
Implementation of Strong Mobility for Multi-Threaded Agents in Java

Arjav J. Chakravarti Xiaojin Wang Jason O. Hallstrom Gerald Baumgartner
Department of Computer and Information Science

The Ohio State University
Columbus, OH 43210, USA

{arjav,hallstro,gb}@cis.ohio-state.edu frozenwang@hotmail.com

Abstract
Strong mobility, which allows multi-threaded agents to

be migrated transparently at any time, is a powerful mech-
anism for implementing a peer-to-peer computing environ-
ment, in which agents carrying a computational payload
find available computing resources. Existing approaches to
strong mobility either modify the Java Virtual Machine or
do not correctly preserve the Java semantics when migrat-
ing multi-threaded agents.

We give an overview of our implementation strategy for
strong mobility in which each agent thread maintains its
own serializable execution state at all times, while thread
states are captured just before a move. We explain how to
solve the synchronization problems involved in migrating a
multi-threaded agent and how to cleanly terminate the Java
threads in the originating virtual machine. We present ex-
perimental results that indicate that our implementation ap-
proach is feasible in practice.

1 Introduction

The advent of Grid Computing [9] has improved the re-
liable utilization of shared computational resources for the
solution of complex problems, such as for [13]. Peer-to-
Peer systems adopt a highly decentralized, though less re-
liable, approach to resource sharing, and are mainly used
for embarrassingly parallel applications like [27] and sim-
ple applications like file-sharing [11]. A confluence of these
two technologies will facilitate the building of flexible sys-
tems to support dynamic communities of users [15, 8].

The vast majority of distributed applications are cur-
rently built with distributed object technologies, such as
Java RMI, CORBA, COM, or SOAP. These RPC-based ap-
proaches do not, however, consider the execution state of
their arguments. If a thread is active within one of the argu-
ments passed to a remote procedure, it does not travel along
with the argument.

The Mobile Agent abstraction is the movement of code,
data and threads from one location to another [19]. In the

peer-to-peer applications envisaged for Grid systems, mo-
bile agents offer a flexible means of distributing data and
code around a network, of dynamically moving between
hosts as resources become available, and of carrying mul-
tiple threads of execution to simultaneously perform com-
putation, the scheduling of other agents, and communica-
tion with other agents on a network. Approaches to using
mobile agents for Grid Computing have been discussed in
[4, 24, 22].

Java is the language of choice for an overwhelming ma-
jority of the mobile agent systems that have been developed
until now. However, the execution model of the Java Virtual
Machine does not permit an agent to access the run-time
stack and program counter.

A ramification of this constraint is that Java based mo-
bility libraries can only provideweak mobility[6]. Weakly
mobile agent systems, such as IBM’s Aglets framework
[20] do not migrate the execution state of methods. The
go() method, used to move an agent from one virtual ma-
chine to another, simply does not return. The agent envi-
ronment kills the threads currently executing in the agent,
without saving their state. The lifeless agent is then shipped
to its destination and is resurrected there. Weak mobility
forces programmers to use a difficult programming style,
i.e., the use of callback methods, to account for the absence
of migration transparency.

By contrast, agent systems withstrong mobilityprovide
the abstraction that the execution of the agent is uninter-
rupted, even as its location changes. Applications that re-
quire agents to migrate from host to host while communi-
cating with one another to solve a problem, are severely
restricted by the absence of strong mobility. The ability of
a system to support the migration of an agent at any time
by an external thread, is termedforced mobility. This is
particularly useful for load-balancing, and for fault-tolerant
applications, and is difficult to implement without strong
mobility. Strong mobility also allows programmers to use a
far more natural programming style.

A number of different approaches have been followed to

1



add strong mobility to Java. These can be separated into two
broad categories - those that use modified or custom VMs,
and those that change the compilation model.

JavaThread[3], D’Agents[12], Sumatra[1], Merpati[28]
and Ara[23], all depend on extensions to the standard VM
from Sun, whereas the CIA[16] project uses a modification
of the Java Platform Debugger Architecture. Forced mobil-
ity is not supported by JavaThread, CIA and Sumatra. In
addition, JavaThread depends on the deprecatedstop()
method injava.lang.Thread to migrate an agent. The
D’Agents, Sumatra, Ara and CIA systems do not migrate
multi-threaded agents. Merpati does not migrate agent
threads that are blocked in monitors. The NOMADS[29]
project uses a custom virtual machine known as Aroma, to
provide support for forced mobility and the migration of
multi-threaded agents. Support for thread migration within
a cluster is provided by JESSICA2[32]. The solution does
not scale to the Internet or a Grid, however, because a dis-
tributed VM is used.

Modifying the Java VM, or using a custom VM, has the
major disadvantage of a lack of portability. Existing virtual
machines cannot be used. It is very difficult to maintain
complete compatibility with the Sun Java specification. For
example, JavaThread and NOMADS are JDK 1.2.2 com-
patible, D’Agents relies on a modified Java 1.0 VM, and
Merpati and Sumatra are no longer supported. It is also
difficult to achieve the performance of the JVM from Sun.
NOMADS, Sumatra and Merpati do not support JIT compi-
lation. In addition, some users may prefer to use other VMs
of their choice. These problems greatly impact the accept-
ability and widespread use of mobile agent systems that rely
on VM modifications.

Another approach to adding strong mobility to Java is
to change the compilation model (by using a preprocessor,
by modifying the compiler, or by modifying the generated
bytecode) such that the execution state of an agent can be
captured before migration.

