Memory-Constrained Communication Minimization
for a Class of Array Computations

Daniel Cociorva, Gerald Baumgartnéy Chi-Chung Lam, P. Sadayappanand J.
Ramanujarf

1 Department of Computer and Information Science
The Ohio State University, Columbus, OH 43210, USA.
{coci orva, gh, cl am saday}@i s. ohi o- st at e. edu
2 Department of Electrical and Computer Engineering
Louisiana State University, Baton Rouge, LA 70803, USA.
j xr @ce. | su. edu

Abstract. The accurate modeling of the electronic structure of atoms and mole-
cules involves computationally intensive tensor contractions involving large
tidimensional arrays. The efficient computation of complex tensor actibns
usually requires the generation of temporary intermediate arrayse Th&s-
mediates could be extremely large, but they can often be generatedathdnu
batches through appropriate loop fusion transformations. To optimizeetffer-
mance of such computations on parallel computers, the total amounteof in
processor communication must be minimized, subject to the available rmemo
on each processor. In this paper, we address the memory-coadtammuni-
cation minimization problem in the context of this class of computations. Based
on a framework that models the relationship between loop fusion and ngemo
usage, we develop an approach to identify the best combination of |eomfu
and data partitioning that minimizes inter-processor communication cost with
out exceeding the per-processor memory limit. The effectivenesiseoflevel-
oped optimization approach is demonstrated on a computation repregzpfati

a component used in quantum chemistry suites.

1 Introduction

The development of high-performance parallel programsséientific applications is
usually very time consuming. The time to develop an efficigariallel program for a
computational model can be a primary limiting factor in thterof progress of the sci-
ence. Our overall goal is to develop a program synthesigesyst facilitate the rapid
development of high-performance parallel programs foraascbf scientific computa-
tions encountered in quantum chemistry. The domain of audds electronic structure
calculations, as exemplified by coupled cluster methodsifidivhich many computa-
tionally intensive components are expressible as a setngbtecontractions. We are
developing a synthesis system that will transform an inpat#ication expressed in a
high-level notation into efficient parallel code tailoredhe characteristics of the target
architecture.

A number of compile-time optimizations are being incorpedainto the program
synthesis system. These include algebraic transfornmtiorminimize the number

of arithmetic operations [8, 13], loop fusion and array caction for memory space
minimization [13, 12], tiling and data locality optimizati [1, 2], space-time trade-off
optimization [3], and data partitioning for communicatiminimization [9, 10]. Since
the problem of determining the set of algebraic transfolwnatto minimize operation
count was found to be NP-complete, we developed a pruningtspeocedure [8] that is
very efficient in practice. The operation-minimization edure results in the creation
of intermediate temporary arrays. Often, these internte@iaays that help in reducing
the computational cost create a problem with the memoryiredjuLoop fusion was
found to be effective in significantly reducing the total negnrequirement. However,
since some fusions could prevent other fusions, the chditteecoptimal set of fusion
transformations is important. So we addressed the probfdmding the choice of fu-
sions for a given operator tree that minimizes the spaceinestjior all intermediate
arrays after fusion [12, 11].

We have also previously addressed the problem of commimicaptimization in
the context of the operator trees [9, 10]. An efficient polyia-time dynamic pro-
gramming algorithm was developed for the determinationpifneal distributions of
the various arrays through the evaluation of the operag@ $0 as to minimize inter-
processor communication overhead. However, that modehali¢onsider the effects
of loop fusion for memory minimization. As we elaborate tatéth examples, it is not
feasible to simply apply the previously developed loopdasilgorithm and the previ-
ous communication minimization algorithm (in either ofderoptimize for the parallel
context when memory size constraints are severe. For manguwations of interest to
quantum chemists, the unoptimized form of the computat@rdrequire in excess of
hundreds of terabytes of memory. Therefore, the followiptinization problem is of
great interest: given a set of computations expressed aguersee of tensor contrac-
tions (explained later on), an empirically derived measfrthe communication cost
for a given target computer, and a specified limit on the arhofiavailable memory on
each processor, re-structure the computation so as to mitime total execution time
while staying within the available memory. In this paper, pvesent a framework that
we have developed to address this problem. The memoryraimst communication
minimization algorithm we develop here will be incorpoihisto the synthesis system
being developed.

The computational structures that we target arise in dieapplication domains
that are extremely compute-intensive and consume signifcamputer resources at
national supercomputer centers. They are present in \s®gomputational chemistry
codes such as ACES Il, GAMESS, Gaussian, NWChem, PSI, and NROLR par-
ticular, they comprise the bulk of the computation with tloeigled cluster approach
to the accurate description of the electronic structure@ia and molecules [14, 15].
Computational approaches to modeling the structure aeddctions of molecules, the
electronic and optical properties of molecules, the heatsrates of chemical reac-
tions, etc., are very important to the understanding of ¢balnprocesses in real-world
systems.

