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Abstract

Strong mobility, which allows an external thread to transparently migrate an agent at any time, is
difficult to implement in Java since the Java Virtual Machine does not allow serializing the runtime
stack. We give an overview of our implementation strategy for strong mobility in which each agent thread
maintains its own serializable execution state at all times. We explain how to solve the synchronization
problems involved in migrating a multi-threaded agent and how to terminate the underlying Java threads
in the originating virtual machine. We present experimental results that indicate that our implementation
approach will be feasible in practice.

1 Introduction

The advent of Grid Computing [14, 13], and a coordinated approach to sharing computational resources,
has improved the reliable utilization of these resources for the solution of complex problems, such as for
[12, 32].

Peer-to-Peer computing [33, 40] is a paradigm that adopts a highly decentralized approach to achieve
resource sharing. Peer-to-Peer systems are less reliable, and are mainly used for embarassingly parallel
applications [39, 11], and simple applications like file-sharing [18, 25].

A confluence of these two technologies will facilitate the building of flexible systems to support dynamic
communities of users [22, 15]. Applications that leverage the capabilities of such systems will make use
of large amounts of data that are distributed across a network. Program code may be stored at multiple
locations, and sub-programs will communicate with one another during execution, i.e., the applications need
not necessarily be embarassingly parallel. Decentralized scheduling will be important to avoid bottlenecks,
to keep applications scalable, and to dynamically utilize resources.

The vast majority of distributed applications are currently built with distributed object technologies, such
as Java RMI, CORBA, COM, or SOAP. These use remote method invocation, where objects that encompass
code and data are moved from one location to another on the Grid. These RPC-based approaches do not,
however, consider the execution state of the arguments. If a thread is active within one of the arguments
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passed to the remote procedure, it does not travel along with the argument. We believe that this is not
the appropriate abstraction mechanism for applications that function in a dynamic environment because
migration autonomy and transparent thread migration are not supported.

The Mobile Agent abstraction is the movement of code, data and threads from one location to another.
Agents have relocation autonomy, i.e., they can relocate or be relocated at will. If the intermediate results of
a computation are very large, shipping them over a Grid in a distributed object system can be less efficient
than using mobile agents. Mobile agents are immune to brief network outages or congestion during their
computation [48, 8, 29, 27]. Also, when using dynamic load-balancing algorithms for the Grid, an agent
may need to be told to move at any instant, and to continue execution at a new location. In the peer-to-peer
applications envisaged for Grid systems, mobile agents offer a flexible and reliable means of distributing the
data and code of a computation around a network, of dynamically moving from host to host as resources
become available, and of carrying multiple threads of execution to simultaneously perform computation,
the scheduling of other agents, and communication with other agents on the network. Approaches to using
mobile agents for Grid Computing have been discussed in [6, 36, 34, 17].

Java is the language of choice for an overwhelming majority of the mobile agent systems that have
been developed till date. The popularity of Java is due to its good design, platform independence, security
architecture, serialization mechanism, and dynamic class loading. However, the execution model of the Java
Virtual Machine [31] does not permit an agent to transfer its execution state, because it is not possile to
access the run-time stack and program counter.

A ramification of this constraint is that Java based mobility libraries can only provideweak mobility[9].
Weakly mobile agent systems, such as IBM’s Aglets framework [28] or other Java-based agent frameworks
[26, 41, 20], do not migrate the execution state of methods. Thego() method, used to move an agent from
one virtual machine to another, simply does not return. The agent environment kills the threads currently
executing in the agent, without saving their state. The lifeless agent is then shipped to its destination, and is
resurrected there. Weak mobility forces programmers to use a difficult programmming style, i.e., the use of
callback methods, to account for the absence of migration trasparency.

By contrast, agent systems withstrong mobilityprovide the abstraction that the execution of the agent
is uninterrupted, only its location changes. Applications that require agents to migrate from host to host
while communicating with one another to solve a problem, are affected by the absence of strong mobility.
In a weakly mobile system, if two agents are communicating, and one of them relocates, the other agent
cannot continue its operation normally. This problem does not exist in strongly mobile systems, because
both agents will simply continue execution, with one of them at a new location. The ability of a system
to support the migration of an agent at any time by an external thread, is termed Forced mobility. This
is particularly useful for load-balancing, and for fault-tolerant applications, and is difficult to implement
without strong mobility. Strong mobility allows programmers to use a far more natural programming style.

As an example, consider a network broadcast agent that takes a message and an array of host names as
input and relays the message to the hosts. With strong mobility, the code for the broadcast operation could
be implemented with a simple loop iterating over the array of host names:

public void broadcast(String msg, String[] hosts) {
for(int i = 0; i < hosts.length; i++)

try { go(hosts[i]); System.out.println(msg); }
catch (Exception ex) { } dispose();

}

In a weakly mobile system, such as Aglets, the developer needs to provide callback methods for certain
mobility-related events (such as arrival at a new host) for manually reconstructing the execution state after
a move. For example, a typical implementation of the broadcast agent in an Aglets-like framework would
appear as follows:
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private String hosts[], message;
private int i = 0;

public void onCreation(Object init) {
hosts = (String[]) ((Object[]) init)[0];
message = (String) (init[1]);

}

public void onArrival() {
System.out.println(message);

}

public void run() {
if(i == hosts.length) dispose();
i++; // increment before dispatch()
try { dispatch(hosts[i-1]); }
catch (Exception ex) { ... }

}

While the intent of the strongly mobile code is easy to understand even for a beginning programmer,
it might take an experienced developer some time to understand the weakly mobile code because part of
the agent’s control flow is hidden within the hosting environment. A single logical operation, such as this
network broadcast, must be implemented as a combination of multiple callback methods. While the above
example is simplistic, it is representative of any mobile agent application with a complicated pattern of
migration.

A number of different approaches have been folllowed to add strong mobility to Java. These can be
separated into two broad categories — those that use modified or custom VMs, and those that change the
compilation model.

JavaThread[5, 3, 4], D’Agents[19], Sumatra[1], Merpati[42] and Ara[35], all depend on extensions to
the standard VM from Sun, whereas the CIA[45] project uses a modification of the Java Platform Debugger
Architecture. Forced mobility is not supported by JavaThread, CIA and Sumatra. In addition, JavaThread
depends on the deprecatedstop() method injava.lang.Thread to migrate an agent. The D’Agents,
Sumatra, Ara and CIA systems do not migrate multi-threaded agents. Merpati does not migrate agent
threads that are blocked in monitors. The NOMADS[43, 44] project uses a custom virtual machine known
as Aroma, to provide support for forced mobility and the migration of multi-threaded agents. Support for
thread migration within a cluster is provided by JESSICA2[49]. The solution does not scale to the Internet
or a grid, however, because a distributed VM is used.

Modifying the Java VM, or using a custom VM, has the major disadvantage of a lack of portability.
Existing virtual machines cannot be used. It is very difficult to maintain complete compatibility with the
Sun Java specification. For example, JavaThread and NOMADS are JDK 1.2.2 compatible, D’Agents relies
on a modified Java 1.0 VM, and Merpati and Sumatra are no longer supported. It is also difficult to achieve
the efficient performance of the JVM from Sun. NOMADS, Sumatra and Merpati do not support JIT compi-
lation. In addition, some users may prefer to use other VMs of their choice. These problems greatly impact
the acceptability and widespread use of mobile agent systems that rely on VM modifications.

Another approach to adding strong mobility to Java is to change the compilation model (by using a
preprocessor, by modifying the compiler, or by modifying the generated bytecode), such that the execution
state of an agent can be captured before migration.

Projects that follow this approach are WASP [16] and JavaGo[38]. These use a source code preprocessor.
However, neither approach supports forced mobility. In addition, JavaGo does not migrate multiple threads
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of execution, or preserve locks on migration. Correlate[46] and JavaGoX[37] modify bytecode. Migration
may only be initiated by the agent itself, i.e., forced mobility is not supported.

We have chosen to provide strong mobility for Java, by using a preprocessor to translate strongly mobile
source code to weakly mobile source code [47]. We present an overview of our implementation approach,
in which an agent maintains a movable execution state for each thread at all times. The generated weakly
mobile code saves the state of a computation before moving an agent so that the state can be recovered once
the agent arrives at the destination. The code translation could be done at the level of bytecode as well.
The translation of method calls requires type information, however, and this would involve decompiling
bytecode. To avoid this, we use the more convenient source translation mechanism.