This approach is followed by WASP[10] and
JavaGo[26]. These use a source code preprocessor.
However, neither supports forced mobility. In addition,
JavaGo does not migrate multiple threads of execu-
tion or preserve locks on migration. Correlate[30] and
JavaGoX[25] modify bytecode. Migration may only be
initiated by the agent itself, i.e., forced mobility is not
supported.

We have chosen to provide strong mobility for Java by
using a preprocessor to translate strongly mobile source
code to weakly mobile source code [5, 31]. We present
an overview of our implementation approach, in which an
agent maintains a movable execution state for each thread
at all times. The generated weakly mobile code saves the
state of a computation before moving an agent so that the
state can be recovered once the agent arrives at the desti-

nation. The code translation could be done at the level of
bytecode as well. The translation of method calls requires
type information, however, and this would involve decom-
piling bytecode. To avoid this, we use the more convenient
source translation mechanism.

Jiang and Chaudhary [18, 17] use a similar approach for
C and C++. The scalability of their system is limited by
its dependence on a global scheduler to migrate threads. It
is also unclear whether they can handle multiple concurrent
migrations, which could impact performance. Bettini and
De Nicola [2] also use the same idea for agent migration,
but they do this for a toy language. Our implementation is
designed for the full Java programming language.

2 Overview

Our implementation approach for strong mobility in Java
is to translate strongly mobile code into weakly mobile
code. We currently target the IBM Aglets weak mobility
system.

Every method in the original agent class is translated to
aSerializable inner class which represents the activa-
tion record for that method. The local variables, parameters
and program counter are converted to fields of this class.
This inner class contains arun() method to represent the
body of the original method. The generated weakly mobile
agent class contains an array of activation record objects
that acts as a virtual method table.

Threads in Java are notSerializable because they
use native code. However, the state of every thread of ex-
ecution also needs to be maintained so that the thread can
be restarted at the destination. This is achieved by using a
Serializable wrapper around each JavaThread . This
wrapper contains its own stack of activation records that
mirrors the run-time stack of the underlying thread of exe-
cution. When a method is called, the appropriate entry from
the method table is cloned and put on the stack. Itsrun()
method is then executed.

Statement execution and the program counter update
should be executed atomically to allow an agent to be
moved at arbitrary points of time. The original source code
is translated to a form that allows the state of the agent to
be saved for each executed statement, while maintaining the
semantics of these statements. Translation rules for the dif-
ferent types of statements in the Java language are required.

A go()method is called on a multi-threaded agent to send
it to a new location. TheSerializable wrappers then
bring the agent threads to a standstill and save the state of
these threads. The agent then relocates and carries along
with it only theSerializable wrappers of the threads.
These wrappers create newThread objects at the desti-
nation and recreate their execution state. Potentially long-
running operations likeObject.wait(long) are inter-

2



rupted and the time left for them to finish execution is saved
before the move.

The use of multi-threaded agents makes synchroniza-
tion issues very important. For a multi-threaded system,
the program counter must be incremented atomically with
the following instruction; two agents must not dispatch
one another at the same time, and two threads within the
same agent must not dispatch the agent simultaneously.
User-specifiedsynchronized blocks in the original Java
source code also need to be translated so that they can be
carried along by an agent. Synchronization control in mo-
bile agents is non-trivial, but we offer an approach that is no
more taxing than programming for a traditional non-mobile
system.

Each statement and its corresponding program counter
update are wrapped inside a logical synchronized block to
preserve their atomicity and prevent agent relocation before
their completion. It is unacceptable for the implementation
to synchronize on the agent instance because that would
prevent threads from executing translated statements in par-
allel. The problem is a basicreaders/writers conflict, where
the threads that execute the translated statements are read-
ers, and the thread that executes thego() method acts as
a writer. A writers priority solution is used. Each agent
maintainslocks that represent the predicate, ‘OK to exe-
cute statements?’. The number of locks is the same as the
number of reader threads, and are acquired and released by
readers before and after statement execution. When a call
is made togo() , the writer thread acquires all the locks,
saves the agent state and moves the agent to a new site.

The call togo() is synchronized on the agent context
instead of on the caller, in order to prevent deadlock when
two agents call one another. Similarly, if multiple threads
within the same agent attempt to move the agent, deadlock
is prevented by having each thread test a synchronized con-
dition variable in the agent context. The first writer thread
will set this variable, and the subsequent writers will test the
variable and then give up their locks.

Threads must acquire and release a lock on a particular
object on entering and leaving asynchronized block.
If an agent moves when a thread is executing inside this
protected region, the lock held by the thread is released.
Protection is extended across machine boundaries by intro-
ducing serializable locks in place of standard Java locks, for
every object that is synchronized upon.synchronized
blocks are often used in conjunction with thewait() and
notify() operations. These too, are appropriately trans-
lated to preserve their semantics.

We have run a number of benchmarks to test our trans-
lator for strong mobility. A comparison of the performance
of the translated agents and the corresponding IBM Aglets
has been performed. Some simple optimizations to the gen-
erated code were performed by hand, and the performance

enhancement was observed. The measurements confirm the
feasibility of our approach.

3 Language and API Design
Our support for strong mobility consists currently of the

interfaceMobile and the two classesMobileObject
andContextInfo .

3.1 Interface Mobile

Every mobile agent must (directly or indirectly) imple-
ment the interfaceMobile . A client of an agent must ac-
cess the agent through a variable of typeMobile or a sub-
type ofMobile .

InterfaceMobile is defined as follows:
public interface Mobile extends

java.io.Serializable {
public void go(java.net.URL dest)

throws com.ibm.aglet.RequestRefusedException,
edu.ohio_state.cis.brew.MoveRefusedException,
java.io.IOException; ... }

Like Serializable , interfaceMobile is a marker
interface. It indicates to a compiler or preprocessor that
special code might have to be generated for any class im-
plementing this interface.go() moves the agent to the
destination with the URLdest . This method can be called
either from a client of the agent or from within the agent
itself. The second parameter indicates whether the call was
made from within the agent or from outside.

