g., the product of computational speed and communicationAn agent requests its parent for more work when it has

bandwidth. executed its own subtasks. Even if the parent does not have
Another property Is continuous, on-the-ﬂy a_daptat|on 9SIhe requested number of subtasks, it will respond and send it

the restructuring algorithm presented in Section Ill-DsBa child what it can. The parent keeps a record of the number of

cally, the overlay tree is incrementally restructured wfthie subtasks that remain to be sent, and sends a request to its own

computation is in progress by pushing fast nodes up towar rent. Every time a node of th'e tree obtainsesults, either

th.e' root of the tree. Other functions that. were fognd 'to mputed by itself or obtained from a child, it se,nds them

critical for performance were the automatic determinatén o its parent. This message includes a request for all pgndin

parameters such as prefetching and task size, the detec%aﬂtasks This can be seen in Figures 1 and 2
of cycles, the detection of dead nodes and the end of the ' '

computation. _ o

In this paper we focus on the solution to one particuldr- Maintenance of Child-lists
problem: the scheduling of the independent, identicalask®t ~ Each node has up toactive children, and up tp potential
of an independent-task application (ITA) whose data iljtia children. Ideally,c + p is chosen so as to strike a balance be-
resides at one location. The size of individual subtasks atwleen a tree that is too deep (long delays in data propagation
of their results is large, and so transfer times cannot b@&d one that is too wide (inefficient distribution of data).

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 35, NG, MAY 2005

receive t subtasks from parent
subtask_list.add(t)
i f outstandi ng_subtask_queue.
tot al _subt asks>=t
<send t subtasks to nodes in
out st andi ng_subt ask_queue>

recei ve node b fromnode ¢

if old_child_list.not_contains(b)
potential _child_list.add(b)
c.send_accept _child(b)

el se
c.send_reject_child(b)

el se
<send out st andi ng_subt ask_queue.
total _subtasks subtasks to nodes in
out st andi ng_subt ask_queue>

/1 may include subtasks for node itself

Fig. 4. Behavior of Parent Node on Receiving PropagateddChil

receive accept_child(b) from parent

/1 a request was earlier nmade to parent
/1 about node b

b. send_ancestor _|ist(ancestor_list)

/1 b will now contact parent directly

Fig. 2. Behavior of Node on Receiving Subtasks

recei ve feedback from node c
if child_list.contains(c)
child_list.update_rank(c)
el se
child_list.add(c)
if child_list.size>MAX CH LD LI ST _SIZE
sc:=child_list.slowest
child_list.renmve(sc)
old_child_list.add(sc)
inverted_child_list:=inv(child_list)
sc.send_ancestor_list(inverted_child_list)

Fig. 5. Behavior of Child Node on Receiving Positive Resgons

A node periodically informs its parent about its best-
performing child. The parent then checks whether its grand-
child is present in its list of former children. If not, it asld
the grandchild to its list of potential children and telldsth
node that it is willing to consider the grandchild. The node
then instructs its child to contact its grandparent disedfl
the contact ends in a promotion, the entire subtree with the
child node at its root will move one level higher in the tree.

This constant restructuring results in fast nodes pericgiat

The active children are ranked on the basis of their perfQfards the root of the tree and has been detailed in Figures
mance. The performance metric is application-dependenmt. i nq 5 The checking of a promising child against a list of
an ITA, a child is evaluated on the basis of the rate at whimer children prevents the occurrence of trashing due to
it sends in results. When a child sendsesults, the node ¢qnsecutive promotions and demotions of the same node.
measures the time-interval since the last time it semsults. When a node updates its child-list and decides to remove

The final result-rate of this child is calculated as an averdg ;5 gjowest child,sc, it does not simply discard the child.
the lastRz such time-intervals. This ranking is a reflection of; prepares a list of its children in descending order of

the performance of not just a child, but of the entire Sumr?ferformance i.e., slowest node first. The list is sentsdp
with the child node at its root. . which attempts to contact those nodes in turn. Since the first
Potential children are the ones which the current node Ngsqes that are contacted are the slower ones, the tree istsoug

not yet been able to evaluate. A potential child is addedéeo tf}, pe kept balanced. The actions of a node on receipt of a new
active child-list once it has sent enough results to theeturr |ist of ancestors are in Figure 6.

node. If the node now has more tharchildren, the slowest

ch|!d, se, IS _remove_d from the child-list. As dgscnbed belowE_ Size of Result Burst

sc is then given a list of other nodes, which it can contact to h ‘ ks its child he basis of th
try and get back into the tree. The current node keeps a reco_rtji:'ac kagent 0 gn ITA ran SI Its Chl' rendon the Jasis o t, €
of the lasto former children, andc is now placed in this list. time taken to send some results to this node. The time retjuire