There has been some recent work on using loop fusion for menaduction for
sequential execution. Fraboulet et al. [5] use loop aligmrtreduce memory require-
ment between adjacent loops by formulating the one-dinseasiversion of the prob-

lem as a network flow problem; they did look at the effect ofirtilselution on cache
behavior or communication. Song et al. [17, 18] present f@mifit network flow for-
mulation of the memory reduction problem and they includé@rgke model of cache
misses as well. They do not consider trading off memory fooneputation or the im-
pact of data distribution on communication costs while nmggper-processor memory
constraints in a distributed memory machine. There has breah less work investi-
gating the use of loop fusion as a means of reducing memoujirezgents [6, 16]. To
the best of our knowledge, loop fusion transformation fommoey reduction, in com-
bination with data partitioning for communication miniration in the parallel context,
has not been previously considered.

The paper is organized as follows. In the next section, wieoetde on the compu-
tational context of interest and the pertinent optimizaigsues. Section 3 presents our
multi-dimensional processor model, discusses the inierabetween distribution of
arrays and loop fusion, and describes our algorithm for teenpry-constrained com-
munication minimization problem. Section 4 presents testbm the application of the
new algorithm to an example abstracted from NWChem [7]. Geichs are provided
in Section 5.

2 Elaboration of Problem

In the class of computations considered, the final resuk twomputed can be expressed
as multi-dimensional summations of the product of sevemalii arrays. Due to com-
mutativity, associativity, and distributivity, there ameany different ways to obtain the
same final result and they could differ widely in the numbeftazting point operations
required. Consider the following example:

S = 3 Al i, x BlJ: k).
P

Ifimplemented directly as expressed above, the computatauld require Rl N;j NN
arithmetic operations to compute. However, assuming éssacreordering of the op-
erations and use of distributive law of multiplication owaeldition is acceptable for the
floating-point computations, the above computation careleitten in various ways.
One equivalent form that only requirlisN; N 4+ NjN«N; +2N; N; operations is as shown
in Fig. 1(a).

Generalizing from the above example, we can express miatiguisional integrals
of products of several input arrays as a sequence of formbikeh formula produces
some intermediate array and the last formula gives the fasallt. A formula is either:

— amultiplication formula of the formTr(...) = X(...) x Y(...), or
— a summation formula of the fornTir(...) = 3 X(...),

where the terms on the right hand side represent input amayistermediate arrays
produced by a previously defined formula. LKt IY andITr be the sets of indices in
X(...),Y(...) andTr(...), respectively. For a formula to be well-formed, every index
in X(...) andY(...), except the summation index in the second form, must appear i
Tr(...). ThusIXUIY CITr for any multiplication formula, antX — {i} C ITr for any

T1(j,t) = S AGjb)

T2(j,t) = ZB(j,k,t) /\
T3(j,t) = T1(j,t) x T2(j,t) 1S T2 S
St) = Y T3(1.1) ‘ ‘

J

(a) Formula sequence Al j,t) B(j,kt)

(b) Binary tree representation

Fig. 1. A formula sequence and its binary tree representation.

summation formula. Such a sequence of formulae fully specifie multiplications and
additions to be performed in computing the final result.

A sequence of formulae can be represented graphically asaaybiree to show
the hierarchical structure of the computation more cle#émlyhe binary tree, the leaves
are the input arrays and each internal node correspondsotonaiffa, with the last for-
mula at the root. An internal node may either be a multipiicahode or a summation
node. A multiplication node corresponds to a multiplicatformula and has two chil-
dren which are the terms being multiplied together. A sunwnatode corresponds to
a summation formula and has only one child, representingettme on which summa-
tion is performed. As an example, the binary tree in Fig. X@presents the formula
sequence shown in Fig. 1(a).

The operation-minimization procedure discussed abovallystesults in the cre-
ation of intermediate temporary arrays. Sometimes thesemediate arrays that help
in reducing the computational cost create a problem witlrtemory capacity required.
For example, consider the following expression:

Sabij = Aacik X Bpefl X Cq jk X Dedel

cdefkl

If this expression is directly translated to code (with t&sted loops, for indices
a— 1), the total number of arithmetic operations required wil4N'° if the range of
each indexa—1 is N. Instead, the same expression can be rewritten by use afiasee
and distributive laws as the following:

Sabij :; (; (; Bbefl X Dcdel> ><Cdfjk> X Agcik

This corresponds to the formula sequence shown in Fig. 2@)can be directly
translated into code as shown in Fig. 2(b). This form onlyuiees 8\® operations.
However, additional space is required to store temporagyafl 1 andT 2. Often, the