3.2 Class MobileObject

ClassMobileObject implements interfaceMobile
and provides the two methodsgetContextInfo() and
go() . To allow programmers to override these methods,
they are implemented as wrappers aroundnative im-
plementations that are translated into weakly mobile ver-
sions. A mobile agent class is defined by extending class
MobileObject .

The methodgetContextInfo() provides any infor-
mation about the context in which the agent is currently run-
ning.

3.3 Class ContextInfo

ClassContextInfo is used for an agent to access any
resources on the machine it is currently running on, includ-
ing any system objects that the host wants to make accessi-
ble to a mobile agent.

Currently, we only provide a methodgetHostURL(),
that returns the URL of the agent environment in which the
agent is running. We will extend the functionality of class
ContextInfo in future translator versions.

For providing access to special-purpose resources such
as databases, an agent environment can implement the
methodgetContextInfo() to return an object of a sub-
class of classContextInfo .

3



3.4 Strongly Mobile User Code

For writing a mobile agent, the programmer must first
define an interface, sayAgent , for it. This interface should
extend interfaceMobile and declare any additional meth-
ods. All additional methods must be declared to throw
AgletException . An implementation of the mobile
agent then extends classMobileObject and implements
interfaceAgent . A client of the agent must access the
agent through a variable of the interface typeAgent and
through a proxy object similar as in Java RMI or in Aglets.

4 Translation from Strong to Weak Mobility
In this section, we present the translation mechanism for

methods, classes, statements, and exceptions.

4.1 Translation of Methods

For each agent method, the preprocessor generates a
class whose instances represent the activation records for
that method. As multiple invocations may be active simul-
taneously (e.g., recursive methods), these objects are clone-
able. An activation record class for a method is a subclass
of the abstract classFrame .
public void foo(int x) throws AgletsException {

int y;
// blocks of statements
BC1
BC2 }

The parameterx , local variabley and the program
counter become fields of classFoo. A setPCForMove()
method is necessary to allow the arbitrary suspension and
movement of a thread of execution. This method saves
the currentprogramCounter , before setting it to -1 to
ensure that no further instructions get executed before the
agent moves. Therun() method contains the translated
version of the body offoo() , which includes code for
incrementing the program counter, as well as code which
allows run() to resume computation after a move. Every
thread needs to poll whether it is time to move or not.
It does this by acquiring and releasing a lock before and
after every logical statement in the code. This is done
by the AgentImpl.this.request_read() and
AgentImpl.this.read_accomplished() calls.
The generated activation record class forfoo is:
protected class Foo extends Frame {

int x, y, progCounter = 0; Object trgt;
void setPCForMove() { ... }
void run() {

try { ...
AgentImpl.this.request_read();
if ((progCounter == 0)) {

progCounter+=1; BC1 }
AgentImpl.this.read_accomplished();
AgentImpl.this.request_read();
if ((progCounter == 1)) {

progCounter+=1; BC2 }
AgentImpl.this.read_accomplished(); }

catch(AgletsException e) { ... }} ... }

4.2 Translation of Agent Classes

The generated agent class contains an array ofFrame
objects that is used as a virtual method table. When a
method is called, the appropriate entry from the method ta-
ble is cloned and put on the thread wrapper stack.

For example, suppose that we have an agent class
AgentImpl of the form:

public class AgentImpl extends
MobileObject implements Agent {

int a; public AgentImpl() {/* init code */}
public void foo(int x) throws AgletsException {

BC; } }

Because this class (indirectly) implements theMobile
interface, the preprocessor translates it into the code de-
scribed below:

The original agent methodfoo() gets translated into
an inner classFoo. There are twofoo() methods in the
generated code, of whichfoo(Object, Object) is a
preparatory method. Its first parameter is a reference to the
wrapper of the thread on which the method is to be exe-
cuted. An activation record is created and pushed onto the
wrapper stack. The second parameter is anObject array
that contains the arguments to the originalfoo() method.
These are given to the activation record.

The secondfoo() method has the same order, type and
number of parameters as the original untranslated method.
All the calls to the originalfoo method from within the
agent now go to this method. The method obtains a refer-
ence to the wrapper of the currently executing thread and
packages its parameters in anObject array, before calling
the foo(Object, Object) method described above.
The activation record on the top of the stack is then exe-
cuted.

public void foo(Object target, Object init){...}

public void foo(int x) { ...
//fooThread - wrapper of current thread
foo(fooThread,

new Object[]{new Integer(x), ... });

//method call to execute original method body
fooThread.run1(); return; }

The Aglets system does not allow method invoca-
tions from outside the agent, only message sends. The
handleMessage() method is an Aglets method that re-
ceives messages sent to the agent. If thefoo() method
in the untranslated agent could be invoked by an external
thread, a new thread iscreatedwhen a message is received
for foo() . foo(Object, Object) is then called and
the activation record on top of the stack is executed.

public boolean handleMessage(Message msg) {
if (msg.sameKind("foo")) { ...

// fooThread is the wrapper of the new thread
foo(fooThread, msg.getArg());
fooThread.start(); ... return true; } ... }

4



Our translator translates almost the entire Java language.
Some portions of the translator have not been implemented
completely due to time constraints. The mobility transla-
tor is a preprocessor to the Brew compiler. The compiler
is still under development, and as yet does not do type-
checking. For this reason, it needs to be hard-coded into
the translator as to whether method calls and returns are to
targets outside or within the agent. The translation of inner
classes,try blocks, label s, and theassert , break
andcontinue statements has not yet been implemented.
Name-mangling to support nested blocks and overloaded
methods, and the translation of method calls inside expres-
sions also need to be completed. We believe that these is-
sues are simple enough to be satisfactorily resolved.