Nodes are purged from this list once a sufficient, user-defin? obtain just one result-burst, or a result-burst of sizepht

time period elapses. During that interval of time, messagggt be a good measure of the performance of a child. Nodes

from sc will be ignored. This avoids thrashing and exc:essi\ﬁ'ght make poor decisions about which children to keep and

dynamism in the tree. The pseudo-code for the maintena gcard. The child propagation algorithm benefits from gsin
of child-lists has been presented in Figure 3. the average oR result-burst intervals and from setting the

result-burst burst size, to be greater than 1. A better nmeasu
for the performance of a child is the time taken by a node to
D. Restructuring of the Overlay Network obtainr * (R+ 1) results. However; and R should not be set

The topology of the overlay network is a tree, and it ifo very large values because the overlay network would take

desirable for the best-performing nodes to be close to the rgl®@ Much time to take form and to get updated.

In the case of an ITA, both computational speed and link band-

width contribute to a node’s effective performance. Having Fault Tolerance

well connected nodes close to the top enhances the extractiolf the parent of a node were to become inaccessible due
of subtasks from the root and minimizes the communicatida machine or link failures, the node and its own descendants
delay between the root and the best nodes. Therefore theuld be disconnected from the tree. The application might
overlay network is constantly being restructured so that tihequire that a node remain in the tree at all times. In this
nodes with the highest throughput migrate toward the roagenario, the node must be able to contact its parent’s an-
pushing those with low throughput towards the leaves. cestors. Every node keeps a (constant size) list aff its

Fig. 3. Behavior of Parent Node on Receiving Feedback

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 35, NG, MAY 2005 6

recei ve nessage from parent

ancestor |ist := message.ancestor | i st do the same. Termination messages spread down to the'lea\./es
if parent != ancestor_list.last and the computation terminates. There are two scenarios in
parent: =ancestor_list.|ast which termination could be incomplete:

o A termination message might not reach a node. The

Fig. 6. Behavior of Node on Receivi Ancestor-List ST oL T :
ig. 6. Behavior of Node on Receiving new Ancestor-Lis situation is the same as that described in Subsection IlI-F.

while true « Consider that computation agents are executing on nodes
send nessage to parent nl andn2. nl receives a termination message, b2t
I <unable to contact parent> does not because of a failure. The agentdndestroys
ancestor_|ist.renpve(parent) . . .
if ancestor list.size = 0 itself. n1 now sends request messages to its friends. If
<find-new parent or self-destruct> one of these %2, a clone ofn2’s agent is sent ta1.

parent := ancestor_list.last An unchecked spread of computation will not occur

because agents send out clones only if they do not have
any uncomputed subtasksl andn2 will eventually run
out of subtasks and destroy themselves as explained in

ancestors. This list is updated every time its parent sends i Subsection HlI-F.

a message. The updates to the ancestor-list take into accoun .))
the possibility of the topology of the overlay network chamg - Self-adjustment of Task List Size
frequently. A node always requests a certain number of subtasks and
A child sends a message to its parent — thth node in obtains their results before requesting more subtasks t& wo
its ancestor-list. If it is unable to contact the parent,eihds on. The size of a subtask is simply an estimation of the
a message to the: (— 1)-th node in that list. This goes onsmallest unit of work that every machine on the peer-to-peer
until an ancestor responds to this node’s request. The mcesetwork should be able to compute in a time that the user
becomes the parent of the current node and normal operat@omsiders reasonable; scheduling should not be inordynate
resumes. slow on account of subtasks that take a long time to compute.
If a node’s ancestor-list goes down to size 0, it attemptowever, in an ITA-type application, the utilization of a
to obtain the address of some other agent by checking ftigh-performance machine may be poor because it is only
data distribution and communication overlays. If these arequesting a fixed number of subtasks at a time.
the same as the scheduling tree, the node has no means éf node may request more subtasks in order to increase
obtaining any more work to do. The mobile agent informs tH&e utilization of its resources and to improve the system
agent environment that no useful work is being done by thé®mputation-to-data ratio. A node requests a certain numbe
machine, before self-destructing. The environment begins of subtaskst, that it will compute itself. Once it has finished
send out requests for work to a list of friends. The pseudeomputing thet subtasks, it compares the average time to
code for the fault tolerance algorithm is in Figure 7. compute a subtask on this run to that of the previous run.
In order to recover from the loss of tasks by failing node§epending on whether it performed better, worse or about the
every node keeps track of unfinished subtasks that weresergame, the node requests), d(t) or ¢t subtasks for its next
children. If a child requests additional work and no new tagkin, wherei(t) > ¢t andd(t) < t.
can be obtained from the parent, unfinished tasks are handed