S=0

—n- _n. o— for b, ¢
e, e 50 PR
Tloedt =) Boefi X Dedel o e for d, f
it = 3 Boett < Dese [Tlpcdf += Bpefl Dcdel for e |
T STl G for b, c, d, f, j, k [TIf += Bpef| Dedel
bojk = ; pedf X Cafjk f[zrzbgj kb+=c-|-1ibcdjf Cl?fj K for . K e cde
S T2f; k += T1f Cyfijk
Savij = ZszchXAacwk [Sabij += TZij kK Aaci k fO[I' aJ ik J
Cl ’ H 1
(b) Direct implementation [Sabij += T2fj k Aaci k
(a) Formula sequence (unfused code)

(c) Memory-reduced
implementation (fused)

Fig. 2. Example illustrating use of loop fusion for memory reduction.

space requirements for the temporary arrays poses a serighlem. For this example,
abstracted from a quantum chemistry model, the array exedahg indicea— d are
the largest, while the extents along indi¢esl are the smallest. Therefore, the size of
temporary arrayl 1 would dominate the total memory requirement.

We have previously shown that the problem of determiningofherator tree with
minimal operation count is NP-complete, and have devel@ppdining search proce-
dure [8, 9] that is very efficient in practice. For the abovaraple, although the latter
form is far more economical in terms of the number of aritimeperations, its im-
plementation will require the use of temporary intermesli@trays to hold the partial
results of the parenthesized array subexpressions. Suesgetihe sizes of intermediate
arrays needed for the “operation-minimal” form are too ¢airg even fit on disk.

A systematic way to explore ways of reducing the memory regouént for the
computation is to view it in terms of potential loop fusioh®op fusion merges loop
nests with common outer loops into larger imperfectly netst@ps. When one loop
nest produces an intermediate array which is consumed lii@moop nest, fusing the
two loop nests allows the dimension corresponding to thedusop to be eliminated
in the array. This results in a smaller intermediate array thos reduces the memory
requirements. For the example considered, the applicatidasion is illustrated in
Fig. 2(c). By use of loop fusion, for this example it can berstatT 1 can actually be
reduced to a scalar arit? to a 2-dimensional array, without changing the number of
arithmetic operations.

For a computation comprised of a number of nested loops; thidrgenerally be a
number of fusion choices, that are not all mutually compatibhis is because different
fusion choices could require different loops to be made thtermost. In prior work,
we have addressed the problem of finding the choice of fudmresgiven operator tree
that minimizes the total space required for all arrays dfteion [13, 12, 11].

A data-parallel implementation of the unfused code for cotimg Snij would in-
volve a sequence of three steps, each corresponding to a¢he t&fops in Fig. 2(b).
The communication cost incurred will clearly depend on tlag whe array#\, B, C, D,
T1,T2, andSare distributed. We have previously considered the proloeminimiza-
tion of communication with such computations [13, 9]. Hoeethe issue of memory
space requirements was not addressed. In practice, mame aomputations of in-
terest in quantum chemistry require impractically largeimediate arrays in the un-

fused operation-minimal form. Although the collective manof parallel machines is
very large, it is nevertheless insufficient to hold the fallermediate arrays for many
computations of interest. Thus, array contraction thrologip fusion is essential in
the parallel context too. However, it is not satisfactoryfitst find a communication-
minimizing data/computation distribution for the unfudedm, and then apply fusion
transformations to minimize memory for that parallel forfimis is because 1) fusion
changes the communication cost, and 2) it may be imposgililad a fused form that
fits within available memory, due to constraints imposedigydhosen data distribution
on possible fusions. In this paper we address this problefinding suitable fusion
transformations and data/computation partitioning thiaimmze communication costs,
subject to limits on available per-processor memory.

3 Memory-Constrained Communication Minimization

Given a sequence of formulae, we now address the problem difijrthe optimal
partitioning of arrays and operations among the processodsthe loop fusions on
each processor in order to minimize inter-processor conication and computational
costs while staying within the available memory in impletirgg the computation on
a message-passing parallel computer. Section 3.1 intesdaienulti-dimensional pro-
cessor model used to represent the computational spadmrse discusses the com-
bined effects of loop fusions and array/operation partitig on communication cost,
computational cost, and memory usage. An integrated akgorior solving this prob-
lem is presented in Section 3.3.