5 Resource Access
When accessing global resources it is desirable to distin-

guish between global names on the current virtual machine
and global names on the home platform of the agent. To
allow agent developers to access platform-bound resources
remotely, we introduce theglobal field declaration prefix.
Use of the prefix indicates that a particular field should be
created (and accessed) on the home platform. For example:
private global InputStream is;

For each field prefixed with theglobal keyword, the
preprocessor generates code to register an RMI server with
the home platform. Each RMI server is a simple wrapper,
delegating calls to the original field instance, to which it
maintains a reference. Special accessor methods are also
provided by these servers to handle field assignment, scalar
field access, and access to field members within a global
field. These field servers are created and registered imme-
diately after the agent is constructed. Any agent code that
accesses the global field is translated to access the resource
through the corresponding RMI proxy.

A similar problem arises when examining accesses
to fields and methods which are both public and static.
Consider, for example, an agent that wishes to roughly
approximate the time it takes for it to move between
two platforms. The agent needs to access the method
System.currentTimeMillis() from the home plat-
form.

To provide agent developers flexibility in specifying
whether access to a static method or field refers to the home
VM, we introduce syntax for retroactively making a static
method or field global. By default, access to a static method
or field will refer to the VM on which the agent currently re-
sides. To indicate that the home VM should be used to per-
form the access, we use a retroactiveglobal declaration
as follows:
global long System.currentTimeMillis();
global PrintStream System.out;

The implementation of remote resource access has not
yet been completed.

6 Multi-Threaded Agents
The multi-threading support provided by Java consists of

the classesThread andThreadGroup and the interface
Runnable , which allow us to create multiple threads of
execution within the agent, and to manage groups of threads
as a unit.

Java Threads are not serializable because they involve
native code. The state of each thread needs to be saved in a
serializable format that can then be relocated.

6.1 MobileThread and MobileThreadGroup

The serializable wrapper classesMobileThread and
MobileThreadGroup , are used around the Java li-
brary classesThread and ThreadGroup . When
MobileThread andMobileThreadGroup objects are
created, they create newThread andThreadGroup ob-
jects to perform the actual execution.MobileThread
thus contains the information about its underlying thread
that is needed to reconstruct the state of that thread after
a move. MobileThreadGroup acts similarly with re-
spect toThreadGroup . Only the wrappers are moved
when an agent moves to a new site. At the destination,
these wrappers create newThread and ThreadGroup
objects and set their state so that execution can con-
tinue. EachMobileThread also belongs to a particular
MobileThreadGroup , and when aMobileThread
object recreates a thread of execution, thatThread is also
assigned to the sameThreadGroup as at the source loca-
tion.

The class MobileThread contains a start()
method which is called to begin execution of a
MobileThread . This can happen after it has been created
for the first time or when the agent starts up all the threads
after moving to a new site. This method calls thestart()
method of the underlyingThread , which then calls the
run() method of its target, theMobileThread wrapper.
The run() method checks theMobileThread stack. If
the stack is empty, it means that theMobileThread is a
newly created one, and has to call therun() method of its
Runnable target. TheMobileThread’s stack not be-
ing empty means that the activation records already on the
stack need to be executed.

The preprocessor translates the strongly mobile agent
code to weakly mobile code, as explained in Section 4.
Furthermore, the preprocessor replaces every occurrence
of Thread andThreadGroup in the original code with
MobileThread and MobileThreadGroup . In this
manner, every reference to aThread or ThreadGroup
object in the original code is now translated to a reference
to a MobileThread or MobileThreadGroup object.
We thus ensure that every original operation on aThread
or ThreadGroup in user code is now made to go through
their wrappers.

5



The mobility translator translates every occurrence of
the word Thread in the source code with the word
MobileThread . This ensures that the calls to the meth-
ods of Thread go through the serializable wrapper, and
that therun() method of a multi-threaded Agent now ex-
ecutes as activation records on the stack of the thread wrap-
per.

6.2 Static Methods of java.lang.Thread

When MobileThread.currentThread() is
called, it calls Thread.currentThread() in turn.
This returns a reference to the currently executingThread .
A reference to theMobileThread wrapper over this
Thread object now needs to be returned. The solution is
to maintain a static Hashtable that contains a mapping of
Thread s to their correspondingMobileThread s. In
this way,MobileThread.currentThread() returns
the correctMobileThread object.

Similarly, the other static methods ofMobileThread
(sleep() , enumerate() , etc.) useThreadTable ,
where necessary, to return the appropriate
MobileThread references.

6.3 Relocating a Multi-threaded Agent

The go() method is called on a multi-threaded agent.
This calls the realGo() method, which first checks
whether this agent is already being moved or not. If the
agent is being moved, aMoveRefusedException is
thrown. Otherwise, the thread that wishes to move the agent
acquires locks such that everyThread within the agent
blocks and comes to a standstill. EachMobileThread
makes aninterrupt() call to its Thread , thus termi-
nating anywait() , join() or sleep() operations. If
any of these are timed, the time remaining for them to finish
is saved such that they can be completed at the destination.

ThepackUp() method of themain agent threadgroup
wrapper is called. From here, thepackUp() method of
each threadgroup and thread wrapper undermain is called,
and the state of its underlying threadgroup and thread
saved. The system threads are then forced to terminate and
the agent is relocated by using the Agletsdispatch()
method. Thejava.lang.Thread API does not permit
direct termination of a thread. Section 7 explains how we
accomplish this.