Fig. 7. Fault Tolerance — Contacting Ancestors

out again. J. Prefetching
A potential cause of slowdown in the basic scheduling
G. Cycles in the Overlay Network scheme described earlier, is the delay at each node due to

Even though the scheduling overlay network should belts Waiting for new subtasks. This is because it needs to wait
tree, failures could cause the formation of a cycle of node¥hile its requests propagate up the tree to the root andsketa

The system recovers from this situation by having each nofgoPagate down the tree to the node. - ,
examine its ancestor list on receiving it from its parentalf 't Might be beneficial to use prefetching to reduce the time

node finds itself in that list, it knows that a cycle has ocedrr that @ node waits for subtasks. A node determines that it

The node attempts to break the cycle by obtaining the addr§89uld request subtasks from its parent. It also makes an
of some other agent on its data distribution or communicati@Ptimistic prediction of how many subtasks it might require
overlays. However, if these are identical to the schedulirﬁ%ture by using the function that is used for self-adjustment.

overlay, the node will be starved of work. If the agent iswedr ¢(¢) Subtasks are then requested from the parent. When a
of work for more than a specified time, it self-destructs. node finishes computing one set of subtasks, more subtasks

are readily available for it to work on, even as a request is
o submitted to the parent. This interleaving of computatiod a
H. Termination communication reduces the time for which a node is idle.
The root of the tree is informed when the computational task While prefetching will reduce the delay in obtaining new
has been completed. It sends a termination message to eadtasks to work on, it also increases the amount of data that
of its actual, potential and former children. The compuotati needs to be transferred at a time from the root to the current
agent on the root then self-destructs. The children of tle¢ ranode, thus increasing the synchronization delay and data

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 35, NG, MAY 2005 7

ORIGIN | Parameter Name | Parameter Valug
Q :‘ @! Maximum children 5
' Maximum potential children 5
O Q Q‘ o Result-burst size 3
Q . Self-adjustment linear
’ Number of subtasks 1
. . . . initially requested
. . ‘ . Child-propagation On
Q FAST
@ veoum TABLE ||
. sLow ORIGINAL PARAMETERS

= KNOWS ABOUT

Fig. 8. Good Configuration with A Priori Knowledge

ORIGIN, :\{:\-:‘:i——»——u—' ig
A
o 8
O FAST ‘

MEDIUM

. SLow

— ISCHILD OF Time(sec)

Number of Nodes

ORNWAUION®O©

0 50 100 150 200 250 300 350 400

= IS POTENTIAL CHILD OF
Fig. 10. Code Ramp-up
Fig. 9. Final Node Organization, Result-burst size=3, Gbtutdal Config-
uration

As shown in Figure 11, the nodes were initially organized
randomly. The dotted arrows indicate the directions in \whic
request messages for work were sent to friends. The onlg thin
a machine knew about a friend was WBL. We ran the com-
putation with the parameters described in Table II. LinediF s
IV. MEASUREMENTS adjustment means that the increasing and decreasingdnacti

We h ducted . st luate th ‘ of the number of subtasks requested at each node are linear.
¢ nave conducted experiments to evaluate the pertorman(g, 4,q required for the code and the first subtask to arrive

of each aspect of our scheduling scheme. The expenmeg{ She different nodes can be seen in Figure 10. This is the
were performed on a cluster of eighteen heterogeneous M&he for all the experiments

chines at different locations around Ohio. The machines ran

the Agl et s weak mobility agent environment on top of either _ _
Linux or Solaris. A. Comparison with Knowledge-based Scheme

transfer time. This is why excessively aggressive prefetch
will result in a performance degradation.

The application we used to test our system was the geneThe purpose of these tests is to evaluate the quality of
sequence similarity search tool, NCBI's nucleotide-natitke the configuration which is autonomously determined by our
BLAST [42] — a representative independent-task applicatioscheme for different initial conditions.

The mobile agents started up a BLAST executable to performTwo experiments were conducted using the parameters in
the actual computation. The task was to match a 256KRible Il. In the first, we manually created a good initial
sequence against 320 data chunks, each of size 512KB. Eeshfiguration assuming a priori knowledge of system param-
subtask was to match the sequence against one chunk. Chuwtkss. We then ran the application, and verified that the final
flow down the overlay tree whereas results flow up to the roaonfiguration did not substantially depart from the initiale.