Jiang and Chaudhary [24, 23] use a similar approach for C and C++. The scalability of their system
is limited by its dependence on a global scheduler to migrate threads. It is also unclear whether they can
handle multiple concurrent migrations, which could impact performance. Bettini and De Nicola [2] also
use the same idea for agent migration, but they do this for a toy language. Our implementation is designed
for the full Java programming language, without any assumptions about the nature of the systems in which
mobile agents will be deployed.

2 Overview

Our implementation approach for strong mobility in Java is to translate strongly mobile code into weakly
mobile code. We currently target the IBM Aglets weak mobility system.

To achieve strong mobility, every method in the original agent class is translated to aSerializable
inner class of the agent; this represents the activation record for that method. The local variables, parameters
and program counter are converted to fields of this class, and so can be saved. This inner class contains a
run() method that represents the body of the original method. The generated weakly mobile agent class
contains an array of activation record objects that acts as a virtual method table.

Threads in Java are notSerializable because they use native code. However, the state of every
thread of execution also needs to be maintained, so that the thread can be restarted at the destination. This
is achieved by using aSerializable wrapper around each JavaThread . This wrapper contains its
own stack of activation record objects that mirrors the run-time stack of the underlying thread of execution.
When a method is called, the appropriate entry from the method table is cloned and put on the stack. After
passing the arguments, therun() method executes the original method body while updating the program
counter.

To allow an agent to be moved at arbitrary points of time, statement execution and the program counter
update should be executed atomically. To accomplish this, the original source code is translated to a form that
allows the state of the agent to be saved for each executed statement; this while maintaining the semantics
of these statements. This requires different translation rules for each type of statement in the Java language.

A go() method is called on a multi-threaded agent to send it to a new location. TheSerializable
wrappers then bring the agent threads to a standstill, and save the state of these threads. The agent then
relocates. Only theSerializable wrappers of the threads are moved. These wrappers create new
Thread objects at the destination, and set their state. Thus, the original execution state of the agent is
recreated, and the execution continues. If potentially long-running operations likeObject.wait(long)
are executing at the source, they are interrupted, and the time left for them to finish execution is saved so
that they can continue after a move.

The use of multi-threaded agents makes synchronization issues very important. For a multi-threaded
system, the program counter must be incremented atomically with the following instruction; two agents
must not dispatch one another at the same time, and two threads within the same agent must not dispatch the

4



agent simultaneously. User-specifiedsynchronized blocks in the original Java source code also need to
be translated so that they can be carried along by an agent.

Synchronization control in mobile agents is non-trivial, but we offer an approach that we believe is no
more taxing than programming for a traditional non-mobile system.

Each statement and its corresponding program counter update are wrapped inside a logical synchronized
block to preserve their atomicity, and prevent agent relocation before they complete. Synchronizing on
the agent instance is unacceptable because it would prevent threads from executing translated statements
in parallel. The problem is a basicreaders/writers conflict, where the threads that execute the translated
statements are readers, and the thread that executes thego() method acts as a writer. Awriters priority
solution is used which is similar to the reader/writer locks solution in [21].

Each agent maintainslocks that represents the boolean predicate, ’OK to execute statements?’. The
number of locks is the same as the number of reader threads, and are acquired and released by readers
before and after statement execution. When a call is made togo() , the writer thread acquires all the locks.
The state of the agent is then saved, and the agent moves to its destination.

To prevent deadlock when two agents call one another, the call togo() is synchronized on the agent
context instead of on the caller. Similarly, if multiple threads within the same agent attempt to move the
agent, deadlock is prevented by having each thread test a synchronized condition variable in the agent
context. The first writer thread will set this variable, and the subsequent writers will read the variable and
then give up their locks.

The Java semantics forsynchronized blocks is that a thread must acquire and release a lock on a
particular object or class before entering and leaving a synchronized portion of code. If the agent moves
when execution is inside that protected region, the lock is released. Users may usesynchronized to
protect an agent’s internal data structure, and protection must be extended across machine boundaries.

This transparency is achieved by introducing serializable locks in place of the standard Java object locks.
During the translation phase, a serializable lock is introduced for each object that requires synchronization.
Everysynchronized block is replaced by a call to acquire and release a lock at the beginning and at the
end of a block.synchronized blocks are often used in conjunction with thewait() andnotify()
operations. These too, are appropriately translated such that their semantics are preserved across a reloca-
tion.

We have run a number of benchmarks to test our translator for strong mobility. We then compared the
performance of these translated agents to that of the corresponding IBM Aglets. Some simple optimizations
to the generated code were performed by hand, and the performance enhancement was observed. The
measurements confirm the feasibility of our approach.

3 Language and API Design

Our support for strong mobility consists currently of the interfaceMobile and the classesMobileObject
andContextInfo .

3.1 InterfaceMobile

Every mobile agent must (directly or indirectly) implement the interfaceMobile . Similar to Java RMI,
a client of an agent must access the agent through an interface variable of typeMobile or a subtype of
Mobile . InterfaceMobile is defined as follows:

public interface Mobile extends java.io.Serializable {
public void go(java.net.URL dest)

throws java.io.IOException, com.ibm.aglet.RequestRefusedException,
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edu.ohio_state.cis.brew.MoveRefusedException;

// methods for synchronization of multi-threaded agents
...

}

Like Serializable , interfaceMobile is amarker interface. It indicates to a compiler or preprocessor
that special code might have to be generated for any class implementing this interface.go() moves the
agent to the destination with the URLdest . This method can be called either from a client of the agent
or from within the agent itself. The second parameter indicates whether the call was made from within the
agent or from outside.

Thego() method currently throws an Aglet exception. In a future version of the translator, we will add
some more of our own exception classes so that the surface language is independent of the implementation.

3.2 ClassMobileObject

ClassMobileObject implements interfaceMobile and provides two methods:getContextInfo()
andgo() . To allow programmers to override these methods, they are implemented as wrappers around
native implementations that are translated into weakly mobile versions. A mobile agent class is defined
by extending classMobileObject .

public class MobileObject implements Mobile {
private native ContextInfo realGetContextInfo();

private native void realGo(java.net.URL dest)
throws java.io.IOException, com.ibm.aglet.RequestRefusedException,
edu.ohio_state.cis.brew.MoveRefusedException;

protected ContextInfo getContextInfo() {
return realGetContextInfo();

}

public void go(java.net.URL dest)
throws java.io.IOException, com.ibm.aglet.RequestRefusedException,
edu.ohio_state.cis.brew.MoveRefusedException {

realGo(dest, outsideCall);
}

// methods required for synchronization of a multi-threaded agent.
...

}

The methodgetContextInfo() provides any information about the context in which the agent is
currently running, including the host URL and any system objects that the host wants to make accessible to
a mobile agent. Ifgo() is called from within an agent method, the instruction following the call togo()
is executed on the destination host. Typically, an agent would callgetContextInfo() after a call to
go() to get access to any system resources at the destination.

3.3 ClassContextInfo

ClassContextInfo is used for an agent to access any resources on the machine it is currently running
on:
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public class ContextInfo implements java.io.Serializable {
private java.net.URL hnostURL;
public ContextInfo (java.net.URL h) {

hostURL = h;
}
public java.net.URL getHostURL() {

return hostURL;
}
...

}

Currently, we only provide a methodgetHostURL() that returns the URL of the agent environment
in which the agent is running. We will extend the functionality of classContextInfo in future translator
versions.

For providing access to special-purpose resources such as databases, an agent environment can imple-
ment the methodgetContextInfo() to return an object of a subclass of classContextInfo . By
publishing the interface to this object, agents can be written to access those resources.

3.4 Strongly Mobile User Code

For writing a mobile agent, the programmer must first define an interface, sayAgent , for it. This inter-
face should extend interfaceMobile and declare any additional methods. All additional methods must
be declared to throwAgletException . An implementation of the mobile agent then extends class
MobileObject and implements interfaceAgent . A client of the agent must access the agent through a
variable of the interface typeAgent and through a proxy object similar as in Java RMI or in Aglets.

When calling a method on an agent, an exception will be thrown if the agent is not reachable. As in Java
RMI, this is expressed by declaring that the method might throw an exception. Our current implementation
uses the exception classAgletException .