On arrival at the destination, thereinit() method of
the main threadgroup wrapper is called. This method then
creates a newThreadGroup , sets its state, and then calls
the reinit() method of each threadgroup and thread
wrapper undermain . Each wrapper’sreinit() method
creates a newThread or ThreadGroup , and sets its
state. Thestart() method of themain threadgroup
wrapper is called, resulting in calls to thestart() meth-
ods of all MobileThread s to begin execution of their
threads.

7 Synchronization Issues
There are three major issues that need to be handled cor-

rectly for the synchronization control of a multi-threaded
agent - preserving the atomicity of a logical instruction;
preventing deadlock when agents dispatch one another,
or when multiple threads attempt to dispatch the agent;
preserving the semantics of Javasynchronized blocks
across a migration.

7.1 Protection of Agent Stacks
An agent should not be moved while it is executing a

statement. It is necessary to protect every program counter
increment and its following statement. Synchronizing on
the agent will reduce parallelism dramatically. The problem
can be reduced to a basicreaders/writers conflict, where the
increment of the program counter, and the execution of the
following statement by each thread, acts as areader; the
writer being the thread that callsgo() . This problem is
solved by using a variant of the solution in [14].Locks
are maintained by each agent. The predicate they repre-
sent is ‘OK to execute statements?’. The number of locks
equals the number of executing threads within the agent.
Reader threads acquire and release locks before and after
executing logical statements, byrequest_read() and
read_accomplished() calls.
AgentImpl.this.request_read(); if(pc==15) {pc++;
stmt;} AgentImpl.this.read_accomplished();

When a thread makes a call togo() , it is designated as
a writer. The writer thread attempts to acquire all the agent
locks. Once it makes this attempt, no reader can acquire a
lock. The writer then callsinterruptForMove() on
all currently executingMobileThread s. If a thread is
carrying out await() , join() or sleep() , the wrap-
per repeatedly interrupts it until it stops the operation. The
method whose execution was interrupted, checks whether
the wrapper interrupted the thread. If so, the program
counter is decremented so that the interrupted operation
will resume at the destination. If the interrupted operation
was timed, likewait(long) , the time remaining for the
operation to complete is saved by theMobileThread .
An InterruptedException is thrown if the wrap-
per did not cause the interrupt. A count of the number
of currently active readers is maintained. This count is
incremented when a reader requests the lock by calling
request_read() , and decremented when the lock is re-
leased by aread_accomplished() call. As the read-
ers only relinquish their locks at this stage, depending on
whether the writer is an internal or an external thread, the
count must go down to one or zero. The writer then calls
thepackUp() method of themain threadgroup wrapper.
This results in eachMobileThread saving the state of
its Thread , setting the program counter of the activation
records on its stack to -1, and disallowing the popping of ac-
tivation records. At this point, the writer releases its locks.

6



All the waiting readers are released and are free to continue
execution. The program counters have all been set to a neg-
ative value, however, and so no further statements can be
executed. The reader threads run through to completion and
terminate. None of the activation records are popped during
this step.

It is necessary to ensure that all the threads that were ex-
ecutingwait() andjoin() operations at the source are
restored to their original condition at the destination before
the other agent threads are restarted.

Extending the guarantee of transparent interruption and
restoration of long-running operations to library code, is
non-trivial. Libraries may implement guardedwait() s,
sleep() s or join() s by using loops with condition
checks around these operations; an approach similar to that
described in [21]. When aMobileThread interrupts its
Thread , its held locks would not be released immediately
in this case. Agent relocation would be delayed, perhaps for
an unacceptable amount of time.

We believe that most calls to the standard Java library
will terminate within an acceptable amount of time. In the
absence of a mechanism that can save the state of aThread
executing a library call, the best option is for the compiler
to flag library calls that could lead to potentially long op-
erations and indicate that no guarantee about the immedi-
ate migration of an agent is possible. A message could
be printed out to the programmer and the decision would
have to be taken by him/her as to whether the delay in mi-
gration would be acceptable. Should the programmer de-
sire a finer granularity of control, he/she should pass the
library through the mobility translator. Another possibil-
ity would be to implement native code wrapper methods
aroundwait() , sleep() andjoin() , thus allowing a
MobileThread to detect and interrupt itsThread ’s long
operations. This would have to be at the bytecode level.

If two agents try to dispatch one another, the synchro-
nization technique we have adopted could lead to a dead-
lock. Agenta would synchronize on itself for executing the
statementb.go(dest) , which would require synchro-
nization onb to protect the integrity ofb’s stacks. If sim-
ilarly, b would executea.go(dest) , a deadlock would
result. To prevent this, the call ofdispatch() within
realGo() is synchronized on the agent context instead of
on the caller.

When two agents try to move one another, anda exe-
cutesb.go(dest) andb executesa.go(dest) , each
Aglet sends ago message to the other. Ifa’s go() method
synchronizes on the agent context first, every thread inside
a is interrupted before a move. This includes the thread that
is attempting to moveb. All of a’s threads get interrupted,
a’s state is saved, anda is moved to its destination. Since
a’s attempt to moveb is interrupted,b does not move.

If multiple threads within the same agent attempt to

move the agent, deadlock could still result. More than one
thread could callgo() . Only one of them will actually
synchronize on the agent context. Now, when this writer
thread attempts to acquire all the locks, it will not be able
to. This is because the other threads that are attempting to
move the agent will be blocked, waiting to acquire a lock on
the agent context. An additional level of synchronization is
introduced in order to avoid this. Every agent maintains
a condition variable in the agent context. This indicates
whether the agent is currently being moved or not. The first
writer thread will acquire a lock on this variable, test and
set it, and then release the lock. Subsequent threads will ac-
quire the lock, test the variable, and then release the lock by
throwing aMoveRefusedException .

