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1.1 INTRODUCTION

Many scientific fields, such as genomics, phylogenetics, astrophysics, geophysics,

computational neuroscience, or bioinformatics, require massive computational power

and resources, which might exceed those available on a single supercomputer. There

are two drastically different approaches for harnessing the combined resources of a

distributed collection of machines: large-scale desktop-based master-worker schemes

and more traditional computational grid schemes.

Some of the largest computations in the world have been carried out on collections

of PCs and workstations over the Internet. Tera-flop levels of computational power

have been achieved by systems composed of heterogeneous computing resources that

number in the hundreds-of-thousands to the millions. This extreme form of distributed

computing is often called internet computing, and has allowed scientists to run

applications at unprecedented scales at a comparably modest cost. The desktop-based

platforms on which Internet-scale computations are carried out are often referred to

as desktop grids. In analogy to computational grids [19, 18], these collections

of distributed machines are glued together by a layer of middleware software that

provides the illusion of a single system [38, 16, 12]. While impressive, these efforts

only use a tiny fraction of the desktops connected to the Internet. Order of magnitude

improvements could be achieved if novel systems of organization of the computation

were to be introduced that overcome the limits of present systems.

A number of large-scale systems are based on variants of the master/workers

model [17, 38, 50, 16, 12, 32, 33, 23, 26, 6, 25]. The fact that some of these systems

have resulted in commercial enterprises shows the level of technical maturity reached

by the technology. However, the obtainable computing power is constrained by the

performance of the master (especially for data-intensive applications) and by the

difficulty of deploying the supporting software on a large number of workers. Since

networks cannot be assumed to be reliable, large desktop grids are designed for

independent task applications with relatively long-running individual tasks.

By contrast, research on traditional grid scheduling has focused on algorithms to

determine an optimal computation schedule based on the assumption that sufficiently
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Table 1.1 Classification of Approaches to Large-Scale Computation

Large Desktop Grids Small Desktop Grids Traditional Grids
(e.g., BOINC) (Condor) (e.g., Globus) Organic Grid

Network large, unreliable small, reliable small, reliable large, unreliable
Task granularity large medium to large medium to large medium to large
Task model independent task any any any
Task scheduling centralized centralized centralized decentralized

detailed and up to date knowledge of the system state is available to a single entity (the

metascheduler) [22, 3, 1, 45]. While this approach results in a very efficient utilization

of the resources, it does not scale to large numbers of machines. Maintaining a global

view of the system becomes prohibitively expensive and unreliable networks might

even make it impossible.

To summarize, the existing approaches to harnessing machine resources represent

different design strategies, as shown in Table 1.1. Traditional grid approaches decide

to limit the size of the system and assume a fairly reliable network in exchange for

being able to run arbitrary tasks, such as MPI tasks. Desktop grid approaches restrict

the type of the application to independent (or nearly independent) tasks of fairly

large task granularity in exchange for being able to run on very large numbers of

machines with potentially unreliable network connections. The best of both worlds,

arbitrary tasks and large numbers of machines, is not possible because the central

task scheduler would become a bottleneck.

We present a new approach to grid computing, called the Organic Grid, that does

not have the restrictions of either of the existing approaches. By using a decentralized,

adaptive scheduling scheme, we attempt to allow arbitrary tasks to be run on large

numbers of machines or in conditions with unreliable networks. Our approach can

be used to broaden the class of applications that can be run on a large desktop

grid, or to extend a traditional grid computing approach to machines with unreliable

connections. The tradeoff of our approach is that the distributed scheduling scheme

may not result in as good resource usage as with a centralized scheduler.

The Organic Grid project is an effort to redesign from scratch the infrastructure

for distributed computation on desktop grids. Our middleware represents a radical
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INTRODUCTION 3

departure from current grid or Peer-to-Peer concepts, and does not rely on existing

grid technology. In designing our Organic Grid infrastructure we have tried to address

the following questions:

) What is the best model of utilization of a system based on the harvesting of

idle cycles of hundreds-of-thousands to millions of PCs?

) How should the system be designed in order to make it consistent with the grid

computing ideals of computation as a ubiquitous and easily accessible utility?

Nature provides numerous examples of complex systems comprising millions

of organisms that organize themselves in an autonomous, adaptive way to produce

complex patterns. In these systems, the emergence of complex patterns derives from

the superposition of a large number of interactions between organisms that have

relatively simple behavior. In order to apply this approach to the task of organizing

computation over complex systems such as desktop grids, one would have to devise

a way of breaking a large computation into small autonomous chunks, and then

endowing each chunk with the appropriate behavior.

Our approach is to encapsulate computation and behavior into mobile agents. A

similar concept was first explored by Montresor et al. [34] in a project showing how

an ant algorithm could be used to solve the problem of dispersing tasks uniformly

over a network. In our approach, the behavior is designed to produce desirable

patterns of execution according to current grid engineering principles. More specifi-

cally, the pattern of computation resulting from the synthetic behavior of our agents

reflects some general concepts about autonomous grid scheduling protocols studied

by Kreaseck et al. [27]. Our approach extends previous results by showing i) how

the basic concepts can be extended to accommodate highly dynamic systems, and ii)

a practical implementation of these concepts.

One consequence of the encapsulation of behavior and computation into agents

is that they can be easily customized for different classes of applications. Another

desirable consequence is that the underlying support infrastructure for our system is

extremely simple. Therefore, our approach naturally lends itself to a true peer-to-peer

implementation, where each node can be at the same time provider and user of the
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computing utility infrastructure. Our scheme can be easily adapted to the case where

the source of computation (the node initiating a computing job) is different from the

source of the data.