4 Translation from Strong to Weak Mobility

In this section, we present the translation mechanism for methods, classes, statements, and exceptions.

4.1 Translation of Methods

To make the execution state of a method serializable, we implement activation record objects for agent
methods. For each agent method, the preprocessor generates a class whose instances represent the activation
records for that method. As multiple invocations may be active simultaneously (e.g., recursive methods),
these objects are cloneable. An activation record class for a method is a subclass of the abstract classFrame :

public abstract class Frame implements Cloneable, Serializable {
public Object clone() { ... }
public abstract void run();
public abstract void setPCForMove();

}

The original method code will be inserted within therun() method. For example, consider a method
foo :
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public void foo(int x) throws AgletsException {
int y;
// blocks of statements
BC1
BC2

}

The parameterx , local variabley and the program counter become fields of classFoo. Method
setArgs() passes the values of the method parameters.

public void setArgs(Object initial) {
Object[] init = (Object[])initial;
Integer r0 = (Integer)init[0];
x = r0.intValue();

}

A setPCForMove() method is necessary to allow the arbitrary suspension and movement of a thread
of execution. This method saves the currentprogramCounter , before setting it to -1 to ensure that no
further instructions get executed before the agent moves. Therun() method contains the translated version
of foo() , which includes code for incrementing the program counter, as well as code which allowsrun()
to resume computation after a move. Every thread needs to poll whether it is time to move or not. It does this
by acquiring and releasing a lock before and after every logical statement in the code. This is done by the
AgentImpl.this.request_read() andAgentImpl.this.read_accomplished() calls.
The generated activation record class forfoo :

protected class Foo extends Frame {
int x, y, progCounter = 0; Object trgt;
void setPCForMove() { ... }
void run() {

try { ...
AgentImpl.this.request_read();
if ((progCounter == 0)) {

progCounter+=1; BC1
}
AgentImpl.this.read_accomplished();
AgentImpl.this.request_read();
if ((progCounter == 1)) {

progCounter+=1; BC2
}
AgentImpl.this.read_accomplished();

}
catch(AgletsException e) { ... }

}
...

}

4.2 Translation of Agent Classes

The generated agent class contains an array ofFrame objects that is used as a virtual method table. The
appropriate entry from the method table is cloned and put on the thread wrapper stack, when a method is
called.

Suppose, for example, we have an agent classAgentImpl of the form :
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public class AgentImpl extends MobileObject implements Agent {
int a;
public AgentImpl() { /* init code */ }
public void foo(int x) throws AgletsException {

BC;
}

}

Because this class (indirectly) implements theMobile interface, the preprocessor translates it into the
code described as follows :

The original agent methodfoo() gets translated into an inner classFoo. There are twofoo() meth-
ods in the generated code, of whichfoo(Object, Object) is a preparatory method. Its first parameter
is a reference to the wrapper of the thread on which the method is to be executed. An activation record is
created and pushed onto the wrapper stack. The second parameter is anObject array that contains the
arguments to the originalfoo() method. These are given to the activation record.

The secondfoo() method has the same order, type and number of parameters as the original untrans-
lated method. All the calls to the originalfoo method from within the agent now go to this method. The
method obtains a reference to the wrapper of the currently executing thread and packages its parameters
in anObject array, before calling thefoo(java.lang.Object, java.lang.Object) method
described above. The activation record on the top of the stack is then executed.

public void foo(Object target, Object init) { ... }

public void foo(int x) { ...
// fooThread is the wrapper of
// currently executing thread.
foo(fooThread, new Object[] {new Integer(x), ... });

// method call to execute body of
// original foo method
fooThread.run1(); return;

}

ThehandleMessage() method, is an Aglets method that handle messages sent to the agent. The Aglets
system does not allow method invocations from outside the agent; only message sends. All the non-private
agent methods are specified insidehandleMessage() . For example, if thefoo() method in the un-
translated agent could be invoked by an external thread, and a message is received forfoo() , a new thread
is created. foo(java.lang.Object, java.lang.Object) is called, and the activation record on
top of the stack is executed.

public boolean handleMessage(Message msg) {
// an option corresponding to every
// non-private method in the agent
if (msg.sameKind("foo")) { ...

// fooThread is the wrapper of the new thread
foo(fooThread, msg.getArg());
fooThread.start();
...
return true;

}
...

}
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4.2.1 Control Statements

Control statements such as conditionals and loops must be translated to make the control flow explicit by
manipulating the program counter. The statementstmt is translated intostmt’ , andinpc(stmt) and
outpc(stmt) are the values of the program counter before and after executing the statement. In the
following example, the translation of control statements have been shown without the synchronization code
needed for a multi-threaded agent.

if (cond) stmt1; else stmt2;

is now translated as shown below.thisIf refers to theif statement being translated.

if (((progCounter > inpc(thisIf))
&& (progCounter < outpc(stmt1’)))
|| (progCounter == inpc(thisIf) && cond)) {

stmt1’;
}
else {

if (progCounter == inpc(thisIf))
progCounter = outpc(stmt1’) + 1;

}
if ((progCounter >= inpc(stmt2’))

&& (progCounter < outpc(stmt2’))) {
stmt2’;

}
if ((progCounter == outpc(stmt1’))

|| (progCounter == outpc(stmt2’))) {
progCounter = outpc(stmt2’) + 1;

}

Similarly, the translation of

while (cond) { stmt; }

generates the following code, wherethisWhile refers to thewhile statement being translated.

while ((progCounter >= inpc(thisWhile))
&& (progCounter <= outpc(stmt’))) {

if (progCounter == inpc(thisWhile) && !cond) {
progCounter = outpc(stmt’)+1;
break;

}
stmt’;
if (progCounter == outpc(stmt’)) {

progCounter = inpc(thisWhile);
}

}

4.2.2 Method Call

If an instance of an agent is to be created, a constructor is translated into a request to the Aglet context to
create the appropriate agent, and to initialize it viaonCreation() .
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Agent a = new Agent1();

becomes

AgletProxy a=getAgletContext().createAglet(getCodeBase(),"Agent1",null);

Method calls to methods outside the agent must be translated into invocation request messages because
methods cannot be invoked directly from outside an Aglet.

a1.m1(argObject);

is translated as follows if the target method is outside the agent
An Object array,m1Args in the example below, contains all the arguments to a method, as well as a

proxy to the caller agent and an identifier for the caller thread. Once the message send has taken place, the
calling thread must block, and wait for a return from the method. To accomplish this, await() operation
is executed. When a reply is received from the callee, and the method is value-returning, the return value is
stored in the wrapper of the calling thread, and anotify() is called to wake the thread.

Object[] m1Args = new Object[3];
m1Args[0] = argObject;
m1Args[1] = callerThread;
m1Args[2] = callerAglet;
a1.sendMessage(new Message("m1", m1Args));

4.2.3 Return Values and Exceptions

If the caller is outside the agent, the translation of the return statement is as follows. ThecallerAglet
proxy, and the identification number of the calling thread are provided by the calling Aglet. The former is
used to send a reply message to the correct Aglet. ThereplyObject array in the example below contains
the return value, as well as a number to correctly identify the calling thread.

return obj;

is translated into

Object[] replyObject = new Object[2];
replyObject[0] = obj;
replyObject[1] = callerThread;
callerAglet.sendMessage("reply", replyObject);

The easiest strategy is to treat exceptions as a special kind of return value. A throw statement is imple-
mented by assigning the exception to the return value variable. After a method call, the value returned by
the method is be tested to check whether an exception was thrown, or whether a normal value was returned.

Our translator translates almost the entire Java language. Some portions of the translator have not yet
been implemented completely, due to time constraints. We believe that these issues are simple enough, and
that they can be satisfactorily resolved. The mobility translator has been implemented as a preprocessor
to the Brew compiler. The compiler is still under development, and as as yet does not do type-checking.
For this reason, it needs to be hard-coded into the translator as to whether method calls and returns are to
targets outside the agent, or within the agent. The translation of inner classes,try blocks, label—s, and the
assert , break andcontinue statements has not yet been implemented. Name-mangling to support
nested blocks and overloaded methods, and the translation of method calls inside expressions also need to
be completed.
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5 Resource Access

When accessing global resources it is desirable to distinguish between global names on the current virtual
machine and global names on the home platform of the agent. To allow agent developers to access platform-
bound resources remotely, we introduce theglobal field declaration prefix. Use of the prefix indicates
that a particular field should be created (and accessed) on the home platform. For example:

private global InputStream is;

For each field prefixed with theglobal keyword, the preprocessor generates code to register an RMI
server with the home platform. Each RMI server is a simple wrapper, delegating calls to the original field
instance, to which it maintains a reference. Special accessor methods are also provided by these servers to
handle field assignment, scalar field access, and access to field members within a global field. These field
servers are created and registered immediately after the agent is constructed. Any agent code that accesses
the global field is translated to access the resource through the corresponding RMI proxy.