An agent cannot migrate during the execution of the BLASWe consider a good configuration to be one in which fast nodes
code; since our experiments do not require strong mobilityre nearer the root. Figures 8 and 9 represent the start a@nd en
this limitation is irrelevant to our measurements. of this experiment. The final tree configuration shows thst fa

All eighteen machines would have offered good perforodes are kept near the root and that the system is constantly
mance as they all had fast connections to the Internet, highevaluating every node for possible relocation (as shioywn
processor speeds and large memories. In order to obtain mihwe three rightmost children which are under evaluationhay t
heterogeneity in their performance, we introduced delayse root).
application code so that we could simulate the effect of slow We began the second experiment with the completely
machines and slower network connections. We divided th@ndom configuration shown in Figure 11. The resulting
machines into fast, medium and slow categories by intreduciconfiguration shown in Figure 12 is substantially similar to
delays in the application code. the good configurations of the previous experiment; if the

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 35, NG, MAY 2005 8

ORIGIN.‘ . ORIGIN,
o %o © o QJ \o o
R ¢
O ® . QFAST 7 Q
| @ Q- @
¢ °--
O FAST — ISCHILDOF

= IS POTENTIAL CHILD OF
MEDIUM
. ‘ Fig. 12. Final Node Organization, Result-burst size=3W@hild Propaga-

. sLow tion

~ KNOWS ABOUT

. X X i ORIGIN
Fig. 11. Random Configuration of Machines /.\SO

Configuration | Running /
Time (sec) .

¢
Q
@

original 2294
good 1781 O
O FAST
TABLE IlI
EFFECT OFPRIOR KNOWLEDGE . MEDIUM
. SLOW

— IS CHILD OF

. . . . » IS POTENTIAL CHILD OF
execution time had been longer, the migration towards tIE% 13. Final Node Organization, Result-burst size=3, NildCPropagation
root of the two fast nodes at depths 2 and 3 would have been

complete.

. . running times have been tabulated in Table V. The child
B. Effect of Child Propagation evaluations that are made by nodes on the basis of one result
We performed our computation with the child-propagatioire poor. The nodes’ child-lists change frequently and are f

aspect of the scheduling scheme disabled. Comparisonsfrefn ideal, as in Figure 14.

the running times and topologies are in Table IV and Fig- There is a qualitative improvement in the child-lists as the
ures 12 and 13. The child-propagation mechanism resultsrgsult-burst size increases. The structure of the reguttirer-

a 32% improvement in the running time. The reason for thigy networks for result-burst sizes 3 and 5 are in Figures 12
improvement is the difference in the topologies. With childand 15. However, with very large result-bursts, it takegjn

propagation turned on, the best-performing nodes arerclosefor the tree overlay to form and adapt, thus slowing down the
the root. Subtasks and results travel to and from these raddegxperiment. This can be seen in Figure 16.

a faster rate, thus improving system throughput and prexgnt
the root from becoming a bottleneck. This mechanism is t

most effective aspect of our scheduling scheme. Ibe Prefetching and Initial Task Size

The data ramp-up time is the time required for subtasks to
reach every single node. Prefetching has a positive effect o
this. The minimum number of subtasks that each node requests

The experimental setup in Table Il was again used. VWgso affects the data ramp-up. The greater this number, the
then ran the experiment with different result-burst siZse greater the amount of data that needs to be sent to each node,

and the slower the data ramp-up. This can be seen in Table VI

C. Result-burst size

Scheme | Running and Figures 17, 18, 19, 20 and 21.
Time (sec) Prefetching does improves the ramp-up, but of paramount
With 2294 importance is its effect on the overall running time of anaxp
Without | 3035 iment. This is also closely related to the minimum number of
subtasks requested by each node. Prefetching improvesrsyst
TABLE IV throughput when the minimum number of subtasks requested
EFFECT OFCHILD PROPAGATION is one. As the minimum number of subtasks requested by a

node increases, more data needs to be transferred at a time

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 35, NG, MAY 2005

No. of Ramp-up Ramp-up Running Running
Subtasks| Time (sec) Time (sec) Time (sec) Time (sec)
Prefetching| No prefetching| Prefetching| No prefetching
1 406 590 2308 2520
2 825 979 2302 2190
5 939 1575 2584 2197
TABLE VI

EFFECT OFPREFETCHING ANDMINIMUM NUMBER OF SUBTASKS

[Result-burst Size] Running Time (sec)|

1 3050
2204
: 7330 O
8 3020
TABLE V ’/.