3.1 Preliminaries: A Multi-Dimensional Processor Model

A logical view of the processors as a multi-dimensional gsidised, where each ar-
ray can be distributed or replicated along one or more of thegssor dimensions. As

will be clear later on, the logical view of the processor giimes not impose any re-

striction on the actual physical interconnection topolofiyhe processor system since
empirical characterization of the cost of redistributi@iseen different distributions is

performed on the target system.

Let py be the number of processors on ftthéh dimension of am-dimensional
processor array, so that the number of processops ispz x ... x pn. We use am-
tuple to denote the partitioning a@istribution of the elements of a data array on an
n-dimensional processor array. THeth position in am-tuple a, denoteda[d], corre-
sponds to the-th processor dimension. Each position may be one of theviilig: an
index variable distributed along that processor dimensdi denoting replication of
data along that processor dimension, or a ‘1’ denoting thigtthe first processor along
that processor dimension is assigned any data. If an indéabla appears as an array
subscript but not in the-tuple, then the corresponding dimension of the array is not
distributed. Conversely, if an index variable appears @rthuple but not in the array,
then the data are replicated along the corresponding morcdanension, which is the
same as replacing that index variable with a **’.

As an example, suppose 128 processors form a 4-dimensionab24 x 8 array.
For the arrayB(b, e, f, 1) in Fig. 2(a), the 4-tupléb, e, x, 1) specifies that the first and the
second dimensions & are distributed along the first and second processor dimessi
respectively (the third and fourth dimensionsBfare not distributed), and that data
are replicated along the third processor dimension andsaigreed only to processors
whose fourth processor dimension equals 1. Thus, a pracgbsse id isP;, 7, 7, 7, Will
be assigned a portion & specified byB(myrang€z;, Ny, p1), myrangéz,, Ne, p2),1 :
Nf,1:N)) if zz = 1 and no part oB otherwise, wherenyrangéz N, p) is the range
(z—1)xN/p+1tozx N/p.

We assume the data-parallel programming model and do netdmrdistributing
the computation of different formulae on different subs#tprocessors. A child array
(or a part of it) is redistributed before the evaluation sfparent if their distributions
do not match. For instance, suppose the arB{yse, f,1) andD(c,d, e, |) have distri-
butions (b, e, *,1) and (c,d, x,1) respectively. If we wanT 1 to have the distribution
(c,d, f,1) when evaluating 1(b,c,d, f) = S B(b,e, f,I) x D(c,d,e), Bwould have
to be redistributed fromb, e , 1) to (x, x, f,'1> because the two distributions do not
match. But since fob(c,d, e 1), the distribution(c,d, %, 1) is the same a&,d, f,1), D
is not redistributed.

3.2 Interaction Between Array Partitioning and Loop Fusion

The partitioning of data arrays among the processors anfliiens of loops on each
processor are inter-related. Although in our context tlaeeeno constraints to loop fu-
sion due to data dependences (there are never any fusi@mgireydependences), there
are constraints and interactions with array distributiohboth affect memory usage,
by fully collapsing array dimensions (fusion) or by redugithem (distribution)ii)
loop fusion does not change the communication volume, lareases the number of
messages, and therefore the start-up communication caktiiig fusion and commu-
nications patterns may conflict, resulting in mutual camsts. We discuss these issues
next.

(i) Memory usage and array distribution. The memory requirements of the com-
putation depend on both loop fusion and array distributiarsing a loop with index
between a nodeand its parent eliminates thadimension of array. If thet-loop is not
fused but the-dimension of array is distributed along thd-th processor dimension,
then the range of thiedimension of array on each processor is reduced\ig py. Let
DistSizév,a, f) be the size on each processor of arvayhich has fusionf with its
parent and distribution. We have

DistSizgv,a, f) = [7; ¢ vaimendPistRangéi, v,a, Set f))

wherev.dimens= v.indices— {v.suminde¥ is the array dimension indices gfbefore
loop fusions,v.indicesis the set of loop indices for including the summation index
v.sumindexf vis a summation nod&et f) is the set of fused indices for fusidh and
1 if i €x
DistRangéi,v,a,x) = { Ni/pq if i ¢ xandi = a[d]
Ni ifi ¢xandi € a

(a) Formula sequence

for i =1, N for i =1, N

for k = (z-1) » \k/4 + 1, z » Nk/4 Initialize C(k) to zero
for j =1, N for k = (z-1) » Nk/4 + 1, z » Nk/4
[[O(i,k) += A(i,j) * B(j, k) for j =1, N

Redi stribute C(i,k) from<k> to <l >=<x> [[C(k) += A(i,j) * B(j,k)

for i =1, N Redi stribute C(k) from<k> to <|>=<x>
for I =(z-1) » N/4 +1, z » N/4 for | =(z-1) » NN/4 + 1, z » N/4
for k =1, Nk for k =1, Nk
[[E(i,l)+:C(i,k)*D(k,l) [[E(i,|)+:c(k)*D(k,l)

(b) Before loop fusion (c) After loop fusion

Fig. 3. An example of the increase in communication cost due to loop fusion.