The purpose of this work is the initial exploration of a novel concept, and as such it

is not intended to give a quantitative assessment of all aspects and implications of our

new approach. In particular, detailed evaluations of scalability, degree of tolerance

to faults, adaptivity to rapidly changing systems, or security issues have been left for

future studies.

1.2 BACKGROUND AND RELATED WORK

This section contains a brief introduction to the critical concepts and technologies

used in our work, as well as the related work in these areas. These include: Grid

computing, Peer-to-Peer and Internet computing, self-organizing systems and the

concept of emergence, strongly mobile agents and autonomic scheduling.

1.2.1 Grid Computing

Grid computing is a term often used to indicate some form of distributed computation

on geographically distributd resources. We use the term not as referring to a particular

technology, which is consistent with the following definition of grid computing given

by Ian Foster and Carl Kesselmann:

"coordinated resource sharing and problem solving in dynamic, multi-institutional

virtual organizations"

where virtual organizations (VOs) are defined as "dynamic collections of individ-

uals, institutions, and resources" [19]. Examples of VOs are members of an industrial

consortium bidding on a new aircraft; participants of a large, international, multi-

year high-energy physics collaboration; peer-to-peer computing (as implemented,

for example, in the Napster, Gnutella, and Freenet file sharing systems) and Internet

computing (as implemented, for example by the SETI@home, Parabon, and Entropia

systems) [19].

��������� 	�

����
���������������������� �"!$#
%�& ���'���(�



BACKGROUND AND RELATED WORK 5

As these examples show, VOs encompass entities with very different characteris-

tics. Nevertheless, in order to achieve the grid computing goal the following set of

common requirements can be identified [19]:

) mechanisms for sharing of varied resources, ranging from programs, files, and

data to computers, sensors, and networks;

) a need for highly flexible sharing relationships, ranging from client-server to

peer-to-peer;

) a need for sophisticated and precise levels of control over how shared re-

sources are used, including fine-grained and multi-stakeholder access control,

delegation, and application of local and global policies;

) mechanisms for diverse usage models, ranging from single user to multi-user

and from performance sensitive to cost-sensitive and hence embracing issues

of quality of service, scheduling, co-allocation, and accounting.

Currently, the Globus toolkit [37] (both in its initial version and in its recent

redesign following the web services architecture known as OGSA [18]) represents

the de facto standard model for grid applications development and deployment. The

Globus toolkit is a collection of tools for grid application development, each targeted

to a particular area of Grid computing (application scheduling, security management,

resource monitoring, etc.). An unintended consequence of its popularity is the

common misconception that grid technology and Globus (or OGSA) are one and the

same thing. In reality the grid concept as defined above is much more general, and a

lot of research opportunities exist on the study of novel forms of grid computing.

Peer-to-peer and Internet computing are examples of the more general "beyond

client-server" sharing modalities and computational structures that we referred to

in our characterization of VOs. As such, they have much in common with grid

technologies. In practice, however, so far there has been very little work done at the

intersections of these domains.

The Organic Grid is a novel type of grid that is based on a peer-to-peer model of

interaction, where the code (in addition to the data) is exchanged between peers. It
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therefore requires some type of mobility of the code. We use mobile agents as the

underlying technology for building our grid infrastructure. In peer-to-peer systems

like Napster or Kazaa, the peers exchange files. We demonstrate that by connecting

agent platforms into a peer-to-peer network and by exchanging computation in the

form of agents, it is possible to build a novel grid computing infrastructure.

At a very high level of abstraction, the Organic Grid is similar to Globus in that

a user can submit an application to the system and the application will be executed

somewhere on the grid. The innovative approach employed by the Organic Grid is

that the user’s application is encapsulated in a mobile agent together with scheduling

code; the mobile agent then carries the application to a machine that has declared it

has available computing resources. Instead of a centralized scheduler as in existing

Grid approaches, agents make simple decentralized scheduling decisions on their

own.

A grid architecture like ours with decentralized scheduling could have been built

without employing mobile agents, using, for example, a service architecture instead

(after all, mobile agents are implemented on top of remote method invocation, which

is implemented on top of client-server communication). However, mobile agents

provide a particularly convenient abstraction that make building such a system, and

experimenting with different scheduling strategies, much easier and more flexible. In

addition, the use of strong mobility will enable future implementations of the Organic

Grid to transparently checkpoint and migrate user applications.

1.2.2 Peer-to-Peer and Internet Computing

The goal of utilizing the CPU cycles of idle machines was first realized by the Worm

project [44] at Xerox PARC. Further progress was made by academic projects such

as Condor [32]. The growth of the Internet made large-scale efforts like GIMPS [50],

SETI@home [38] and folding@home [16] feasible. Recently, commercial solutions

such as Entropia [12] and United Devices [14] have also been developed.

Peer-to-peer computing adopts a highly decentralized approach to resource sharing

in which every node in the system can assume the role of client or server [35, 43].
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BACKGROUND AND RELATED WORK 7

Current peer-to-peer systems often rely on highly available central servers and are

mainly used for high profile, large scale computational projects such as SETI@home,

or for popular data-centric applications like file-sharing [15].

The idea of combining Internet and peer-to-peer computing is attractive because

of the potential for almost unlimited computational power, low cost, ease and uni-

versality of access — the dream of a true computational grid. Among the technical

challenges posed by such an architecture, scheduling is one of the most formidable

— how to organize computation on a highly dynamic system at a planetary scale

while relying on a negligible amount of knowledge about its state.

1.2.3 Scheduling

Decentralized scheduling is a field that has recently attracted considerable attention.

Two-level scheduling schemes have been considered [24, 42], but these are not scal-

able enough for the Internet. In the scheduling heuristic described by Leangsuksun

et al. [30], every machine attempts to map tasks on to itself as well as its K best

neighbors. This appears to require that each machine have an estimate of the exe-

cution time of subtasks on each of its neighbors, as well as of the bandwidth of the

links to these other machines. It is not clear that this information will be available in

large-scale and dynamic environments.