A similar problem arises when examining access to fields and methods which are both public and static.
Consider, for example, an agent that wishes to roughly approximate the time it takes for it to move between
two platforms. To get an accurate measurement without being affected by time-zone changes, the agent
needs to access the methodSystem.currentTimeMillis() from the home platform.

To provide agent developers flexibility in specifying whether access to a static method or field refers
to the home VM, we introduce syntax for retroactively making a static method or field global. By default,
access to a static method or field will refer to the VM on which the agent currently resides. To indicate that
the home VM should be used to perform the access, we use a retroactiveglobal declaration as follows:

global long System.currentTimeMillis();
global PrintStream System.out;

The first declaration indicates that all calls toSystem.currentTimeMillis() should refer to
the agent’s home VM, regardless of the agent’s location. Similarly, the second declaration indicates that
whenever theout field of theSystem class is referenced, the reference refers to theout instance on
the home VM. The implementation of remote resource access has not yet been completed due to time
constraints.

6 Multi-Threaded Agents

The multi-threading support provided by Java consists of the classesThread and ThreadGroup and
the interfaceRunnable , which allow us to create multiple threads of execution within the agent, and to
manage groups of threads as a unit.

Java Threads are not serializable because they involve native code. In order to accomplish the migration
of threads, the state of each thread needs to be saved in a serializable format that can then be relocated.

6.1 MobileThread and MobileThreadGroup

The serializable wrapper classesMobileThread andMobileThreadGroup are used around the Java
library classesThread andThreadGroup , respectively. On the creation of newMobileThread and
MobileThreadGroup objects, newThread andThreadGroup objects respectively, are created to
perform the actual execution.MobileThread thus contains all the information about its underlying
thread, that is needed to reconstruction the state of that thread after a move.MobileThreadGroup
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acts similarly with respect toThreadGroup . When an agent moves to a new location, only the wrappers
are moved. At the destination these wrappers create newThread andThreadGroup objects, and set their
state, so that execution can continue at the destination. EachMobileThread also belongs to a particular
MobileThreadGroup , such that when aMobileThread object recreates a thread of execution, that
Thread is also assigned to the sameThreadGroup as at the source location.

The classMobileThread contains astart() method which is called to begin execution of a
MobileThread . This can happen after it has been created for the first time, or when the agent starts
up all the threads after moving to a new location. This method calls thestart() method of the underlying
Thread , which then calls therun() method of its target, theMobileThread wrapper.

Therun() method checks theMobileThread stack. If the stack is empty, theMobileThread is a
newly created one, and has to call therun() method of itsRunnable target. If theMobileThread’s
stack is not empty, this means that the activation records on the stack need to be executed instead. The
run2() method is called to execute the contents of the stack. This method repeatedly checks if the stack
is empty. If it is not, it callsrun1() . run1() takes whatever activation record is on the top of the stack,
and executes its body.

public class MobileThread implements Runnable, Serializable {
...
// run-time stack
public java.util.Stack stack;

// reference to underlying Thread
private transient Thread t = null;

// called by the onArrival() method to create new Thread at destination
public void reInit() { ... }

// saves state of Thread before a move
public void packUp() { ... }

// called by the agent before a move to end wait(), sleep() and join()
// operations, as well as save time remaining to complete operation
// at destination
public void interruptForMove() { ... }

// called by the run() method of underlying Thread to execute either
// current stack contents, or run() method of the Runnable target
public void run() { ... }

// executes activation record on top of the stack
public void run1() { ... }

// repeatedly calls run1() to execute activation records on stack
public void run2() { ... }

// For all the methods in the Thread API
public void start() { ... }
public final String getName() { ... }
public static void sleep(long millis) throws InterruptedException

{ ... }
}
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public class MobileThreadGroup implements Serializable {
// reference to underlying ThreadGroup
private transient ThreadGroup t;

// called by onArrival() method to create new ThreadGroup
// at destination
public void reinit() { ... }

// saves state of ThreadGroup before move
public void packUp() { ... }

// called by the agent before a move to end wait(), sleep() and join()
// operations of every thread in threadgroup, as well as save time
// remaining to complete operation at destination
public void interruptForMove() { ... }

// starts up all the MobileThreads within the MobileThreadGroup after
// arrival at new location
public void start() { ... }

// For all the methods corresponding to the ThreadGroup API methods
public int activeCount() { ... }
public int enumerate(MobileThread list[]) { ... }

}

The pre-processor translates the strongly mobile agent code to weakly mobile code, as explained in
Section 4. Furthermore, the pre-processor replaces every occurence ofThread andThreadGroup in
the original code withMobileThread andMobileThreadGroup , respectively. In this manner, every
reference to aThread or ThreadGroup object in the original code is now translated to a reference to
a MobileThread or MobileThreadGroup object. We thus ensure that every original operation on a
Thread or ThreadGroup in user code is now made to go through our new wrapper classes.

The mobility translator translates every occurrence of the wordThread in the source code with the
word MobileThread . This ensures that the calls to the methods ofThread go through the serializable
wrapper, and that therun() method of a multi-threaded Agent now executes as activation records on the
stack of the thread wrapper.

Thread t = Thread.currentThread();

is translated to:

MobileThread t=MobileThread.currentThread();

6.2 Static Methods of java.lang.Thread

Translating each occurrence ofThread to MobileThread in source code raises the issue of handling
the static methods ofjava.lang.Thread correctly. WhenMobileThread.currentThread() is
called, it callsThread.currentThread() in turn. This returns a reference to the currently executing
Thread . Now however, it is necessary to return a reference to theMobileThread wrapper over the
currently executingThread . How is that to be known?

The solution is to maintain astatic hashtable that contains a mapping ofThread s to their cor-
respondingMobileThread s. In this way,MobileThread.currentThread() returns the correct
MobileThread object.
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Similarly, the other static methods ofMobileThread (sleep() , enumerate() , etc.) use the
hashtable, where necessary, to return the appropriateMobileThread references. A similar table is not
required for the mobile threadgroups, because theThreadGroup class contains no static methods.

6.3 Relocating a Multi-threaded Agent

Thego() method is called on a multi-threaded agent. This calls therealGo() method, which first checks
whether this agent is already being moved or not. If a move is in progress, aMoveRefusedException
is thrown. Otherwise, the situation is that of a readers/writers problem, where the thread that wishes to move
the agent, acquires locks such that everyThread within the agent blocks and comes to a standstill. Each
MobileThread makes an —interrupt()— call to itsThread , thus terminating anywait() , join()
or sleep() operations. If any of these operations are timed, the number of milliseconds that remain are
saved such that the operations can be completed at the destination.

ThepackUp() method of themain agent threadgroup wrapper is called. From here, thepackUp()
method of each threadgroup and thread wrapper undermain is called, and the state of its underlying
threadgroup and thread saved. The system threads are then forced to terminate and the agent is relo-
cated by using the Agletsdispatch() method. Thread termination is an important issue because the
java.lang.Thread API does not permit direct termination of a thread. Section 7 explains how this is
accomplished.

At the new location, the AgletsonArrival() method calls thereinit() method of the main
threadgroup wrapper. This method then creates a newThreadGroup , sets its state, and then calls the
reinit() method of each threadgroup and thread wrapper undermain . Each wrapper’sreinit()
method creates a newThread or ThreadGroup , and sets its state.

To begin execution, theonArrival() method now calls thestart() method of themain thread-
group wrapper, which results in calls to thestart() methods of allMobileThread s to begin execution
of their underlying threads.

7 Synchronization Issues

There are three major issues that need to be handled correctly for the synchronization control of a multi-
threaded agent - preserving the atomicity of a logical instruction; preventing deadlock when agents dis-
patch one another, or when multiple threads attempt to dispatch the agent; preserving the semantics of Java
synchronized blocks across a migration.