In our example, assume thbl, = Ny = Nc = Ng = 1000, Ne = Nf = 70, andN; =
Nk = N, = 30. These are index ranges typical of the quantum chemistoulations
of interest, and are used elsewhere in the paper in relaitig example. If the array
B(b,e, f,1) has distribution(b,e,*,1) and fusion(bf) with T, then the size oB on
each processor whose fourth dimension equals one woul f#x N; = 1050 words,
since thee andl dimensions are the only unfused dimensions, ancettlienension is
distributed onto 2 processors. Note that if arvayndergoes redistribution from to 3,
the array size on each processor after redistributi@issSizev, 3, f), which could be
different fromDistSizév, a, f), the size before redistribution.

(i) Loop fusion increases communication cosiThe initial and final distributions
of an array determines the communication pattern and whetirezeds redistribution,
while loop fusions change the number of times awag redistributed and the size of
each message. Lgthe an array that needs to be redistributed. If nede not fused
with its parent, array is redistributed only once. Fusing a loop with indelsetween
nodev and its parent puts the collective communication code fdistabution inside
the loop. Thus, the number of redistributions is increased factor ofN:/py if the
t-dimension ofv is distributed along thé-th processor dimension and by a factor of
N; if the t-dimension ofv is not distributed. In other words, loop fusions cannot cedu
communication cost. Instead, the number of messages ses®dth loop fusion, while
the total volume of communication stays the same. Thergfbeecommunication cost
increases, due to higher start-up costs. Consider the datigrusequence presented in
Fig. 3(a), where the arra@(i, k) is first “produced” fromA(i, j) andB(j, k), and then
“consumed” to producé&(i,l). For this simple example, we assume that the computa-
tion is executed in parallel on 4 processors, with a one-dsiomal logical processor
view. Figure 3(b) shows the pseudo-code in the absence wifuthe arrayC(i,k) is
re-distributed from(k) to (I) only once. In the presence of fusion, where itheop is
the outermost loop, the dimensionality of the arys reduced taC(k), but the re-
distribution is performed\; times. The pseudo-code in Fig. 3(c) illustrates this effect

(ii) Potential conflict between array distribution and loop fusion. Solution of
the conflict by virtual partitioning. For the fusion of a loop between nodeandv to

for i =1, N for i =(z-1) » N/4 +1, z » N/4

for k = (z-1) * Nk/4 + 1, z » Nk/4 for ii =1, 4
for j =1, N for k = (z-1) * Nk/4 + 1, z » Nk/4
[[C(i,k) += A(i,j) = B(j. k) for j =1, N
Redi stribute C(i,k) from<k> to <i> {[C(ii,k) += A(i + (ii-1) = Ni/4,j) * B(j,k)
for i =(z-1) » N/4 +1, z» N/4 Redi stribute C(ii,k) from<k> to <i>=<ii>
for 1 =1, N for | =1, N
for k =1, Nk for k =1, Nk
[[E(i,l)+:c(i,k)*D(k,l) [[E(i,l)+:c(1,k)*D(k,l)

(a) Before virtualization (b) After virtualization

Fig. 4. An example of the increase in loop fusion due to a virtual process view.

K K
|
vitwal | | | pC
partitions redistribute pl
i - 1 -- =
pz
ps
po pl p2 p3
produce C(i,k) consume C(i,k)

Fig. 5. Virtual partitioning of an array.

be possible, the loop must either be undistributed at batidv, or be distributed onto
the same number of processoraiand atv. Otherwise, the range of the loop at nade
would be different from that at node preventing fusion of the loops. Let us consider
again the computation given in Figure 3(a), with a differdistribution of the array
C(i, k) at the two nodes: assume that we hayk)alistribution at the first node, anda
distribution at the second node. The pseudo-code for thigpatation on 4 processors
is presented in Fig. 4(a). Fusion of thoop is no longer possible, due to the different
loop ranges at the two nodes. However, we can overcome thidgmn by taking a
virtualized view of the computation on a larger set of vittpeocessors, mapped onto
the actual physical processors. Consider a virtual pamiitg of the computation and
split thei-loop into two loops, andii. (see the pseudo-code in Fig. 4(b)). With this
modification, the outermostloop can be fused, and the size of the ai€aig reduced
from N;j x Ng to 4Ny.