G-Commerce was a study of dynamic resource allocation on a grid in terms

of computational market economies in which applications must buy resources at a

market price influenced by demand [49]. While conceptually decentralized, if imple-

mented this scheme would require the equivalent of centralized commodity markets

(or banks, auction houses, etc.) where offer and demand meet, and commodity prices

can be determined.

Recently, a new autonomous and decentralized approach to scheduling has been

proposed to address specifically the needs of large grid and peer-to-peer platforms. In

this bandwidth-centric protocol, the computation is organized around a tree-structured

overlay network with the origin of the tasks at the root [27]. Each node in the

system sends tasks to and receives results from its K best neighbors, according to
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bandwidth constraints. One shortcoming of this scheme is that the structure of the

tree, and consequently the performance of the system, depends completely on the

initial structure of the overlay network. This lack of dynamism is bound to affect

the performance of the scheme and might also limit the number of machines that can

participate in a computation.

1.2.4 Self-Organization of Complex Systems

The organization of many complex biological and social systems has been explained

in terms of the aggregations of a large number of autonomous entities that behave

according to simple rules. According to this theory, complicated patterns can emerge

from the interplay of many agents — despite the simplicity of the rules [47, 21].

The existence of this mechanism, often referred to as emergence, has been proposed

to explain patterns such as shell motifs, animal coats, neural structures, and social

behavior. In particular, certain complex behaviors of social insects such as ants and

bees have been studied in detail, and their applications to the solution of specific

computer science problems has been proposed [34, 4]. In a departure from the

methodological approach followed in previous projects, we did not try to accurately

reproduce a naturally occurring behavior. Rather, we started with a problem and then

designed a completely artificial behavior that would result in a satisfactory solution

to it. Our work was inspired by a particular version of the emergence principle

called Local Activation, Long-range Inhibition (LALI), which was recently shown to

be responsible for the formation of a complex pattern using a clever experiment on

ants [46].

1.2.5 Strongly Mobile Agents

To make progress in the presence of frequent reclamations of desktop machines, cur-

rent systems rely on different forms of checkpointing: automatic, e.g., SETI@home,

or voluntary, e.g., Legion. The storage and computational overheads of checkpointing

put constraints on the design of a system. To avoid this drawback, desktop grids need
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BACKGROUND AND RELATED WORK 9

to support the asynchronous and transparent migration of processes across machine

boundaries.

Mobile agents [29] have relocation autonomy. These agents offer a flexible means

of distributing data and code around a network, of dynamically moving between

hosts as resource availability varies, and of carrying multiple threads of execution to

simultaneously perform computation, decentralized scheduling, and communication

with other agents. There have been some previous attempts to use mobile agents for

grid computing or distributed computing [5, 39, 36, 20].

The majority of the mobile agent systems that have been developed until now

are Java-based. However, the execution model of the Java Virtual Machine does

not permit an agent to access its execution state, which is why Java-based mobility

libraries can only provide weak mobility [13]. Weakly mobile agent systems, such

as IBM’s Aglets framework [28] do not migrate the execution state of methods. The
*,+.-"/ method, used to move an agent from one virtual machine to another, simply does

not return. When an agent moves to a new location, the threads currently executing

in it are killed without saving their state. The lifeless agent is then shipped to its

destination and restarted there. Weak mobility forces programmers to use a difficult

programming style, i.e., the use of callback methods, to account for the absence of

migration transparency.

By contrast, agent systems with strong mobility provide the abstraction that the

execution of the agent is uninterrupted, even as its location changes. Applications

where agents migrate from host to host while communicating with one another, are

severely restricted by the absence of strong mobility. Strong mobility also allows

programmers to use a far more natural programming style.

The ability of a system to support the migration of an agent at any time by an

external thread, is termed forced mobility. This is essential in desktop grid systems,

because owners need to be able to reclaim their resources. Forced mobility is difficult

to implement without strong mobility.

We provide strong and forced mobility for the full Java programming language

by using a preprocessor that translates an extension of Java with strong mobility into

weakly mobile Java code that explicitly maintains the execution state for all threads
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as a mobile data structure [10, 11]. For the target weakly mobile code we currently

use IBM’s Aglets framework [28]. The generated weakly mobile code maintains a

movable execution state for each thread at all times.

1.3 AUTONOMIC SCHEDULING

1.3.1 Overview

One of the works that inspired our project was the bandwidth-centric protocol pro-

posed by Kreaseck et al. [27], in which a grid computation is organized around a

tree-structured overlay network with the origin of the tasks at the root. A tree overlay

network represents a natural and intuitive way of distributing tasks and collecting

results. The drawback of the original scheme is that the performance and the degree

of utilization of the system depend entirely on the initial assignment of the overlay

network.

In contrast, we have developed our systems to be adaptive in the absence of any

knowledge about machine configurations, connection bandwidths, network topology,

and assuming only a minimal amount of initial information. While our scheme is also

based on a tree, our overlay network keeps changing to adapt to system conditions.

Our tree adaptation mechanism is driven by the perceived performance of a node’s

children, measured passively as part of the ongoing computation [7]. From the point

of view of network topology, our system starts with a small amount of knowledge

in the form of a “friends list”, and then keeps building its own overlay network on

the fly. Information from each node’s “friends list” is shared with other nodes so the

initial configuration of the lists is not critical. The only assumption we rely upon is

that a “friends list” is available initially on each node to prime the system; solutions

for the construction of such lists have been developed in the context of peer-to-peer

file-sharing [15, 40] and will not be addressed in this paper.