EFFECT OFRESULT-BURST SIZE

Q FAST
. MEDIUM
. SLOW

— IS CHILD OF

ORIGIN,

.\

= IS POTENTIAL CHILD OF

Fig. 15. Node Organization, Result-burst size=5

i

O FAST
. MEDIUM
. SLOwW

— IS CHILD OF

O FAST
. MEDIUM
. SLow

— IS CHILD OF

o
g

Fig. 14. Node Organization, Result-burst size=1

= IS POTENTIAL CHILD OF

from the root to this node, and the effect of prefetching be-
comes negligible. As this number increases further, prhfieg
actually causes a degradation in throughput. Table VI and
Figure 22 summarize these results.

= IS POTENTIAL CHILD OF

Fig. 16. Node Organization, Result-burst size=8

E. Self-Adjustment
We ran an experiment using the configuration in Table I

and then did the same using constant and exponential selfThe linear case was expected to perform better than the
adjustment functions instead of the linear one. The d&@nstant one, but the observed difference was insignificant
ramp-ups have been compared in Table VIl and Figure 3&e expect this difference to be more pronounced with longer

The ramp-up with exponential self-adjustment is apprégiabexperimental runs and a larger number of subtasks.
faster than that with linear or constant self-adjustmettte T

aggressive approach performs better because nodes prefetc .

a larger amount of subtasks, and subtasks quickly reach frgNumber of children

nodes farthest from the root. We experimented with different child-list sizes and found
We also compared the running times of the three runs whithat the data ramp-up time with the maximum number of

are in Table VII. Interestingly, the run with the exponehtiachildren set to 5 was less than that with the maximum number

self-adjustment performed poorly with respect to the othef children set to 10 or 20. These results are in Table VIII.

runs. This is due to nodes prefetching extremely large nusnb&he root is able to take on more children in the latter cases

of subtasks. Nodes now spend more time waiting for theand the spread of subtasks to nodes that were originally far

requests to be satisfied, resulting in a degradation in tfrem the root takes less time.

throughput at that node. Instead of exhibiting better performance, the runs where

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 35, NG, MAY 2005 10

20 20
19 19 f
18 18 f
17 + = 17 t
16 [16 f
15 t ‘ 15 +
g 15 | 8 15 |
2 12t S12f
Z 11 Z 11
© 10 gt g © 10
o 9f o 9f
E 8¢ E 8¢
5 7t 5 7t
Z 6 Z 6
5t 5t
4+ 4t
3F prefetch, initial size =1 ——] 3F
2 prefetch, initial size=2 ———- 2 prefetch, initial size=1 —— |
é ‘ ‘ prefetch, initial size =5 -------- é ‘ ‘ no prefetch, initial size =1 ———-]
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
Time(sec) Time(sec)

Fig. 17. Effect of Minimum Number of Subtasks on Data Ramp-uphwitFig. 19. Effect of Prefetching on Data Ramp-up with Minimum Nwmnbf

Prefetching Subtasks = 1
20 20
19 19
18 | 18 ¢
17 + “ rrrrrrrrrr 17 ¢
6r 00 mmmmm e e = e 16 ¢
I e 15 ¢
o 4 o 141
L3t s 2 13 ¢
S 12 ¢ S 12
Z 11t Z 11
© 10 | © 10 f
o 9+ o 9Ot
€ 8¢ g gl
S 7°F S 7 F
Z 6t z gl
5t 5|
4t 4t
3F no prefetch, initial size =1 ——] 3¢
2f no prefetch, initial size =2 ———-] 2 ¢ prefetch, initial size =2 ——
é ‘ ‘ no prefetch, initial size =5 -------- é ‘ ‘ no prefetch, initial size =2 ———-]
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
Time(sec) Time(sec)

Fig. 18. Effect of Minimum Number of Subtasks on Data Ramp-uhedit ~ Fig. 20. Effect of Prefetching on Data Ramp-up with Minimum Nwmnbf
Prefetching Subtasks = 2

large numbers of children were allowed, had approximatetiynamically such that the nodes that currently exhibit good
the same total running time as the run with the maximuperformance are brought closer to the root, thus improving
number of children set to 5. This is because children havettte performance of the system.
wait for a longer time for their requests to be satisfied. We have described experiments with scheduling a mas-
In order to obtain a better idea of the effect of severalvely parallel application whose data initially reside¢soae
children waiting for their requests to be satisfied, we rdocation and whose subtasks have considerable data transfe
two experiments: one with the good initial configuration ofimes. The experiments were conducted on a set of machines
Figure 8, and the other using a star topology — every nodistributed across Ohio. While this paper concentrated on a
root node was adjacent to the root at the beginning of tBeheduling scheme for independent-task applications, rwe a
experiment itself. The maximum sizes of the child-lists everexperimenting with adapting the algorithm for a wide class
set to 5 and 20, respectively. Since the overlay network$ applications. Recent results show that our approach ean b
were already organized such that there would be little changdapted to communicating applications, such as Cannda-sty
in their topology as the computation progressed, there wastrix multiplication [43], [44].
minimal impact of these changes on the overall running time. It is our intention to present a desktop grid application
The effect of the size of the child-list was then clearly alied developer with a simple application programming interface
as in Table IX. Similar results were observed even when tkigat will allow him/her to customize the scheduling scheme