This transformation of theloop is presented graphically in Fig. 5. At the first node
(where it is produced), the arr&yis distributed among the 4 processors alongkhe
dimension (k) distribution, or vertical partitioning in the Figure). Irddition, each
physical processor can be further viewed as 4 “virtual pgsoes”, as showed by the
horizontal virtual partitioning lines in Fig. 5. The pur@osf the virtual partitioning
along thei dimension at the first (produce) node is to match the adtpattitioning
at the second (consume) node and allow for fusion ofi-le@p. Fusion of the-loop
no longer produces a one-dimensiofigk) array in this case. Each processor stores

the equivalent of 4 such arrays, corresponding to the 4aligpuocessors. In Fig. 5,
the elements stored on procesBgrbefore and after re-distribution, are represented by
shaded areas.

In general, the virtual partitioning of the computation eie@s on the distribution
at the nodes involved. Lat andv be two nodes in the operator tr@ethat have a
common loop index. Thet-loop is distributed ontqgy, processors at nodeand onto
pv processors at node Let pyirua be lowest common multiple qf, andp,. With these
notations, the-loop can be virtually partitioned by a factor pfiwa/pu at theu node,
and by a factor opyial/ pv at thev node. The resulting virtual partitions along the
dimension at the& andv nodes become identical, allowing for loop fusion.

Virtual partitioning is essential for the success of our bamed loop fusion — data
distribution approach. Since both fusion and distributiopose constraints on the array
dimensions, the potential for conflict is enormous. In gecagtunless we allow virtual
partitioning, we often find that optimal array distributifam minimizing inter-processor
communication precludes effective memory reduction byofusThe number of com-
patible loop fusion and array distribution configuratioas/éry limited. Virtual parti-
tioning relaxes the mutual constraints imposed by the losh and data distribution,
allowing for the optimal solution(s) to be found.

3.3 Memory-Constrained Communication Minimization Algorithm

In this section, we present an algorithm addressing the aamgation minimization
problem with memory constraint. Previously, we have sobedcommunication mini-
mization problem but without considering loop fusion or noeyusage [9]. In practice,
the arrays involved are often too large to fit into the avéddabhemory even after par-
titioning among the processors. We assume the input areaybe distributed initially
among the processors in any way at zero cost, as long as theptreplicated. We do
not require the final results to be distributed in any patiicway. Our approach works
regardless of whether any initial or final data distributi®gyiven.

The main idea of this method is to search among all combingati$ loop fusions
and array distributions to find one that has minimal total samication and compu-
tational cost and uses no more than the available memory.nardic programming
algorithm for this purpose is given in this section.

Let Mcos{localsizea,3) be the communication cost in moving the elements of
an array, withlocalsizeelements distributed on each processor, from an initial dis
tribution a to a final distributionf. We empirically measur#lcostfor each possible
non-matching pair oft andf and for several differeribcalsizeson the target parallel
computer. LeMoveCosty, a, B, f) denote the communication cost in redistributing the
elements of array, which has fusiorf with its parent, from an initial distribution to
a final distributionB. It can be expressed as:

MoveCosty, a, B, f) = MsgFactofv,a, Set f)) x Mcos{DistSiz¢v,a, Setf)),a,3) where
MsgFacto(V,d,X) = [1; ¢ v.dimend-0OPRaNgd, v, o, X) and
1 if i &x
LoopRangé,v,a,x) = { Ni/pq if i € xandi = a[d]
Ni ifi exandi ¢ a

Let CalcCostv,y) be the computational cost in calculating an arvawith y as
the distribution ofv. Note that the computational cost is unaffected by loopofusi
For multiplication and for summation where the summatiateiis not distributed, the
computational cost for can be quantified as the total number of operations flivided
by the number of processors working on distinct parte ¢f our example in Fig. 2(a),
if the arrayT1(b,c,d, f) has distribution(c,d, f,1), its computational cost would be
Np % N x Ng x Ne x Nf x N, /p1/p2/ps = 9.1875x 10*? multiply-add operations on
each participating processor. Formally,

CalcCostv,y) = _[i e vindicesN
My[d] e v.dimensd

For the case of summation where the summation index sumindexs distributed,
partial sums ofv are first formed on each processor and then either consadidat
one processor along thedimension or replicated on all processors along the same
processor dimension. We denote ®glcCostlandMoveCostlthe computational and
communication costs for forming the sum without replicatiand byCalcCost2and
MoveCostZhose with replication.