To make the tree adaptive we rely on a particular version of the emergence principle

called Local Activation, Long-range Inhibition (LALI). The LALI rule is based on

two types of interactions: a positive, reinforcing one that works over a short range,
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AUTONOMIC SCHEDULING 11

and a negative, destructive one that works over longer distances. We retain the

LALI principle but with the following modification: we use a definition of distance

which is based on a performance-based metric. In our experiment, distance is based

on the perceived throughput, which is a function of communication bandwidth and

computational throughput. Nodes are initially recruited using the “friends list” in

a way that is completely oblivious of distance, therefore propagating computation

on distant nodes with same probability as close ones. During the course of the

computation agents behavior encourages the propagation of computation among well-

connected nodes while discouraging the inclusion of distant (i.e. less responsive)

agents.

In the natural phenomena, the emergence principle is often invoked to explain the

formation of patterns. In the Organic Grid it is possible to define the physical pattern

of a computation as the physical allocation of the agents to computing resources

such as communication links, computing nodes, data repositories. Two examples

of computation patterns on a grid are illustrated in Figure 1.1, where nodes are

represented as dots (double circle is the starting node), links as lines of thickness

proportional to the bandwidth. Figure 1.1(a) represents a pattern that could be

obtained by recruiting nodes at random. A more desirable pattern would be one where

the availability of resources is taken into account in deciding where to run agents.

For example in a data intensive, indipendent task application such as BLAST [2]

a factor of merit should be not only the processing power of a node but also the

available bandwidth of the intervening link. Assuming for semplicity that nodes are

homogeneous, a desirable pattern of computation is one where nodes connect to high

bandwidth links are eventually more likely to be retained in the computation, as in

Figure 1.1(b).

The main challenge of programming the Organic Grid is designing an agent

behavior that produces a desirable physical pattern of computation. The agent design

we adopted for runnig BLAST promotes the formation of a physical pattern that

approximates the one shown in Figure 1.1(b). It is important to note that in general the

criteria defining what is a desirable pattern are specific for each class of application,

and therefore the agent design must be taylored to the requirement of each class.
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(a) (b)

Fig. 1.1 Example of physical pattern of computation on a network; nodes are represented as

dots (double circle is starting node), links as lines of thickness proportional to the bandwidth.

(a) A configuration obtained by recruiting nodes at random, (b) a desirable pattern showing

clustering of the computation around available resources by selective recruitment and dropping

of nodes.

The methodology we followed to design the agent behavior is as follows. We

selected a tree-structured overlay network as the fundamental logical pattern around

which to organize the computation. We then empirically determined the simplest

agent behavior that would i) generate the tree overlay, and ii) organize basic tasks

such as agent-to-agent communication and task distribution according to such tree

pattern. We then augmented the basic behavior in a way that introduced other

desirable properties. With the total computation time as the performance metric,

every addition to the basic scheme was separately evaluated and its contribution to

total performance, quantitatively assessed.

One such property is the continuous monitoring of the performance of the child

nodes. We assumed that no knowledge is initially available on the system, instead

passive feedback from child nodes is used to measure their effective performance,

e.g., the product of computational speed and communication bandwidth.

Another property is continuous, on-the-fly adaptation using the restructuring al-

gorithm presented in Section 1.3.4. Basically, the overlay tree is incrementally

restructured while the computation is in progress by pushing fast nodes up towards

the root of the tree. Other functions that were found to be critical for performance
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AUTONOMIC SCHEDULING 13

were the automatic determination of parameters such as prefetching and task size,

the detection of cycles, the detection of dead nodes and the end of the computation.

In this paper we focus on the solution to one particular problem: the scheduling of

the independent, identical subtasks of an independent-task application (ITA) whose

data initially resides at one location. The size of individual subtasks and of their

results is large, and so transfer times cannot be neglected. The application that we

have used for our experiments is NCBI’s nucleotide-nucleotide sequence comparison

tool BLAST [2].

Our choice of using an ITA for our proof-of-concept implementation follows

a common practice in grid scheduling research. However our scheme is general

enough to accommodate other classes of applications. In a recent article we have

demonstrated using a fault-tolerant implementation of Cannon’s matrix multipli-

cation algorithm that our scheduling scheme can be adapted to applications with

communicating tasks [8, 9].

1.3.2 Basic Agent Design

A large computational task is encapsulated in a strongly mobile agent. This task

should be divisible into a number of independent subtasks. A user starts the compu-

tation agent on his/her machine. One thread of the agent begins executing subtasks

sequentially. The agent is also prepared to receive requests for work from other

machines. If the machine has any uncomputed subtasks, and receives a request for

work from another machine, it sends a clone of itself to the requesting machine. The

requester is now this machine’s child.

The clone asks its parent for a certain number of subtasks to work on, M . A thread

begins to compute the subtasks. Other threads are created — when required — to

communicate with the parent or other machines. When work requests are received,

the agent dispatches its own clone to the requester. The computation spreads in this

manner. The topology of the resulting overlay network is a tree with the originating

machine at the root node.
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Fig. 1.2 Behavior of Node on Receiving Request

An agent requests its parent for more work when it has executed its own subtasks.

Even if the parent does not have the requested number of subtasks, it will respond

and send its child what it can. The parent keeps a record of the number of subtasks

that remain to be sent, and sends a request to its own parent. Every time a node of

the tree obtains � results, either computed by itself or obtained from a child, it sends

them to its parent. This message includes a request for all pending subtasks. This

can be seen in Figures 1.2 and 1.3.

1.3.3 Maintenance of Child-lists

Each node has up to � active children, and up to � potential children. Ideally, �����
is chosen so as to strike a balance between a tree that is too deep (long delays in data

propagation) and one that is too wide (inefficient distribution of data).