7.1 Protection of Agent Stacks

An agent should not be moved while it is executing a statement. To avoid this happening, it is necessary
to protect every program counter increment and its following statement. Synchronizing on the agent will
reduce parallelism dramatically. The problem can be reduced to a basicreaders/writers conflict, where
the increment of the program counter, and the execution of the following statement by each thread, acts
as areader; the writer being the thread that callsgo(). This problem is solved by using a variant of the
solution in [21]. locks are maintained by each agent. The boolean predicate they represent is, ’OK to
execute statements?’. The number of locks equals the number of executing threads within the agent. Reader
threads acquire and release locks before and after executing logical statements, byrequest_read() and
read_accomplished() calls.

AgentImpl.this.request_read();
if(pc==15) {
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pc++; stmt;
}
AgentImpl.this.read_accomplished();

Before executing await() , join() or sleep() operation in user code, a thread calls the overloaded
request_read(boolean) method to acquire the lock and also to inform the thread wrapper that the
operation is potentially long running. When a thread makes a call togo() , it is designated as a writer.
The writer thread attempts to acquire all the agent locks. Once it makes this attempt, no reader can ac-
quire a lock. The writer then callsinterruptForMove() on all curently executingMobileThread s.
interruptForMove() is meant to ensures that an agent is not made to wait for an undue amount of
time before moving. The wrapper repeatedly callsinterrupt() on its thread until it stops the opera-
tion. The method whose execution was interrupted, checks whether the wrapper interrupted the thread. If
so, the program counter is decremented so that the interrupted operation resumes at the destination. If the
interrupted operation was timed, likewait(long) , the time remaining for the operation to complete is
saved by theMobileThread . An InterruptedException is thrown if the wrapper did not cause
the interrupt. A count of the number of currently active readers is maintained. This count is incremented
when a reader requests the lock by callingrequest_read() , and decremented when the lock is released
by aread_accomplished() call. As the readers only relinquish their locks at this stage, depending on
whether the writer is an internal or an external thread, the count must go down to one or zero. The writer
then calls thepackUp() method of themain threadgroup wrapper. This results in eachMobileThread
saving the state of itsThread , setting the program counter of the activation records on its stack to -1, and
disallowing the popping of activation records. At this point, the writer releases its locks. All the waiting
readers are released and are free to continue execution. But, the program counters have all been set to a
negative value, and so no further statements can be executed. The reader threads run through to completion
and are no longer active. None of the activation records are popped during this step.

It is necessary to place asynchronized block around await() and join() operation, in order
to ensure that all the threads that were waiting at the source are restored to their original condition at the
destination, before the other agent threads are restarted. For example, ifo.wait() was the statement
being executed,o.wait() must be called before any other thread can acquire the lock ono and call
o.notify() . Avoiding this situation necessitates restarting the threads that were waiting at the source
first. The thread wrappers create and start these threads. When the threads enter thesynchronized block
aroundo.wait() , they inform their wrappers. A thread is not allowed to execute beyond ao.wait() ,
because it is not allowed to acquire an agent lock again. Once all the threads have informed their wrappers
that they have begun waiting, all the agent threads are allowed to proceed normally.

o.wait();

is translated to :

// acquire lock and inform thread wrapper that
// a long operation is to be executed.
request_read(longOperation);

if (progCounter == i) {
progCounter += 1;
synchronized (o) {

// inform MobileThread that a synchronized block has been entered
...

try { o.wait(); }
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catch (InterruptedException e) {
// if execution was interrupted by the thread wrapper, inform
// wrapper that a wait has been interrupted

progCounter -= 1;

// if thread interrupted by another thread, inform thread wrapper
// that long operation terminated, and throw InterruptedException

...
throw e;

}
}
// inform thread wrapper that long operation has terminated,
// and release lock
...

}

// release lock
read_accomplished();

The translation of a timedwait() operation is similar to that of the untimedwait() , just discussed.
The time that remains for the operation to complete is saved before a move.

o.wait(someLong);

becomes :

// acquire lock and inform thread wrapper that
// a long operation is to be executed.
request_read(longOperation);

if (progCounter == i) {
progCounter += 1;
waitTime = someLong;

}
if (progCounter == i+1) {

progCounter += 1;
synchronized (o) {

// inform MobileThread that a synchronized block has been entered
...

baseTime = System.currentTimeMillis();
try { o.wait(waitTime); }
catch (InterruptedException e) {

// if execution was interrupted by the thread wrapper, inform
// wrapper that a wait has been interrupted

progCounter -= 1;
waitTime = waitTime -
(System.currentTimeMillis() - baseTime);

// if thread interrupted by another thread, inform thread wrapper
// that long operation terminated, and throw InterruptedException

...
throw e;

17



}
}
// inform thread wrapper that long operation has terminated,
// and release lock
...

}

// release lock
read_accomplished();

Extending the guarantee of transparent interruption and restoration of long-running operations across
a relocation to library code, is non-trivial. Libraries may implement guardedwait() s, sleep() s or
join() s by using loops with condition checks around these operations; an approach similar to that de-
scribed in [30]. When aMobileThread interrupts itsThread with an interrupt() call, its held
locks would not be released immediately in this case. Agent relocation would be delayed, perhaps for an
unacceptable amount of time. The correct handling of long operations inside library code requires one of
the following approaches :

• Library methods could be modified such that they do not implement guarded operations. This would
need access to the library source code.

• The library could be passed through the mobility translator as well. This would also require access to
the library source.

• A native code wrapper method could be placed aroundwait() in java.lang.Object , and
aroundsleep() and join() in java.lang.Thread . The wrapper would be similar to the
translation ofwait() that was described earlier in this section. The addition of some accessor
methods and fields tojava.lang.Thread would permit aMobileThread to determine if its
Thread was executing a long operation. Although implementing this approach is not possible with
the current version of the translator, this portion of the translation could be done at the byte-code level.

• Library calls that potentially lead towait() s,sleep() s or join() s could be flagged at compile-
time to indicate that the call might be long-running, and that no guarantee about the immediate mi-
gration of an agent can be made. A message could be printed out to the programmer and the decision
would have to be taken by him/her as to whether the call could take a long time to finish or not, or
whether the delay in migration would be acceptable.

We believe that most calls to the standard Java library will terminate within an acceptable amount of
time. In the absence of a mechanism that can save the state of aThread executing a library call, we believe
that the best approach is for the compiler to flag those calls that might not terminate quickly. The program-
mer then needs to decide whether a library call that might delay the dispatch of an agent is acceptable or not.
Should the programmer desire a finer granularity of control over the potentially long-running operations,
he/she should pass the library through the mobility translator.

If two agents try to dispatch one another, the synchronization technique we have adopted could lead
to a deadlock. Agenta would synchronize on itself for executing the statementb.go(dest) , which
would require synchronization onb to protect the integrity ofb’s stacks. If similarly,b would execute
a.go(dest) , a deadlock would result. To prevent this, the call ofdispatch() within realGo() is
synchronized on the agent context instead of on the caller.

There are two ways in which thego() method call in the strongly mobile agent can be translated and
handled by a weakly mobile Aglet. The first is if the call is translated to thesendMessage() method call
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of the Aglets library. ThehandleMessage() method of each Aglet simply callsgo() directly. This
causes a problem when the two agents try to move one another. Ifa executesb.go(dest) andb executes
a.go(dest) , both calls get translated to the correspondingsendMessage() calls. Each Aglet sends a
go message to the other. Ifa’s go() method synchronizes on the agent context first, every thread insidea is
interrupted before a move. This includes the thread that is executing thesendMessage() call to moveb.
The expected behaviour is that all ofa’s threads get interrupted,a’s state is saved, anda is moved to its desti-
nation. Sincea’s message send to moveb is interrupted,b does not move. However, thesendMessage()
within a, in turn ends up calling the AgletswaitForReply() method. ThewaitForReply() method
contains a guardedwait() ; this is implemented using a loop around await() . Thus, even if the call-
ing thread is interrupted beforewaitForReply() returns, the interrupt will have no effect until the loop
condition becomes false. The loop condition, in turn depends on a reply being received fromb’s go()
method.b’s go() method cannot reply because it is blocked - waiting to synchronize on the agent context.
Deadlock exists.