Finally, we definegCos{v,a) to be the total cost for the subtree rooted afith dis-
tribution a. After transforming the given sequence of formulae into goression tree
T (see Section 2), we initializ8os{v, o) for each leaf nodein T and each distribution
a as follows (wherdNoRepa) is a predicate meaning involves no replication.):

Costv.o) — 0 if NoRega)
va)= MinyoRregp) {MoveCosty, B, o, 0) } otherwise

For each internal nodeand each distribution, we can calculat€os{u, a) according
to the following procedure:

Case (a):u is a multiplication node with two childremandv. We need botlv andV
to have the same distribution, sgybeforeu can be formed. After the multiplication,
the product could be redistributed if necessary. Thus,

Cos{u,0) = myin{Cos(v, y) + Cos{V,y) + CalcCostu, y) + MoveCostu,y, o, 0)}

Case (b):uis a summation node over indeand with a childv, which may have any
distributiony. If i € y, each processor first forms partial sumsuaind then we either
combine the partial sums on one processor alongdimension or replicate them on all
processors along that processor dimension. Afterwardssum could be redistributed
if necessary. LeCalc_Move Costu,y,a, 0) beCalcCost1u,y)+MoveCostlu,y, a,0),
andCalc_Move CostZu,y, a,0) be CalcCost2u,y) + MoveCost2u,y,a,0). Thus,

Cos{u,0) = myin{Cos(v, y) + min(Calc_.Move CostXu,y,a, 0), Calc. Move Costu,y,a,0)) }

With these definitions, the bottom-up dynamic programmilygpthm proceeds as
follows: At each node in the expression tre€, we consider all combinations of array
distributions forv and loop fusions betweenand its parent. If loop fusion of the same
indext betweerv and its parent is not possible because of different digiohuanges,
then a virtual processor view is considered in order to attesvfusion. The array size,
communication cost, and computational cost are deterndnedrding to the equations

in Sections 3.1 and 3.3. If the size of an array before and idthstribution is different,
the higher of the two should be used in determining memorgeisat each node,

a set of solutions is formed. Each solution contains the fiistibution ofv, the loop
nesting atv, the loop fusion betweewm and its parent, the total communication and
computational cost, and the memory usage for the subtrded@v. A solutions s
said to be inferior to another solutighif they have the same final distributioshas
less potential fusions with's parent thars, s.totalcost> s'.totalcost and the memory
usage ofkis higher than that of . An inferior solution and any solution that uses more
memory than available can be pruned. At the root nod€,dhe only two remaining
criteria are the total cost and the memory usage of the solsitiThe set of solutions is
ordered in increasing memory usage and decreasing cossoli&on with the lowest
total cost and whose memory usage is below the available myeinat is the optimal
solution for the entire tree.

4 An Application Example

In this section, we present an application example of the omgmoonstrained com-
munication minimization algorithm. Consider again theussge of computations in
Fig. (2(a)), representative of the multi-dimensional terntractions often present in
quantum chemistry codes. The sizes of the array dimensi@nshosen to be com-
patible with the dimensions found in typical chemistry pgesbs, where they represent
occupied or virtual orbital spaceld; = Nj = Ny = N; = 40,Na = Ny = Nc = Ny = 1000,
andNe = N; = 70.

As an example, we investigate the parallel execution ofdaisulation on 32 pro-
cessors of a Cray T3E, assuming 512MB of memory availableett @ode, and on
16 processors of an Intel Itanium cluster, assuming 2GB ahamg available at each
node. The best partitioning of the algorithm depends on theber of processors and
the amount of memory available. It also depends on the ecapharacterization data
that we use to describe the communication costs of a givehimacd\Ve generated this
data by measuring the communication times for each possdvematching pair of ar-
ray distributions and different array sizes for both theyCFaE and the Itanium cluster.
Although generating the characterization is somewhatrlabs, once a characteriza-
tion file is completed, it can be used to predict, by interpotaor extrapolation, the
communication times for arbitrary array distributions aiwkes.

Tables 1 and 2 present the solutions of the memory-consttaiommunication
minimization algorithm on the Cray T3E and Itanium clustespectively. For the
system of 32 processors of the Cray T3E, the optimal logiek\of the processor
space is found to be a two-dimensionat & distribution. Table 1 shows the full four-
dimensional arrays involved in the computation, their extli(fused) representations,
their initial and final distributions, their memory requitents, and the communication
costs involved in their re-distribution. The final distritmn is defined in the same way
for both input and intermediate arrays: it is the distribotat the multiplication node at
which the array is used or consumed. The initial distribui®defined differently for
input and intermediate arrays: it is the distribution at lésef node for an input array,
and the distribution at the multiplication node where thraars generated, or produced,

Table 1. Loop fusions, memory requirements and communication costs on g2gsors of a
Cray T3E for the arrays presented in Fig. 2(a).