The active children are ranked on the basis of their performance. The performance

metric is application-dependent. For an ITA, a child is evaluated on the basis of the

rate at which it sends in results. When a child sends � results, the node measures the

time-interval since the last time it sent � results. The final result-rate of this child is

calculated as an average of the last � such time-intervals. This ranking is a reflection
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Fig. 1.3 Behavior of Node on Receiving Subtasks

of the performance of not just a child, but of the entire subtree with the child node at

its root.

Potential children are the ones which the current node has not yet been able to

evaluate. A potential child is added to the active child-list once it has sent enough

results to the current node. If the node now has more than � children, the slowest

child, M[� , is removed from the child-list. As described below, MT� is then given a list of

other nodes, which it can contact to try and get back into the tree. The current node

keeps a record of the last � former children, and M[� is now placed in this list. Nodes

are purged from this list once a sufficient, user-defined time period elapses. During

that interval of time, messages from MT� will be ignored. This avoids thrashing and

excessive dynamism in the tree. The pseudo-code for the maintenance of child-lists

has been presented in Figure 1.4.

1.3.4 Restructuring of the Overlay Network

The topology of the overlay network is a tree, and it is desirable for the best-

performing nodes to be close to the root. In the case of an ITA, both computational

speed and link bandwidth contribute to a node’s effective performance. Having well
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Fig. 1.4 Behavior of Parent Node on Receiving Feedback

connected nodes close to the top enhances the extraction of subtasks from the root and

minimizes the communication delay between the root and the best nodes. Therefore

the overlay network is constantly being restructured so that the nodes with the highest

throughput migrate toward the root, pushing those with low throughput towards the

leaves.

A node periodically informs its parent about its best-performing child. The parent

then checks whether its grandchild is present in its list of former children. If not, it

adds the grandchild to its list of potential children and tells this node that it is willing

to consider the grandchild. The node then instructs its child to contact its grandparent

directly. If the contact ends in a promotion, the entire subtree with the child node at

its root will move one level higher in the tree. This constant restructuring results in

fast nodes percolating towards the root of the tree and has been detailed in Figures 1.5

and 1.6. The checking of a promising child against a list of former children prevents

the occurrence of trashing due to consecutive promotions and demotions of the same

node.

When a node updates its child-list and decides to remove its slowest child, MT� ,
it does not simply discard the child. It prepares a list of its children in descending
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Fig. 1.5 Behavior of Parent Node on Receiving Propagated Child

NPO"QROTSVUPO`f"QeQRO^�"]"wPQVs�S^uRm�~¦d��p_eN"akjb�[fYNPO^l"]
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d9xy\RO^l"m"wYf^lqQRO"\^]"aRN"weu[SR\^]�~yf^lqQRO"\^]"aRN"weu[SR\^]q�
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Fig. 1.6 Behavior of Child Node on Receiving Positive Response

NPO"QROTSVUPO�jqO"\e\RfY�POW_eN"akjc�[fYNPO^l"]
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SV_W�[fYNPO^l"]¬«­|cf^lqQRO"\^]"aRN"weu[SR\^],x�uYf"\^]
�[fYNPO^l"],¥¦|Pf^lqQRO"\^]"aRN"weu[SR\^],x�uYf"\^]

Fig. 1.7 Behavior of Node on Receiving new Ancestor-List

order of performance, i.e., slowest node first. The list is sent to MT� , which attempts

to contact those nodes in turn. Since the first nodes that are contacted are the slower

ones, the tree is sought to be kept balanced. The actions of a node on receipt of a

new list of ancestors are in Figure 1.7.

1.3.5 Size of Result Burst

Each agent of an ITA ranks its children on the basis of the time taken to send some

results to this node. The time required to obtain just one result-burst, or a result-
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burst of size 1, might not be a good measure of the performance of a child. Nodes

might make poor decisions about which children to keep and discard. The child

propagation algorithm benefits from using the average of � result-burst intervals and

from setting � , the result-burst burst size, to be greater than 1. A better measure for

the performance of a child is the time taken by a node to obtain �¯®p°��±�³²q´ results.

However, � and � should not be set to very large values because the overlay network

would take too much time to take form and to get updated.

1.3.6 Fault Tolerance

If the parent of a node were to become inaccessible due to machine or link failures, the

node and its own descendants would be disconnected from the tree. The application

might require that a node remain in the tree at all times. In this scenario, the node

must be able to contact its parent’s ancestors. Every node keeps a (constant size) list

of µ of its ancestors. This list is updated every time its parent sends it a message.

The updates to the ancestor-list take into account the possibility of the topology of

the overlay network changing frequently.

A child sends a message to its parent — the µ -th node in its ancestor-list. If it is

unable to contact the parent, it sends a message to the ( µ`¶·² )-th node in that list.

This goes on until an ancestor responds to this node’s request. The ancestor becomes

the parent of the current node and normal operation resumes.

If a node’s ancestor-list goes down to size 0, it attempts to obtain the address of

some other agent by checking its data distribution and communication overlays. If

these are the same as the scheduling tree, the node has no means of obtaining any

more work to do. The mobile agent informs the agent environment that no useful

work is being done by this machine, before self-destructing. The environment begins

to send out requests for work to a list of friends. The pseudo-code for the fault

tolerance algorithm is in Figure 1.8.

In order to recover from the loss of tasks by failing nodes, every node keeps track

of unfinished subtasks that were sent to children. If a child requests additional work
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§Ys�S^uYOW]eNRZ[O
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�[fYNPO^l"]¬¥¦|cf^lqQRO"\^]"aRN"weu[SR\^],x�uYf"\^]

Fig. 1.8 Fault Tolerance — Contacting Ancestors

and no new task can be obtained from the parent, unfinished tasks are handed out

again.