child-propagation mechanisms were turned off. to the characteristics of an application. A prototype of thi
has already been implemented.
V. CONCLUSIONS ANDFUTURE WORK An important problem that we will address in future is

We have designed an autonomic scheduling algorithm fine initial assignment of the friend-list. There has beemeo
which multi-threaded agents with strong mobility form aetre research on the problem of assigning friend-lists [40],],[41
structured overlay network. The structure of this tree iseeh and we will consider how best to apply this to our own work.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 35, NG, MAY 2005

20
19
18 .
G
L T it
15 ¢ -
g 15 |
S12f
£ 11t
© 10 |
@ 9f
E 8¢
> 7+
z g1
5 L
4
3 L
2 prefetch, initial size=5 —— |
é ‘ ‘ no prefetch, initial size =5 ———-]
0 200 400 600 800 1000 1200 1400 1600
Time(sec)
Fig. 21. Effect of Prefetching on Data Ramp-up with Minimum Nemnbf
Subtasks = 5
2600 with prefetch ——
without prefetch ———-
2500
g 2400
[}
£
£
2300
\\
\
2200 | —~
0 1 2 3 4 5 6
Number of Initial Sub-tasks
Fig. 22. Effect of Prefetching and Min. No. of Subtasks

Number of Nodes

Fig.

(10]

(11]

(12]

The experimental platform was a set of 18 heterogeneous
machines. In future, we plan to harness the computing po %]
of idle machines across the Internet by running a mobile agen
platform inside a screen saver in order to create a deskidp gr
of a scale of the tens or hundreds of thousands. Researcligfis”: S: Grimshaw and W. A. Wulf, “The legion vision of a wolitle
will then be free to deploy scientific applications on thig s
system.

(1]

(2]

3]
(4]
(5]
(6]
(7]
(8]

(9]

REFERENCES

I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of thd: G
Enabling scalable virtual organizationstiternational Journal of High
Performance Computing Applicationgol. 15, no. 3, 2001.

|. Foster, C. Kesselman, J.Nick, and S. Tuecke, “The milggy
of the Grid: An open Grid services architecture for disttéal
systems integration,” 2002, http://www.globus.org/resképapers.html.
[Online]. Available: http://www.globus.org/researchfgers.html
SETI@home. [Online]. Available: http://setiathome.ssfkeley.edu
folding@home. [Online]. Available: http://foldingatford.edu

A. A. Chien, B. Calder, S. Elbert, and K. Bhatia, “Entraparchitecture
and performance of an enterprise desktop grid systeloyrnal of
Parallel and Distributed Computingsol. 63, no. 5, pp. 597-610, 2003.
B. O. I. for Network Computing (BOINC), http://boinc.dezley.edu/.
[Online]. Available: http://boinc.berkeley.edu/

G. Woltman. [Online]. Available: http://www.mersennegfprime.htm
M. Litzkow, M. Livny, and M. Mutka, “Condor — a hunter of Id

(16]

(17]

(18]

(19]

11
Self-adjustment| Ramp-up Running
Function Time (sec)| Time (sec)
Linear 1068 2302
Constant 1142 2308
Exponential 681 2584
TABLE VII

EFFECT OFSELF-ADJUSTMENT FUNCTION

r constant
[linear ———-]
‘ ‘ ‘ ‘ __exponential

800 1000 1200 1400
Time(sec)

ORPNWAUIO 0O

1600

23. Effect of Self-adjustment Function on Data Ramp-upeTi

E. Heymann, M. A. Senar, E. Luque, and M. Livny, “Adaptsehedul-
ing for master-worker applications on the computational ,iiid Pro-
ceedings of the First International Workshop on Grid Conmyt2000.
T. Kindberg, A. Sahiner, and Y. Paker, “Adaptive Pabdim under
Equus,” in Proceedings of the 2nd International Workshop on Config-
urable Distributed System#/ar. 1994, pp. 172-184.

D. Buaklee, G. Tracy, M. K. Vernon, and S. Wright, “Negstinal
adaptive control of a large grid application,” iRroceedings of the
International Conference on Supercomputidgne 2002.