The other translation of thego() method call would also usesendMessage() . Considering the ex-
ample above, whena executesb.go(dest) andb executesa.go(dest) , both calls again get translated
to sendMessage() calls, and each Aglet sends ago message to the other. However, to avoid the dead-
lock condition previously described, a newMobileThread is created within thehandleMessage()
method of each Aglet. This then calls thego() method to actually dispatch the Aglet i.e. thego() meth-
ods of botha andb begin to execute. Considering the case wherea’s go() method synchronizes on the
agent context first,a gets dispatched to its destination. Then,b synchronizes on the agent context and is
dispatched to its own destination. This approach might not be acceptable in some applications, where only
the agent that first synchronizes on the context should be dispatched, and not both the agents.

Since it is the implementation of thewaitForReply() method inside the Aglets library that is re-
sponsible for the deadlock condition, we chose to implement the second approach to agent dispatch, even
though we believe the first to be better. We plan to target other weak mobility systems in the next version of
our translator, and then switch to the first approach.

If multiple threads within the same agent attempt to move the agent, deadlock could still result. This is
because more than one thread could callgo() . Only one of them will actually synchronize on the agent
context. Now, when this writer thread attempts to acquire all the locks, it will not be able to. This is
because the other threads that are attempting to move the agent will have acquired their locks by a call to
request_read() , and then calledgo() . These threads will be blocked, waiting to acquire a lock on the
agent context, and will not release their locks withread_accomplished() calls. An additional level
of synchronization is introduced in order to avoid this. Every agent maintains a condition variable in the
agent context. This indicates whether the agent is currently being moved or not. The first writer thread will
acquire a lock on this variable, test and set it, and then release the lock. Subsequent threads will acquire the
lock, test the property, and release the lock by throwing aMoveRefusedException .

7.2 Synchronization Blocks

The Java semantics forsynchronized blocks or methods is that their lock is released when the agent
is migrated. When users use synchronization in an agent to protect the agents’ internal data structure, this
protection must extend across machine boundaries - to prevent the data structure from being corrupted after
arrival.

The idea is to take the notion of a synchronized code block, and allow a thread to migrate within the
code block, retaining the synchronization lock throughout the migration. This then extends the concept of a
synchronized block across machine boundaries, enabling a programming style familiar to Java programmers.

For weakly mobile languages, synchronized blocks are a non-issue since code never executes beyond
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the call togo() . In strongly mobile systems, however, a call togo() may appear at any point within a
synchronized block. Since the lock is released upon dispatch, this enables other threads to enter the block
before the original thread continues execution at the new site. The original thread then waits for the new
thread to finish execution before re-acquiring the lock and proceeding. These semantics do not preserve the
notion of a synchronized code block.

The difficulties stem from the fact that object locks are not stored within the object during serialization,
but are hidden within the virtual machine. To tackle this problem we introduce serializable locks in place of
the standard Java object locks. Client programmers use the standardsynchronized keyword to enforce
synchronization constraints, just as before. During the translation phase, an object of classMobileMutex
is introduced for each object that requires synchronization. Whenever a programmer requests object locking
through the use of the Javasynchronized keyword, the lock is actually taken out and released via calls to
lock() andunlock() on the associatedMobileMutex object. In this way, synchronized blocks and
methods, are eliminated from the original source, and re-implemented using the new serializable locking
mechanism. The overhead is minimal, and synchronization semantics are preserved while the agent is on
the move.

Consider the following classMobileMutex , which is designed to maintain synchronization locks
across VM boundaries:

public class MobileMutex implements java.io.Serializable {
boolean locked = false;
public MobileMutex() {}

public synchronized void lock() {
// inform MobileThread that a synchronized block has been entered
...
if (!locked) locked = true;
else

while(true)
try { wait(); locked=true; break; }
catch(InterruptedException ex) {

// if execution interrupted by thread wrapper, inform wrapper
// of wait being interrupted, and decrement program counter
...
break;

}
}

public synchronized void unlock() {
locked = false; notify();

}
}

synchronized blocks are often used in conjunction withwait() andnotify() operations. These
need to be translated such that their semantics are preserved, even after the translation ofsynchronized
blocks. The semantics of wait are that a call too.wait() must be inside a Javasynchronized block
that synchronizes ono, and that once a thread begins to wait, it must release its locks on the objecto.

A Javasynchronized block for theObject o , is translated to a logical synchronized block that is
bounded by ao.lock() and ano.unlock() . Only one thread should be inside the logical synchronized
block at a time. Before a thread callso.wait() , it callso.unlock() to release its lock onObject o .
Both o.unlock() ando.wait() are inside the samesynchronized block. This makes sure that no
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other thread can callo.wait() or o.notify() before the current thread has actually begun executing
thewait() operation injava.lang.Object .

If an interrupt is called on the waiting thread, anInterruptedException is thrown. A check is
made as to whether the interrupt call was made because a move is in progress. If that is the case, the program
counter is decremented by one.wait() will now be called at the destination, butunlock() will not be
called again. If the interrupt was not caused by a move, an exception is thrown.

Now, when anotify() is called on theObject o , one thread is removed fromo’s wait set, and
must now compete to reacquire its lock onObject o . The thread does this by callinglock() . Only
when it acquires the lock ono, can it proceed with the rest of the synchronized block.

synchronized (o) { o.wait(); }

is translated to

if (progCounter == i) {
// acquire lock and inform thread wrapper that long operation
// is to be executed
...
progCounter += 1;
o.lock();
// inform thread wrapper that long operation has terminated
...

}

// acquire lock and inform thread wrapper that a long operation
// is to be executed
...
synchronized (o) {

if (progCounter == i+1) {
progCounter += 1; o.unlock(); }

if (progCounter == i+2) {
progCounter += 1;
// inform MobileThread that a synchronized block has been entered
try { o.wait(); }
catch (InterruptedException e) {

// if execution was interrupted by the thread wrapper, inform
// wrapper that a wait has been interrupted

...
progCounter -= 1; break;

// if thread interrupted by another thread, inform wrapper that
// long operation was ended, and throw InterruptedException

...
throw e;

}
}

}

// inform thread wrapper that long operation has terminated
...
if (progCounter == i+3) {

// acquire lock and inform thread wrapper that a long operation
// is to be executed
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...
progCounter += 1; o.lock();
// inform thread wrapper that long operation has terminated
...

}

if (progCounter == i+4) {
// acquire lock
...
progCounter += 1; o.unlock();
// release lock
...

}

Similarly, thenotify() call inside the translated agent also needs to be within a logical synchronized
block, and also within a Javasynchronized block. notify() is translated as shown below :

synchronized (o) { o.notify(); }

becomes

// acquire lock and inform thread wrapper that a long operation
// is to be executed.
...
if (progCounter == i) {

progCounter += 1; o.lock();
}

// inform thread wrapper that long operation has terminated,
// and release lock
...
if (progCounter == i+1) {

// acquire lock
...
progCounter += 1;
synchronized (o) { o.notify(); }
// release lock
...

}

if (progCounter == i+2) {
// acquire lock
...
progCounter += 1; o.unlock();
// release lock
...

}

If synchronized blocks are to be made transparent across moves, aMobileMutex object needs to be
added to the object on which synchronization is desired. At the current state of implementation, this is only
possible if the programmer has access to the source code of that object, if the object is itself an agent, or if the
programmer has source access to every synchronization on the object. In the next version of the translator,
we will address this issue by associating aMobileMutex object with everyjava.lang.Object .
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8 An Example Agent

We now use our preprocessor for strong mobility to translate a simple computing agent.