1.3.7 Cycles in the Overlay Network

Even though the scheduling overlay network should be a tree, failures could cause

the formation of a cycle of nodes. The system recovers from this situation by having

each node examine its ancestor list on receiving it from its parent. If a node finds

itself in that list, it knows that a cycle has occurred. The node attempts to break

the cycle by obtaining the address of some other agent on its data distribution or

communication overlays. However, if these are identical to the scheduling overlay,

the node will be starved of work. If the agent is starved of work for more than a

specified time, it self-destructs.

1.3.8 Termination

The root of the tree is informed when the computational task has been completed.

It sends a termination message to each of its actual, potential and former children.

The computation agent on the root then self-destructs. The children of the root do

the same. Termination messages spread down to the leaves and the computation

terminates. There are two scenarios in which termination could be incomplete:
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) A termination message might not reach a node. The situation is the same as

that described in Subsection 1.3.6.

) Consider that computation agents are executing on nodes ¹�² and ¹�º . ¹�²
receives a termination message, but ¹�º does not because of a failure. The

agent on ¹�² destroys itself. ¹�² now sends request messages to its friends. If

one of these is ¹�º , a clone of ¹�º ’s agent is sent to ¹�² .

An unchecked spread of computation will not occur because agents send out

clones only if they do not have any uncomputed subtasks. ¹�² and ¹�º will

eventually run out of subtasks and destroy themselves as explained in Subsec-

tion 1.3.6.

1.3.9 Self-adjustment of Task List Size

A node always requests a certain number of subtasks and obtains their results before

requesting more subtasks to work on. The size of a subtask is simply an estimation

of the smallest unit of work that every machine on the peer-to-peer network should

be able to compute in a time that the user considers reasonable; scheduling should

not be inordinately slow on account of subtasks that take a long time to compute.

However, in an ITA-type application, the utilization of a high-performance machine

may be poor because it is only requesting a fixed number of subtasks at a time.

A node may request more subtasks in order to increase the utilization of its

resources and to improve the system computation-to-data ratio. A node requests

a certain number of subtasks, » , that it will compute itself. Once it has finished

computing the » subtasks, it compares the average time to compute a subtask on this

run to that of the previous run. Depending on whether it performed better, worse

or about the same, the node requests ¼e°�»h´ , ½9°y»h´ or » subtasks for its next run, where

¼e°�»h´¿¾À» and ½9°y»h´ÂÁÀ» .
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Fig. 1.9 Good Configuration with A Priori

Knowledge
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Fig. 1.10 Final Node Organization, Result-

burst size=3, Good Initial Configuration

1.3.10 Prefetching

A potential cause of slowdown in the basic scheduling scheme described earlier, is

the delay at each node due to its waiting for new subtasks. This is because it needs to

wait while its requests propagate up the tree to the root and subtasks propagate down

the tree to the node.

It might be beneficial to use prefetching to reduce the time that a node waits for

subtasks. A node determines that it should request Ã subtasks from its parent. It also

makes an optimistic prediction of how many subtasks it might require in future by

using the Ä function that is used for self-adjustment. ÄeÅ�ÃhÆ subtasks are then requested

from the parent. When a node finishes computing one set of subtasks, more subtasks

are readily available for it to work on, even as a request is submitted to the parent.

This interleaving of computation and communication reduces the time for which a

node is idle.

While prefetching will reduce the delay in obtaining new subtasks to work on,

it also increases the amount of data that needs to be transferred at a time from the

root to the current node, thus increasing the synchronization delay and data transfer

time. This is why excessively aggressive prefetching will result in a performance

degradation.
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Table 1.2 Original parameters

Parameter Name Parameter Value

Maximum children 5
Maximum potential children 5
Result-burst size 3
Self-adjustment linear
Number of subtasks initially requested 1
Child-propagation On
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Fig. 1.11 Code Ramp-up

1.4 MEASUREMENTS

We have conducted experiments to evaluate the performance of each aspect of our

scheduling scheme. The experiments were performed on a cluster of eighteen hetero-

geneous machines at different locations around Ohio. The machines ran the Ý *,Þ}ß�à
á
weak mobility agent environment on top of either Linux or Solaris.

The application we used to test our system was the gene sequence similarity search

tool, NCBI’s nucleotide-nucleotide BLAST [2] — a representative independent-task

application. The mobile agents started up a BLAST executable to perform the actual

computation. The task was to match a 256KB sequence against 320 data chunks,

each of size 512KB. Each subtask was to match the sequence against one chunk.

Chunks flow down the overlay tree whereas results flow up to the root. An agent
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cannot migrate during the execution of the BLAST code; since our experiments do

not require strong mobility, this limitation is irrelevant to our measurements.

All eighteen machines would have offered good performance as they all had fast

connections to the Internet, high processor speeds and large memories. In order

to obtain more heterogeneity in their performance, we introduced delays in the

application code so that we could simulate the effect of slower machines and slower

network connections. We divided the machines into fast, medium and slow categories

by introducing delays in the application code.

As shown in Figure 1.12, the nodes were initially organized randomly. The dotted

arrows indicate the directions in which request messages for work were sent to friends.

The only thing a machine knew about a friend was its â,ã�ä . We ran the computation

with the parameters described in Table 1.2. Linear self-adjustment means that the

increasing and decreasing functions of the number of subtasks requested at each node

are linear. The time required for the code and the first subtask to arrive at the different

nodes can be seen in Figure 1.11. This is the same for all the experiments.

1.4.1 Comparison with Knowledge-based Scheme

The purpose of these tests is to evaluate the quality of the configuration which is

autonomously determined by our scheme for different initial conditions.