N. T. Karonis, B. Toonen, and |. Foster, “MPICH-G2: A diénabled
implementation of the message passing interfadetirnal of Parallel
and Distributed Computingvol. 63, no. 5, pp. 551-563, 2003.

virtual computer,"Communications of the ACMan. 1997.

F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, MeRaan,
S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S.ll&ma
N. Spring, A. Su, and D. Zagorodnov, “Adaptive computing oa ghid
using AppLeS,IEEE Transactions on Parallel and Distributed Systems
vol. 14, no. 4, pp. 369-382, 2003.

D. Abramson, J. Giddy, and L. Kotler, “High performancergraetric
modeling with Nimrod/G: Killer application for the global gf?” in
Proceedings of International Parallel and Distributed Ressing Sym-
posium May 2000, pp. 520-528.

|. Taylor, M. Shields, and |. Wan@;rid Resource ManagemenKluwer,
June 2003, ch. 1 - Resource Management of Triana P2P Services.
A. Montresor, H. Meling, and O. Babaoglu, “Messor: Leaalancing
through a swarm of autonomous agents Pioceedings of 1st Workshop
on Agent and Peer-to-Peer Systerdigly 2002.

B. Kreaseck, L. Carter, H. Casanova, and J. Ferrantetd@omous
protocols for bandwidth-centric scheduling of indeperidaesk appli-
cations,” in Proceedings of the International Parallel and Distributed
Processing Symposiympr. 2003, pp. 23-25.

] J. F. Shoch and J. A. Hupp, “The "worm” programs — early eiqree

workstations,” inProceedings of the 8th International Conference of21]

Distributed Computing Systemiune 1988.

M. Maheswaran, S. Ali, H. J. Siegel, D. A. Hensgen, and Rrriéund,
“Dynamic matching and scheduling of a class of independerkstas
onto heterogeneous computing systems,”HAroceedings of the 8th
Heterogeneous Computing Workshdpr. 1999, pp. 30—44.

(22]

(23]

with a distributed computation,Communications of the ACMMar.
1982.

U. Devices. [Online]. Available: http://www.ud.com

H. James, K. Hawick, and P. Coddington, “Scheduling pefalent tasks
on metacomputing systems,” Proceedings of Parallel and Distributed
Computing System#ug. 1999.

J. Santoso, G. D. van Albada, B. A. A. Nazief, and P. M. Aads, “Hi-
erarchical job scheduling for clusters of workstations,"Aroceedings

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 35, NG, MAY 2005 12
Max. No. of | Time
Children (sec) Max_ No. of | Time Sugnce, The Ohio State University, Tech. Rep. OSU-CISRZ-FR23,
: April 2004.
5 1068 Children (sec) . _— . . R
10 760 5 1781 [44] — ‘Application-specific schedullng for the organiddy in Proce_ed—
50 778 50 5041 ings of the 5th IEEE/ACM International Workshop on Grid Cartipy
(GRID 2004) Pittsburgh, November 2004.
TABLE VIII TABLE IX

[24]

[25]

[26]
[27]

(28]

[29]

(30]

(31]

(32

(33]

(34]

(35]

[36]

(37]
(38]

[39]

(40]
[41]

[42]

[43]

EFFECT OFNO. OF CHILDREN
ON RUNNING TIME

EFFECT OFNO. OF CHILDREN
ON DATA RAMP-UP

of the 6th annual conference of the Advanced School for Congpand
Imaging June 2000, pp. 99-105. a
C. Leangsuksun, J. Potter, and S. Scott, “Dynamic task pingp t
algorithms for a distributed heterogeneous computing enmient,” in
Proceedings of the Heterogeneous Computing Workshpp 1995, pp.
30-34.

R. Wolski, J. Plank, J. Brevik, and T. Bryan, “Analyzimgarket-based
resource allocation strategies for the computational "gtidernational
Journal of High-performance Computing Application®l. 15, no. 3,
2001.

A. Turing, “The chemical basis of morphogenesis,Hhilos. Trans. R.
Soc. Londonno. 237 B, 1952, pp. 37-72.

A. Gierer and H. Meinhardt, “A theory of biological path formation,”
in Kybernetik no. 12, 1972, pp. 30-39.

E. Bonabeau, M. Dorigo, and G. Theraul&yarm Intelligence: From
Natural to Artificial Systems Oxford University Press, Santa Fe
Institute Studies in the Sciences of Complexity, 1999.