7.2 Synchronization Blocks

The Java semantics forsynchronized blocks or
methods are that the locks acquired by a thread on enter-
ing them are released when the agent is migrated. When
users use synchronization to protect the agents’ internal
data structure, this protection must extend across machine
boundaries.

For weakly mobile languages, synchronized blocks are
a non-issue since code never executes beyond the call to
go() . In strongly mobile systems, however, a call togo()
may appear at any point within a synchronized block.

Difficulties stem from the fact that object locks are
not stored within the object during serialization, but are
hidden within the virtual machine. To tackle this prob-
lem we introduce serializable locks in place of standard
Java object locks. Client programmers use the stan-
dard synchronized keyword to enforce synchroniza-
tion constraints. During the translation phase, an ob-
ject of classMobileMutex is introduced for each ob-
ject that requires synchronization. Whenever a program-
mer requests object locking through the use of the Java
synchronized keyword, the lock is actually taken out
and released via calls tolock() andunlock() on the
associatedMobileMutex object. In this way, synchro-
nized blocks and methods are eliminated from the original
source, and re-implemented using the new locking mech-
anism. The overhead is minimal, and synchronization se-
mantics are preserved across a move.

synchronized blocks are often used in conjunction
with wait() andnotify() operations. These are trans-
lated such that their semantics are preserved even after the
translation ofsynchronized blocks.

If synchronized blocks are to be made transparent across
moves, aMobileMutex object needs to be added to the
object on which synchronization is desired. In our current
implementation, this is only possible if the programmer has
access to the source code of that object, if the object is it-
self an agent, or if the programmer has source access to

7



every synchronization on the object. In the next version
of the translator, we will address this issue by associating a
MobileMutex object with everyjava.lang.Object .

8 Performance

8.1 Optimizations

The translation mechanism discussed do far is overly
conservative and thus inefficient. We have identified some
optimizations for the above translation algorithms that are
simple enough to be done automatically by a compiler:

• If a method is not recursive, or if it is tail-recursive and
the compiler can determine that the execution time is
bounded, it should not be translated into a class.

• To reduce the overhead of synchronization and pro-
gram counter update, statements should be grouped to
form logical, atomic statements.

• If the number of statements executed inside a loop is
sufficiently small, and the statements are simple, i.e.,
no method calls or loops, a lock acquire and release
could be made everyN (say 10,000) simple statements.
This would mean that in the case of ago() call, upto
N statements would need to be executed before the
move actually takes place.

• Loop unrolling and method inlining could reduce over-
head.

• If a local variable is limited in scope to only one logical
statement, it should remain a local variable, and should
not be translated into a field of the generated class.

• Code that checkpoints everyN simple statements, or
everyN milliseconds could be generated.

8.2 Measurements

Measurements were taken to estimate the cost of the de-
scribed translation mechanism for agents. Standard Java
benchmarks were rewritten in the form of both strongly mo-
bile agents and Aglets. This did not involve changing the
timed code significantly. The only changes that needed to
be made to the original benchmarks’ code were made to
avoid method calls inside expressions. This is because the
preprocessor does not as yet handle these.

The strongly mobile agents were passed through the
translator. We then used simple manual optimization tech-
niques to improve the performance of the translated agents.
These are - the grouping of simple statements to form logi-
cal, atomic statements; the obtaining and releasing of locks
every 10,000 simple statements for a loop; the inlining of

Benchmark Translated Optimized
Code Code

Crypt(array size - 3000000) 5.61X 1.23X
Crypt(array size - 3000000) 5.96X 1.30X
multi-threaded version - 1 thread
Crypt(array size - 3000000) 6.00X 1.41X
multi-threaded version - 2 threads
Crypt(array size - 3000000) 5.60X 1.31X
multi-threaded version - 5 threads
Linpack(500 X 500) 10.00X 1.75X
Linpack(1000 X 1000) 9.48X 1.65X
Tak(100 passes) 245.30X 220.83X
Tak(10 passes) 247.00X 213.60X
Simple Recursion 68.27X 60.75X
(sum of first 100 natural nos. -
10000 passes)

Table 1. Execution time of Strongly Mobile
Agents compared to corresponding Aglets

Benchmark Translated Optimized Aglet
Code Code

Crypt 32.10 30.69 30.44
Crypt - multi-threaded 32.54 30.82 30.35
1 thread
Crypt - multi-threaded 32.56 30.82 30.35
2 threads
Crypt - multi-threaded 32.54 30.83 30.38
5 threads
Linpack(500 X 500) 31.02 30.02 28.34
Linpack(1000 X 1000) 58.27 52.94 51.24
Tak(100 passes) 22.04 21.99 20.98
Tak(10 passes) 22.05 22.02 20.98
Simple Recursion 22.03 21.82 21.02

Table 2. Memory utilization of Strongly Mobile
Agents and Aglets (MB)

method calls to simple methods that in turn, do not contain
method calls.

The running times and memory footprints of the trans-
lated agents and the manually optimized agents were com-
pared with the equivalent weakly mobile Aglets. The results
have been presented in table 1, and in table 2. A major con-
tributor to the poor running times of the recursive bench-
mark programs is the Garbage Collector which runs several
times a second.