Two experiments were conducted using the parameters in Table 1.2. In the first, we

manually created a good initial configuration assuming a priori knowledge of system

parameters. We then ran the application, and verified that the final configuration did

not substantially depart from the initial one. We consider a good configuration to be

one in which fast nodes are nearer the root. Figures 1.9 and 1.10 represent the start

and end of this experiment. The final tree configuration shows that fast nodes are kept

near the root and that the system is constantly re-evaluating every node for possible

relocation (as shown by the three rightmost children which are under evaluation by

the root).

We began the second experiment with the completely random configuration shown

in Figure 1.12. The resulting configuration shown in Figure 1.13 is substantially
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ORIGIN

FAST

MEDIUM

SLOW

KNOWS ABOUT

Fig. 1.12 Random Configuration of Machines

Table 1.3 Effect of Prior Knowledge

Configuration Running
Time (sec)

original 2294
good 1781

Table 1.4 Effect of Child Propagation

Scheme Running
Time (sec)

With 2294
Without 3035

similar to the good configurations of the previous experiment; if the execution time

had been longer, the migration towards the root of the two fast nodes at depths 2 and

3 would have been complete.
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Fig. 1.13 Final Node Organization, Result-

burst size=3, With Child Propagation
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Fig. 1.14 Final Node Organization, Result-

burst size=3, No Child Propagation

1.4.2 Effect of Child Propagation

We performed our computation with the child-propagation aspect of the scheduling

scheme disabled. Comparisons of the running times and topologies are in Table 1.4

and Figures 1.13 and 1.14. The child-propagation mechanism results in a 32%

improvement in the running time. The reason for this improvement is the difference

in the topologies. With child-propagation turned on, the best-performing nodes are

closer to the root. Subtasks and results travel to and from these nodes at a faster

rate, thus improving system throughput and preventing the root from becoming a

bottleneck. This mechanism is the most effective aspect of our scheduling scheme.

1.4.3 Result-burst size

The experimental setup in Table 1.2 was again used. We then ran the experiment

with different result-burst sizes. The running times have been tabulated in Table 1.5.

The child evaluations that are made by nodes on the basis of one result are poor. The

nodes’ child-lists change frequently and are far from ideal, as in Figure 1.15.

There is a qualitative improvement in the child-lists as the result-burst size in-

creases. The structure of the resulting overlay networks for result-burst sizes 3 and 5

are in Figures 1.16 and 1.17. However, with very large result-bursts, it takes longer

for the tree overlay to form and adapt, thus slowing down the experiment. This can

be seen in Figure 1.18.
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Table 1.5 Effect of Result-burst Size

Result-burst Size Running Time (sec)

1 3050
3 2294
5 2320
8 3020

FAST

MEDIUM

SLOW

IS CHILD OF

IS POTENTIAL CHILD OF

ORIGIN

Fig. 1.15 Node Organization, Result-burst

size=1
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Fig. 1.16 Node Organization, Result-burst

size = 3
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Fig. 1.17 Node Organization, Result-burst

size=5
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Fig. 1.18 Node Organization, Result-burst

size=8

1.4.4 Prefetching and Initial Task Size

The data ramp-up time is the time required for subtasks to reach every single node.

Prefetching has a positive effect on this. The minimum number of subtasks that each

node requests also affects the data ramp-up. The greater this number, the greater the
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Table 1.6 Effect of Prefetching and Minimum Number of Subtasks

No. of Ramp-up Running
Subtasks Time (sec) Time (sec)

Prefetching No prefetching Prefetching No prefetching

1 406 590 2308 2520
2 825 979 2302 2190
5 939 1575 2584 2197
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Fig. 1.19 Effect of Minimum Number of

Subtasks on Data Ramp-up with Prefetching

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0 200 400 600 800 1000 1200 1400 1600

N
um

be
r o

f N
od

es

Time(sec)

no prefetch, initial size = 1
no prefetch, initial size = 2
no prefetch, initial size = 5

Fig. 1.20 Effect of Minimum Number of

Subtasks on Data Ramp-up without Prefetch-

ing

amount of data that needs to be sent to each node, and the slower the data ramp-up.

This can be seen in Table 1.6 and Figures 1.19, 1.20, 1.21, 1.22 and 1.23.

Prefetching does improves the ramp-up, but of paramount importance is its effect

on the overall running time of an experiment. This is also closely related to the

minimum number of subtasks requested by each node. Prefetching improves system

throughput when the minimum number of subtasks requested is one. As the minimum

number of subtasks requested by a node increases, more data needs to be transferred at

a time from the root to this node, and the effect of prefetching becomes negligible. As

this number increases further,prefetching actually causes a degradation in throughput.

Table 1.6 and Figure 1.24 summarize these results.
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Fig. 1.21 Effect of Prefetching on Data

Ramp-up with Minimum Number of Subtasks
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Fig. 1.22 Effect of Prefetching on Data

Ramp-up with Minimum Number of Subtasks
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Fig. 1.23 Effect of Prefetching on Data

Ramp-up with Minimum Number of Subtasks
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1.4.5 Self-Adjustment

We ran an experiment using the configuration in Table 1.2 and then did the same

using constant and exponential self-adjustment functions instead of the linear one.

The data ramp-ups have been compared in Table 1.7 and Figure 1.25. The ramp-up

with exponential self-adjustment is appreciably faster than that with linear or constant

self-adjustment. The aggressive approach performs better because nodes prefetch a

larger amount of subtasks, and subtasks quickly reach the nodes farthest from the

root.
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Table 1.7 Effect of Self-adjustment function

Self-adjustment Ramp-up Running
Function Time (sec) Time (sec)

Linear 1068 2302
Constant 1142 2308
Exponential 681 2584
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Fig. 1.25 Effect of Self-adjustment Function on Data Ramp-up Time

We also compared the running times of the three runs which are in Table 1.7.