G. Theraulaz, E. Bonabeau, S. C. Nicolis, R. V. Sol, Vufeassi,
S. Blanco, R. Fournier, J.-L. Joly, P. Fernndez, A. GrimaD#lle, and
J.-L. Deneubourg, “Spatial patterns in ant colonies,PINAS vol. 99,
no. 15, 2002, pp. 9645-9649.

D. B. Lange and M. Oshima, “Seven good reasons for mobitnesy’
Communications of the ACMViar. 1999.

J. Bradshaw, N. Suri, A. J. @as, R. Davis, K. M. Ford, R. R. Hoffman,
R. Jeffers, and T. Reichherzer, “Terraforming cyberspaneComputer
IEEE, July 2001, vol. 34(7).

0. Rana and D. Walker, “The Agent Grid: Agent-based uese integra-
tion in PSEs,” inl6th IMACS World Congress on Scientific Computatio
Applied Mathematics and Simulatiohausanne, Switzerland, August
2000.

B. Overeinder, N. Wijngaards, M. van Steen, and F. BmaziMulti-
agent support for Internet-scale Grid managementAl&B’'02 Sympo-
sium on Al and Grid Computindg. Rana and M. Schroeder, Eds., April
2002, pp. 18-22.
R. Ghanea-Hercock, J. Collis, and D. Ndumu, “Co-opaatmobile 1
agents for distributed parallel processing,”Third International Con-

Arjav J. Chakravarti received the B.E. degree

in Electronics Engineering from the University of

Mumbai, India, in 2001, and the M.S. and Ph.D.
degrees in Computer and Information Science from
The Ohio State University in 2004. His research
interests include distributed computing, autonomic
computing, mobile agents, and grid computing. He
is currently working on distributed systems develop-
ment at The MathWorks, Inc.

Gerald Baumgartner received the Dipl. Ing. degree
from the University of Linz, Austria, and M.S.
and Ph.D. degrees from Purdue University, all in
computer science. He began his academic career at
The Ohio State University in 1997 and is currently
visiting the Department of Computer Science at
Louisiana State University.

His research interest includes compiler optimiza-
tions, the design and implementation of domain-
specific and object-oriented languages, desktop
grids, and development and testing tools for object-

oriented and embedded systems programming.

Mario Lauria earned a Laurea degree in Electrical
Engineering and a Ph.D. in Computer Science from
the Universia di Napoli “Federico 1I", and a M.S.

in Computer Science from the University of Illinois
at Urbana-Champaign. Following completion of his
Ph.D. in 1997 he spent a year at UIUC and one at
the University of California, San Diego, as a post-
doctoral associate working on cluster architecture.
In March 2000 he joined the Ohio State University
in Columbus, OH, as an Assistant Professor in the
Department of Computer Science and Engineering;

ference on Autonomous Agents (AA '‘9lineapolis, MN: ACM Press, since 2001 he holds a joint appointment in the department ofmBdical

May 1999, pp. 398-399. Informatics.

G. Cugola, C. Ghezzi, G. P. Picco, and G. Vigna, “Anatgzimobile

His research interests include scalable cluster 1/O, degmsive computing

code languages,” iMobile Object Systems: Towards the Programmabl@n the grid, high performance computational biology, biotadly inspired

Internet 1996.

A. J. Chakravarti, X. Wang, J. O. Hallstrom, and G. Baurtgzr,
“Implementation of strong mobility for multi-threaded agemsJava,”

in Proceedings of the International Conference on Paralledd@ssing
IEEE Computer Society, Oct. 2003.

——, “Implementation of strong mobility for multi-threadexfents in
Java,” Dept. of Computer and Information Science, The OhideSta
University, Tech. Rep. OSU-CISRC-2/03-TR06, Feb. 2003.

D. B. Lange and M. Oshim&rogramming & Deploying Mobile Agents
with Java Aglets Addison-Wesley, 1998.

A. J. Chakravarti, G. Baumgartner, and M. Lauria, “Thegé&hic
Grid: Self-organizing computation on a peer-to-peer nelddept. of
Computer and Information Science, The Ohio State Univer3iggh.
Rep. OSU-CISRC-10/03-TR55, Oct. 2003.

Gnutella. [Online]. Available: http://www.gnutelicom

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. I&heriA
scalable content addressable network,”Aroceedings of ACM SIG-
COMM‘01, 2001.

Basic Local Alignment Search Tool.
/iwww.ncbi.nlm.nih.gov/BLAST/

A. J. Chakravarti, G. Baumgartner, and M. Lauria, “Agplion-specific
Scheduling for The Organic Grid,” Dept. of Computer and Infation

[Online]. Availablehttp:

models of computation, cellular computation. He is the reaipad a Fulbright
scholarship and of a NATO Advanced Science Fellowship.