We performed some further optimzations on the Linpack
benchmark. The time taken by Linpack depends to a great
extent on a particular method call inside a double-nested
loop. This method contains another loop. We manually
inlined this method, and measured execution time with the
inner-most loop untranslated, and with the translated loop
unrolled. The running time comparisons are presented in
table 3, and the memory footprint results are in table 4. A
user could obtain a performance improvement by including
annotations in the code to inform the preprocessor how to
optimally translate certain code portions.

A comparison of the code sizes of the agent code out-

8



Linpack Inner Loop Inner Loop Inner Loop
Optimizations Untranslated Unrolled Unrolled

2 times 10 times

Linpack 1.02X 1.21X 0.75X
(500 X 500)
Linpack 1.02X 1.15X 0.76X
(1000 X 1000)

Table 3. Execution time of Optimized Strongly
Mobile Agents compared to corresponding
Aglets for Linpack

Linpack Inner Loop Inner Loop Inner Loop
Optimizations Untranslated Unrolled Unrolled

2 times 10 times

Linpack 29.9 30.19 30.48
(500 X 500)
Linpack 52.8 53.12 53.40
(1000 X 1000)

Table 4. Memory utilization of Optimized
Strongly Mobile Agents for Linpack (MB)

put by the preprocessor, and that of the corresponding sim-
ple Aglets, was made for the benchmarks discussed above.
This was done by comparing their.class files. For the
benchmarks discussed previously, the translated agents are
between 6 and 14 times the sizes of the simple Aglets.

The overhead of migrating agents depends on the amount
of state that the agent requires to carry along with itself.
This is dependent on the number of threads within the agent,
and on the number of frames on the runtime stack of the
threads. The migration costs of moving a single threaded
agent with different numbers of frames on the stack have
two components - the time required to pack up the agent
state, and the time to move the agent. The latter is the time
required for the translated agent to execute the Aglets dis-
patch method. We compare this against the time required
for the transfer of the simple benchmark Aglet. Agents
and Aglets are transferred between ports on the same ma-
chine, in order to obtain a meaningful comparison that is
unaffected by network delay. The results for different stack
sizes are shown in table 5.

Similarly, the dependence of the migration cost of a
multi-threaded agent, on the number of threads is shown
in table 6.

The measurements were taken on a Sun Enterprise 450
(4 X UltraSPARC-II 296MHz), with 1GB of main memory,
running Solaris. We used the Sun JDK 1.4.001 HotSpot
VM in mixed mode execution, with the heap size limited to
120MB.

9 Conclusions

We have argued that strong mobility is an important ab-
straction for developing Grid Computing applications, and
have outlined a source translation scheme that translates

Number of Agent Agent Aglets
stack frames pack time dispatch time dispatch time

1 6 2436 1750
2 5 5421 1875
3 5 5410 1830

Table 5. Migration Time for Single-threaded
Strongly Mobile Agents and Aglets (ms) - Lin-
pack

Number of Agent Agent Aglets
threads pack time dispatch time dispatch time

1 9 5266 1782
2 10 5133 1860
5 16 5126 1803

Table 6. Migration Time for Multi-threaded
Strongly Mobile Agents and Aglets (ms) - 5
frames on main thread stack, 2 frames on
other threads’ stacks - Multi-threaded Crypt

strongly mobile code into weakly mobile code by using a
preprocessor. The API for the strongly mobile code and the
translation mechanism are designed to give programmers
full flexibility in using multi-threaded agents, and in deal-
ing with any synchronization problems.

We are able to handle almost the entire Java program-
ming language. Time constraints mean that the transla-
tion of some constructs like inner classes, andtry blocks
have not yet been implemented. If an agent uses library
code that contains guardedwait , sleep or join calls,
rapid termination before a move cannot be guaranteed.
synchronized blocks that synchronize on an untrans-
lated Object in user code cannot be transparently migrated.
In both these situations, the translator is designed to dis-
play a warning for the programmer. Some resources need
to be accessed on the machine where the agent originated,
and should be declaredglobal by the programmer. An
RMI server to do this needs to be implemented. Timed op-
erations, like open network connections, are not preserved
across a relocation. Mobile agents need to be prevented
from sharing objects with one another, or non-mobile ob-
jects. We will investigate using Isolates [7] for this purpose.

Source code, rather than bytecode translation, does not
involve decompilation, and is more convenient. The perfor-
mance measurements indicate that our approach to achiev-
ing strong mobility for Java is practical. In future, we will
use analysis techniques to automate the generation of opti-
mized source code. Measurements also indicate that perfor-
mance can be improved further by allowing programmers
to make annotations to source code.

Our preprocessor currently generates Java code that uses
IBM’s Aglets library. In future versions of our translator,
we will instead target theProActiveweak mobility system,
or RMI directly.

9



References

[1] A. Acharya, M. Ranganathan, and J. Saltz. Sumatra: A
Language for Resource-Aware Mobile Programs. InMobile
Object Systems: Towards the Programmable Internet, num-
ber 1222 in Lecture Notes in Computer Science. Springer-
Verlag, 1996.

[2] L. Bettini and R. D. Nicola. Translating Strong Mobility into
Weak Mobility. InMobile Agents, pages 182–197, 2001.

[3] S. Bouchenak, D. Hagimont, S. Krakowiak, N. D. Palma,
and F. Boyer. Experiences Implementing Efficient Java
Thread Serialization, Mobility and Persistence. Technical
Report RR-4662, INRIA, December 2002.

[4] J. Bradshaw, N. Suri, A. J. Caas, R. Davis, K. M. Ford, R. R.
Hoffman, R. Jeffers, and T. Reichherzer. Terraforming Cy-
berspace. InComputer, volume 34(7). IEEE, July 2001.