Interestingly, the run with the exponential self-adjustment performed poorly with

respect to the other runs. This is due to nodes prefetching extremely large numbers

of subtasks. Nodes now spend more time waiting for their requests to be satisfied,

resulting in a degradation in the throughput at that node.

The linear case was expected to perform better than the constant one, but the ob-

served difference was insignificant. We expect this difference to be more pronounced

with longer experimental runs and a larger number of subtasks.
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Table 1.8 Effect of No. of

Children on Data Ramp-up

Max. No. of Time
Children (sec)

5 1068
10 760
20 778

Table 1.9 Effect of No. of

Children on Running Time

Max. No. of Time
Children (sec)

5 1781
20 2041

1.4.6 Number of children

We experimented with different child-list sizes and found that the data ramp-up time

with the maximum number of children set to 5 was less than that with the maximum

number of children set to 10 or 20. These results are in Table 1.8. The root is able

to take on more children in the latter cases and the spread of subtasks to nodes that

were originally far from the root takes less time.

Instead of exhibiting better performance, the runs where large numbers of children

were allowed, had approximately the same total running time as the run with the

maximum number of children set to 5. This is because children have to wait for a

longer time for their requests to be satisfied.

In order to obtain a better idea of the effect of several children waiting for their re-

quests to be satisfied, we ran two experiments: one with the good initial configuration

of Figure 1.9, and the other using a star topology — every non-root node was adja-

cent to the root at the beginning of the experiment itself. The maximum sizes of the

child-lists were set to 5 and 20, respectively. Since the overlay networks were already

organized such that there would be little change in their topology as the computation

progressed, there was minimal impact of these changes on the overall running time.

The effect of the size of the child-list was then clearly observed as in Table 1.9.

Similar results were observed even when the child-propagation mechanisms were

turned off.
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1.5 CONCLUSIONS

We have designed an autonomic scheduling algorithm in which multi-threaded agents

with strong mobility form a tree-structured overlay network. The structure of this tree

is varied dynamically such that the nodes that currently exhibit good performance are

brought closer to the root, thus improving the performance of the system.

We have described experiments with scheduling a representative computational

biology application whose data initially resides at one location and whose subtasks

have considerable data transfer times. The experiments were conducted on a set of

machines distributed across Ohio. While this paper concentrated on a scheduling

scheme for independent-task applications, we are experimenting with adapting the

algorithm for a wide class of applications. Recent results show that our approach can

be adapted to communicating applications, such as Cannon’s algorithm for parallel

matrix multiplication [8, 9].

It is our intention to present a desktop grid application developer with a simple

application programming interface that will allow him/her to customize the schedul-

ing scheme to the characteristics of an application. A prototype of this has already

been implemented.

An important problem that we will address in future is the initial assignment of

the friend-list. There has been some research on the problem of assigning friend-lists

[15, 40], and we will consider how best to apply this to our own work.

The experimental platform was a set of 18 heterogeneous machines. In future, we

plan to harness the computing power of idle machines across the Internet by running

a mobile agent platform inside a screen saver in order to create a desktop grid of a

scale of the tens or hundreds of thousands. Researchers will then be free to deploy

scientific applications on this system.

1.6 FUTURE DIRECTIONS

Despite the obvious success of current master-workers internet computing systems

such as SETI@home and folding@home, the range of applications that can be suc-
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cessfully employed with this approach is still limited. In this section we describe

some applicative scenarios that showcase the Organic Grid advantage over current

approaches, and how it could substantially expand the use of large scale Internet

computing.

Ab initio prediction of protein folding involves the simulation of molecule folding

using inter-atomic forces. This type of simulation requires the analysis of a very

large number of atomic conformations over an energy landscape. The exploration of

the conformational space can in principle be parceled to different nodes, but some

kind of periodic data exchange is needed to ensure that only the simulation of the

most promising conformations are carried forward.

An example of this approach is the “synchronize&exchange” algorithm called

Replica Exchange Molecular Dynamics used in the Folding@home project [41].

This requires light communication that can go through the root but could be made

more scalable with horizontal communication. Furthermore, to this date only sim-

ple proteins have been studied with the folding@home system. Complex molecular

systems (i.e., protein-solvent interaction) could be studied by adopting more so-

phisticated molecular dyynamic simulation algorithms, which typically need more

inter-node communication. One of these algorithms is GROMACS, which assumes

a ring node topology and has been parallelized using PVM and MPI [31, 48].

Another promising applicative scenario for the Organic Grid is phylogenetic analy-

sis. In order to make evolutionary and functional inferences, biologists use evolution-

ary trees to find correlated features in DNA and phenotypes and derive evolutionary

or functional inferences. Evolutionary tree search is computationally intensive as

the number of candidate trees is combinatorially explosive as more organisms are

considered. Commonly used heuristics include the consideration of many candidate

trees with randomization of the order in which organisms are added as trees are built.

Most advances in parallel computing for evolutionary trees follow a coarse grained

approach in which candidate trees are evaluated independently in a one-replica-per-

processor strategy. This strategy reduces overall search time but only allows the

investigator to evaluate a number of trees concurrently rather than evaluating a single

tree faster. An Organic Grid implementation could allow the parallelization of a
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candidate tree analysis by enabling horizontal communication between same level

nodes in a tree overlay. Faster methods to evalutate single trees are crucial because

with the advent of rapid whole genome sequencing technologies researchers are

beginning to consider entire genomes for tens to hundreds of organisms.

In general, the Organic Grid support for arbitrary communication topologies could

open the door to the use of algorithms previously unfit for implementation on a desktop

grid. As demonstrated in our matrix multiplication experiment [8, 9], the agent

behavior can be personalized to build an application-specific communication overlay

in addition to the service tree overlay, with only a minimal amount of modifications

required to the application itself.
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