8.1 Strongly Mobile Interface

A user defines an interface as follows :

public interface Agent extends Mobile {
public int calculate(int count)

throws AgletException;
}

8.2 Strongly Mobile Class

The untranslated class in a strongly mobile system, contains a method with a simple double loop. The
calculate() method is called, and passed an argumentcount . The sum of the natural numbers up
until count is calculated 10 times and returned.

public class AgentImpl extends MobileObject implements Agent {
int numberOfRuns;

public AgentImpl() {
numberOfRuns = 10;

}

public int calculate(int count) throws AgletException {
int sum = 0;
int outerIndex = 0;
int innerIndex = 0;

while (outerIndex < numberOfRuns) {
innerIndex = 0;
while (innerIndex <= count) {

sum = sum + innerIndex;
innerIndex++;

}
outerIndex++;

}
return sum;

}
}

8.3 Generated Weakly Mobile Class

The untranslated class in a strongly mobile system, contains a method with a simple double loop. When
calculate() is called, the sum of the natural numbers until its argument are calculated,

public class AgentImpl extends Aglet implements Runnable {

int numberOfRuns;
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protected class Calculate extends Frame {
int count, sum, outerIndex, innerIndex;
private int returnValue,progCounter=0,

tempProgCounter=0;
private Object trgt,callerThread,callerAglet;
boolean messageSent = false;

public void setArgs(Object initial) {
Object[] init = ((Object[])initial);
Object t0 = init[0];
Integer r0 = ((Integer)t0);
count = r0.intValue();
callerThread = init[1];
callerAglet = init[2];

}

protected void setTarget(Object target) {
trgt = target;

}

protected void setPCForMove() {
if ((progCounter > -1)) {

tempProgCounter = progCounter;
progCounter = -1;

}
}

protected void run() {
try {

AgentImpl.this.read_accomplished();
AgentImpl.this.request_read();
if ((progCounter < 0))

progCounter = tempProgCounter;
AgentImpl.this.read_accomplished();
AgentImpl.this.request_read();
if ((progCounter == 0)) {

progCounter += 1;
}
AgentImpl.this.read_accomplished();
AgentImpl.this.request_read();
if ((progCounter == 1)) {

progCounter += 1;
sum = 0;

}
AgentImpl.this.read_accomplished();
AgentImpl.this.request_read();
if ((progCounter == 2)) {

progCounter += 1;
outerIndex = 0;

}
AgentImpl.this.read_accomplished();
AgentImpl.this.request_read();
if ((progCounter == 3)) {
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progCounter += 1;
innerIndex = 0;

}
AgentImpl.this.read_accomplished();
AgentImpl.this.request_read();
while (((progCounter >= 4) &&

(progCounter <= 9))) {
if (((progCounter == 4) &&

!((outerIndex < numberOfRuns)))) {
progCounter = 10;
break;

}
AgentImpl.this.request_read();
if ((progCounter == 4)) {

progCounter += 1;
innerIndex = 0;

}
AgentImpl.this.read_accomplished();
while (((progCounter >= 5) &&

(progCounter <= 7))) {
if (((progCounter == 5) &&

!((innerIndex < count)))) {
progCounter = 8;
break;

}
if ((progCounter == 5)) {

progCounter += 1;
sum = (sum + innerIndex);

}
AgentImpl.this.read_accomplished();
AgentImpl.this.request_read();
if ((progCounter == 6)) {

progCounter += 1;
(innerIndex)++;

}
AgentImpl.this.read_accomplished();
AgentImpl.this.request_read();
if ((progCounter == 7))

progCounter = 5;
}
AgentImpl.this.read_accomplished();
AgentImpl.this.request_read();
if ((progCounter == 8)) {

progCounter += 1;
(outerIndex)++;

}
AgentImpl.this.read_accomplished();
AgentImpl.this.request_read();
if ((progCounter == 9))

progCounter = 4;
}
AgentImpl.this.read_accomplished();
AgentImpl.this.request_read();
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if ((progCounter == 10)) {
progCounter += 1;
{

Object[] replyObject = new Object[2];
replyObject[0] = new Integer(sum);
replyObject[1] = callerThread;
AgletProxy caller = ((AgletProxy)callerAglet);
caller.sendMessage(new Message("reply", replyObject));

}
}
AgentImpl.this.read_accomplished();
AgentImpl.this.request_read();

}
catch(AgletException e) {

Object replyObject = e;
MobileThread.currentThread().setResult(replyObject);

}
}

}

protected class OnCreation extends Frame {
...
protected void run() {

...
AgentImpl.this.request_read();
if ((progCounter == 1)) {

progCounter += 1;
numberOfRuns = 10; }

AgentImpl.this.read_accomplished();
...

}
}

Frame[] vtable = new Frame[] {new Calculate(),new OnCreation()};
final int _calculate = 0;
final int _onCreation = 1;
Hashtable mTNosTable = new Hashtable();
boolean receiveMessage = true;
Object replyValue;
int alock = 0, mobileThreadNos = 0;
Readers_Writer rw = new Readers_Writer();
Readers_Writer msgRW = new Readers_Writer();
MobileMutex mM = new MobileMutex();
MobileThreadGroup agentGroup;

synchronized int getMobThNo() {
return ++(mobileThreadNos);

}

public void lock() {
mM.lock();

}
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public void unlock() {
mM.unlock();

}

public void incCount() {
rw.incCount();

}

public void decCount() {
rw.decCount();

}

public void request_read() {
rw.request_read();

}

public void read_accomplished() {
rw.read_accomplished();

}

public void request_write(MobileThreadGroup mTG) {
rw.request_write(mTG);

}

public void write_accomplished() {
rw.write_accomplished();

}

public void calculate(Object target, Object init) {
MobileThread trgt = ((MobileThread)target);
Calculate frame = ((Calculate)vtable[_calculate].clone());
trgt.stack.push(frame);
trgt.setSource(this);
frame.setArgs(init);
frame.setTarget(trgt);

}

public void calculate(int count) {
MobileThread calculateThread = MobileThread.currentThread();
calculate(calculateThread, new Object[] {new Integer(count),

new Integer(calculateThread.getSerialNumber()), getProxy()});
calculateThread.run1();
return;

}

public void onCreation(Object init) {
agentGroup = new MobileThreadGroup("agentGroup");
MobilityListener myListener = new Listener();
addMobilityListener(myListener);
MobileThread trgt = new
MobileThread(agentGroup, "onCreationThread");
int mobThNo = getMobThNo();
trgt.setSerialNumber(mobThNo);
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mTNosTable.put(new Integer(mobThNo), trgt);
OnCreation frame = ((OnCreation)vtable[_onCreation].clone());
trgt.stack.push(frame);
trgt.setSource(this);
frame.setArgs(init);
frame.setTarget(trgt);
synchronized (getAgletContext()) {

Hashtable hT = new Hashtable();
hT.put("moveInProgressKey", new Boolean(false));
getAgletContext().

setProperty(("moveInProgress" + getAgletID().toString()), hT);
}
trgt.start();

}

public boolean handleMessage(Message msg) {
msgRW.request_read();
if (!(receiveMessage)) {

msgRW.read_accomplished();
return false;

}
if (msg.sameKind("calculate")) {

MobileThread calculateThread =
new MobileThread(agentGroup, "calculateThread");

int mobThNo = getMobThNo();
calculateThread.setSerialNumber(mobThNo);
mTNosTable.put(new Integer(mobThNo), calculateThread);
calculate(calculateThread, msg.getArg());
calculateThread.start();
msgRW.read_accomplished();
return true; }

if (msg.sameKind("go")) {
try {

go(((URL)msg.getArg()), true);
}
catch(Exception e) {

msgRW.read_accomplished();
return false;

}
msgRW.read_accomplished();
return true;

}
if (msg.sameKind("reply")) {

Object[] replyObject = ((Object[])msg.getArg());
replyValue = replyObject[0];
MobileThread srcThread;
try {

Integer srcThreadNo = ((Integer)replyObject[1]);
srcThread = ((MobileThread)mTNosTable.get(srcThreadNo));

}
catch(Exception e) {

msgRW.read_accomplished();
return false;
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}
alock = 1;
synchronized (srcThread) {

srcThread.notify();
}
while ((alock != 0))

;
msgRW.read_accomplished();
return true;

}
else {

msgRW.read_accomplished();
return false;

}
}

class Listener implements MobilityListener {
public void onArrival(MobilityEvent ev) {

rw = new Readers_Writer();
msgRW = new Readers_Writer();
receiveMessage = true;
synchronized (getAgletContext()) {

Hashtable hT = new Hashtable();
hT.put("moveInProgressKey", new Boolean(false));
getAgletContext().

setProperty(("moveInProgress" + getAgletID().toString()), hT);
}
agentGroup.reinit();
agentGroup.start();

}
...