[5] A. J. Chakravarti, X. Wang, J. O. Hallstrom, and G. Baum-
gartner. Implementation of Strong Mobility for Multi-
Threaded Agents in Java. Technical Report OSU-CISRC-
2/03-TR06, Department of Computer and Information Sci-
ence, The Ohio State University, February 2003.

[6] G. Cugola, C. Ghezzi, G. P. Picco, and G. Vigna. Analyzing
mobile code languages. InMobile Object Systems: Towards
the Programmable Internet, number 1222 in Lecture Notes
in Computer Science. Springer-Verlag, 1996.

[7] G. Czajkowski and L. Dayǹes. Multitasking without Com-
promise: A Virtual Machine Evolution. InProceed-
ings of the 2001 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applica-
tions, Tampa, FL, Oct. 2001.

[8] I. Foster and A. Iamnitchi. On Death, Taxes, and the Con-
vergence of Peer-to-Peer and Grid Computing. In2nd Inter-
national Workshop on Peer-to-Peer Systems, Berkeley, CA,
February 2003.

[9] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations.Inter-
national Journal of High Performance Computing Applica-
tions, 15(3), 2001.

[10] S. F̈unfrocken. Transparent Migration of Java-based Mo-
bile Agents: Capturing and Reestablishing the State of
Java Programs. InProceedings of the Second International
Workshop on Mobile Agents, Stuttgart, Germany, September
1998.

[11] Gnutella. http://www.gnutella.com.
[12] R. S. Gray, G. Cybenko, D. Kotz, R. A. Peterson, and

D. Rus. D’Agents: Applications and Performance of a
Mobile-Agent System.Software— Practice and Experience,
32(6), May 2002.

[13] Grid Physics Network. http://www.griphyn.org.
[14] A. Holub. Reader/writer locks. Java World, April

1999. http://www.javaworld.com/javaworld/jw-04-1999/jw-
04-toolbox-p3.html.

[15] A. Iamnitchi, I. Foster, and D. Nurmi. A Peer-to-peer Ap-
proach to Resource Discovery in Grid Environments. In11th
Symposium on High Performance Distributed Computing,
Edinburgh, UK, August 2002.

[16] T. Illmann, T. Kr̈uger, F. Kargl, and M. Weber. Transpar-
ent Migration of Mobile Agents using the Java Platform

Debugger Architecture. InProceedings of the 5th Interna-
tional Conference on Mobile Agents, Atlanta, GA, Decem-
ber 2001.

[17] H. Jiang and V. Chaudhary. Compile/Run-time Support for
Thread Migration. In16th International Parallel and Dis-
tributed Processing Symposium, Fort Lauderdale, FL, April
2002.

[18] H. Jiang and V. Chaudhary. On Improving Thread Migra-
tion: Safety and Performance. In9th International Confer-
ence on High Performance Computing, Dec. 2002.

[19] D. Kotz, R. Gray, and D. Rus. Future Directions for Mobile-
Agent Research.IEEE Distributed Systems Online, 3(8),
August 2002. http://dsonline.computer.org/0208/f/kot.htm.

[20] D. B. Lange and M. Oshima.Programming & Deploying
Mobile Agents with Java Aglets. Addison-Wesley, 1998.

[21] D. Lea. Concurrent Programming in Java[tm]: Design
Principles and Patterns. The Java Series. Addison Wesley,
2nd edition, 1999.

[22] B. Overeinder, N. Wijngaards, M. van Steen, and F. Brazier.
Multi-Agent Support for Internet-Scale Grid Management.
In AISB’02 Symposium on AI and Grid Computing, April
2002.

[23] H. Peine and T. Stolpmann. The Architecture of the Ara
Platform for Mobile Agents. InFirst International Work-
shop on Mobile Agents, Berlin, Germany, Apr. 1997.

[24] O. Rana and D. Walker. The Agent Grid: Agent-Based Re-
source Integration in PSEs. In16th IMACS World Congress
on Scientific Computation, Applied Mathematics and Simu-
lation, Lausanne, Switzerland, August 2000.

[25] T. Sakamoto, T. Sekiguchi, and A. Yonezawa. Bytecode
Transformation for Portable Thread Migration in Java. In
Proceedings of Agent Systems, Mobile Agents, and Applica-
tions, 2000.

[26] T. Sekiguchi, H. Masuhara, and A. Yonezawa. A Simple Ex-
tension of Java Language for Controllable Transparent Mi-
gration and its Portable Implementation. InCoordination
Models and Languages, 1999.

[27] SETI@home. http://setiathome.ssl.berkeley.edu.
[28] T. Suezawa. Persistent execution state of a Java virtual ma-

chine. InProceedings of the ACM 2000 conference on Java
Grande, 2000.

[29] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A.
Hill, and R. Jeffers. Strong Mobility and Fine-Grained Re-
source Control in NOMADS. InProceedings of the Sec-
ond International Symposium on Agent Systems and Appli-
cations / Fourth International Symposium on Mobile Agents,
Zurich, Sept. 2000.

[30] E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen,
and P. Verbaeten. Portable Support for Transparent Thread
Migration in Java. InProceedings of the Joint Symposium
on Agent Systems and Applications / Mobile Agents, Zurich,
Switzerland, September 2000.

[31] X. Wang. Translation from Strong Mobility to Weak Mo-
bility for Java. Master’s thesis, The Ohio State University,
2001.

[32] W. Zhu, C.-L. Wang, and F. C. M. Lau. JESSICA2: A Dis-
tributed Java Virtual Machine with Transparent Thread Mi-
gration Support. InIEEE Fourth International Conference
on Cluster Computing, Chicago, September 2002.

10