}

public void go(URL dest, boolean outsideCall) {
throws MoveRefusedException, java.io.IOException,
com.ibm.aglet.RequestRefusedException {

realGo(dest, outsideCall);
}

public void realGo(URL dest, boolean outsideCall)
throws MoveRefusedException, java.io.IOException,
com.ibm.aglet.RequestRefusedException {

...
}

}

9 Performance

9.1 Optimizations

The translation mechanism discussed do far is overly conservative and thus inefficient. We have identified
some optimizations for the above translation algorithms, that are simple enough to be done automatically by

29



a compiler:

• If a method is not recursive, or if it is tail-recursive and the compiler can determine that the execution
time is bounded, it should not be translated into a class.

• To reduce the overhead of synchronization and program counter update, statements should be grouped
to form logical, atomic statements.

• If the number of statements executed inside a loop is sufficiently small, and the statements are simple
i.e. no method calls or loops, there is no need to take a checkpoint on every loop iteration. A lock
acquire and release could be made everyN (say 10,000) simple statements. This would mean that
in the case of ago() call, uptoN statements would need to be executed before the move actually
takes place. We believe that with the processor speeds available today, this is acceptable, and that any
further delay before a move will be insignificant.

• Loop unrolling could reduce loop overhead.

• Method call overhead would decrease if method inlining were to be used.

• If a local variable is limited in scope to only one logical statement, it should remain a local variable,
and should not be translated into a field of the generated class.

• A further optimization would be to generate code that checkpoints everyN simple statements, or every
N milliseconds.

9.2 Measurements

Measurements were taken to estimate the cost of the described translation mechanism for agents. Standard
Java benchmarks were rewritten in the form of both strongly mobile agents, and Aglets. This did not involve
changing the timed code significantly. The only changes that needed to be made to the original benchmarks’
code were made to avoid method calls inside expressions. This is because the preprocessor does not as yet
handle these.

The strongly mobile agents were passed through the translator. We then used simple manual optimiza-
tion techniques to improve the performance of the translated agents. These are - the grouping of simple
statements to form logical, atomic statements; the obtaining and releasing of locks every 10,000 simple
statements for a loop; the inlining of method calls to simple methods that in turn, do not contain method
calls.

The running times and memory footprints of the translated agents and the manually optimized agents
were compared with the equivalent weakly mobile Aglets. The results have been presented in table 1, and in
table 2. A major contributor to the poor running times of the recursive benchmark programs, is the Garbage
Collector that runs several times a second during their execution.

We performed some further optimzations on the Linpack benchmark. The time taken by Linpack de-
pends to a great extent on a particular method call inside a double-nested loop. This method contains another
loop. We manually inlined this method, and measured execution time with the inner-most loop untranslated,
and with the translated loop unrolled. The running time comparisons are presented in table 3, and the
memory footprint results are in table 4. A user could obtain a performance improvement by including
annotations in the code; to inform the preprocessor how to optimally translate certain code portions.

A comparison of the code sizes of the agent code output by the preprocessor, and that of the corre-
sponding simple Aglets, was made for the benchmarks discussed above. This was done by comparing their
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Benchmark Translated Optimized
Code Code

Crypt(array size - 3000000) 5.61X 1.23X
Crypt(array size - 3000000) 5.96X 1.30X
multi-threaded version - 1 thread
Crypt(array size - 3000000) 6.00X 1.41X
multi-threaded version - 2 threads
Crypt(array size - 3000000) 5.60X 1.31X
multi-threaded version - 5 threads
Linpack(500 X 500) 10.00X 1.75X
Linpack(1000 X 1000) 9.48X 1.65X
Tak(100 passes) 245.30X 220.83X
Tak(10 passes) 247.00X 213.60X
Simple Recursion 68.27X 60.75X
(sum of first 100 natural nos. -
10000 passes)

Table 1: Execution time of Strongly Mobile Agents compared to corresponding Aglets

Benchmark Translated Optimized Aglet
Code Code

Crypt 32.10 30.69 30.44
Crypt - multi-threaded 32.54 30.82 30.35
1 thread
Crypt - multi-threaded 32.56 30.82 30.35
2 threads
Crypt - multi-threaded 32.54 30.83 30.38
5 threads
Linpack(500 X 500) 31.02 30.02 28.34
Linpack(1000 X 1000) 58.27 52.94 51.24
Tak(100 passes) 22.04 21.99 20.98
Tak(10 passes) 22.05 22.02 20.98
Simple Recursion 22.03 21.82 21.02

Table 2: Memory utilization of Strongly Mobile Agents and the Aglets (MB)

.class files. For the benchmarks discussed previously, the translated agents are between 6 and 14 times
the sizes of the simple Aglets.

The overhead of migrating agents depends on the amount of state that the agent requires to carry along
with itself. This is dependent on the number of threads within the agent, and on the number of frames on the
runtime stack of the threads. The migration costs of moving a single threaded agent with different numbers
of frames on the stack have two components - the time required to pack up the agent state, and the time
to move the agent. The latter is the time required for the translated agent to execute the Aglets dispatch
method. We compare this against the time required for the transfer of the simple benchmark Aglet. Agents
and Aglets are transferred between ports on the same machine, in order to obtain a meaningful comparison
that is unaffected by network delay. The results for different stack sizes are shown in table 5.

Similarly, the dependence of the migration cost of a multi-threaded agent, on the number of threads is
shown in table 6.

The measurements were taken on a Sun Enterprise 450 (4 X UltraSPARC-II 296MHz), with 1GB of
main memory, running Solaris. We used the Sun JDK 1.4.001 HotSpot VM in mixed mode execution, with
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Linpack Inner Loop Inner Loop Inner Loop
Optimizations Untranslated Unrolled Unrolled

2 times 10 times

Linpack 1.02X 1.21X 0.75X
(500 X 500)
Linpack 1.02X 1.15X 0.76X
(1000 X 1000)

Table 3: Execution time of Optimized Strongly Mobile Agents compared to Aglets for Linpack

Linpack Inner Loop Inner Loop Inner Loop
Optimizations Untranslated Unrolled Unrolled

2 times 10 times

Linpack 29.9 30.19 30.48
(500 X 500)
Linpack 52.8 53.12 53.40
(1000 X 1000)

Table 4: Memory utilization of Optimized Strongly Mobile Agents for Linpack (MB)

the heap size limited to 120MB.

10 Conclusions

We have argued that strong mobility is an important abstraction for developing Grid Computing applications,
and have outlined a source translation scheme that translates strongly mobile code into weakly mobile code,
by using a preprocessor. The API for the strongly mobile code and the translation mechanism are designed
to give programmers full flexibility in using multi-threaded agents, and in dealing with any synchronization
problems.

We are able to handle almost the entire Java programming language. Time constraints mean that the
translation of some simple constructs like inner classes, andtry blocks have not yet been implemented. If
an agent uses library code that contains guardedwait , sleep or join calls, rapid termination before a
move cannot be guaranteed.synchronized blocks that synchronize on an untranslated Object in user
code cannot be transparently migrated. In both these situations, the translator is designed to display a
warning for the programmer. Some resources need to be accessed on the machine where the agent originated,
and should be declaredglobal by the programmer. An RMI server to do this needs to be implemented.
Timed operations, like open network connections, are not preserved across a relocation. Mobile agents need
to be prevented from sharing objects with one another, or non-mobile objects. We will investigate using
Isolates [10] for this purpose.

Source code, rather than bytecode translation, does not involve decompilation, and is more convenient.
The performance measurements indicate that our approach to achieving strong mobility for Java is practical.
In future, we will use analysis techniques to automate the generation of optimized source code. Measure-
ments also indicate that performance can be improved further by allowing programmers to make annotations
to source code.

Our preprocessor currently generates Java code that uses IBM’s Aglets library. In future versions of our
translator, we will instead target theProActive[7] weak mobility system, or RMI directly.
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Number of Agent Agent Aglets
stack frames pack time dispatch time dispatch time

1 6 2436 1750
2 5 5421 1875
3 5 5410 1830

Table 5: Migration Time for Single-threaded Strongly Mobile Agents and Aglets (ms) - Linpack

Number of Agent Agent Aglets
threads pack time dispatch time dispatch time

1 9 5266 1782
2 10 5133 1860
5 16 5126 1803

Table 6: Migration Time for Multi-threaded Strongly Mobile Agents and Aglets (ms) - 5 frames on main
thread stack, 2 frames on other threads’ stacks - Multi-threaded Crypt
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