| Fullarray [Reduced arrdynitial dist.Final dist{Memory/processd€omm. cost

D(c,d,e,l) D(c,el) (c,e) (, %) 22.4MB 552.8 sec,
B(b,e f,l) | B(b,e f,I) (b, f) (b, f) 49.0MB 0
C(d, f,j,k) | C(f,j.k {0, 1) (%, %) 0.9MB 362.3 sec.
A(a,c,i,k) A(c,i, k) (i,c) (, %) 12.8MB 460.9 sec.
T1(b,c,d,f)| Ti(b,c,f) (b, f) (b,c) 17.5MB 791.8 sec,
T2(b,c, j,k) | T2(b,c, j,k) (b,c) (b, j) 400.0MB 20.5 sec.
S(a,b,i, j) Sb,i, j) (b, j) (b, j) 0.4MB 0

for an intermediate array. The total memory requirementohm@ay is defined as the
largest memory usage of the two distributions (initial amalj.

The optimal solution has the andd loops fused, each across its own range: the
fusion of thed-loop reduce<, D, andT1 to three-dimensional arrays, while the fu-
sion of thea-loop reduce#h andSto 3-dimensional arrays as well. Notice tland
T2 are the only four-dimensional arrays left, and, consetiyehey have the largest
storage requirements of all arrays: 49MB per processor 80418 per processor, re-
spectively. The total memory requirements for the solutbthe example are 503MB
per processor, within the imposed limit of 512MB. Noticetthather memory reduc-
tion is possible, for example, by partially fusing ttdoop and collapsindd andT1 to
two-dimensional arrays. However, this is unnecessaryy@sdmmunication cost of the
computation would increase, and nothing can be gained blyfumemaory reduction.

Based on the empirical characterization data of the Cray, Ti3& total commu-
nication cost for this example is 2188 seconds, or 0.61 hdveost of this load can
be attributed to the re-distribution of the arraysC, D, andT1. Since they are col-
lapsed onto three dimensions for better memory managethegthave to be partially
re-distributed at each iteration of the fused loop, resglin large message-passing
start-up costs.

Table 2 presents the solution of the algorithm for a syste6gbrocessors on the
Itanium cluster. The optimal logical view of the processpace is found to be a two-
dimensional 4 4 distribution. The total memory requirement of the optis@ution is
1.77GB per processor, which is within the 2GB memory limite¥otal communication
cost is 3076 seconds, or 0.85 hours. The optimal distribatid the arrays are different
for the two cases presented here (see Tables 1 and 2).

It is important to note that a decoupled approach of firstqrering loop fusion
followed by array distribution fails to provide a feasibleligion in this example. In
particular, minimizing the communication cost withoutitak memory usage into ac-
count produces a final distributiga, by = (x,*) for the arrayT2(b,c, j,k). The array
T2 would be replicated on all processors, resulting in a mgraeage of 12.8GB per
processor. Reduction from this amount is possible by fydiom the constraints im-
posed by the communication-optimal solution do not perifgotive memory reduc-
tion. In this example, starting from the unfused commumicabptimal solution, no

Table 2. Loop fusions, memory requirements and communication costs on tégsors of an
Intel Itanium cluster for the arrays presented in Fig. 2(a).

| Fullarray [Reduced arrgynitial dist.Final distfMemory /processg€omm. cost

D(c,d,el) D(c,el) (e) (%, %) 22.4MB 704.8 sec,
B(b,e f,lI) | B(b,e f,I) (f,b) (f,b) 98.0MB 0
C(d,f,],k | C(f,j.K {0,) (%, %) 0.9MB 389.7 sec.
A(a,c,i,k) A(c,i,k) (c,k) (%, %) 12.8MB 546.0 sec.
Ti(b,c,d,f)| Ti(b,c,f) (f,b) (c,b) 35.0MB 1391.7 seaq.
T2(b,c,j,k)| T2(b,c, j,K) (c,b) (j,b) 800.0MB 43.9 sec.
Sab,i,j) | Sahb,i,j) (j,b) (j,b) 800.0MB 0

loop fusion structure exists that can bring the memory usemgier the limit. Only an
integrated approach to memory reduction and communicatioimization is able to
provide a solution.

5 Conclusion

In this paper we have addressed a compile-time optimizatioblem arising in the con-
text of a program synthesis system. The goal of the syntkgsiem is the facilitation of
rapid development of high-performance parallel prograonsafclass of computations
encountered in computational chemistry. These compuiatoe expressible as a set of
tensor contractions and arise in electronic structureutations.

We have described the interactions between distributingyaron a parallel ma-
chine and minimizing memory through loop fusion. We havespreed an optimization
approach that can serve as the basis for a key component sf$hem, for minimiz-
ing the communication cost on a parallel computer under nmgmanstraints. The ef-
fectiveness of the algorithm was demonstrated by applyitg & computation that is
representative of those used in quantum chemistry codésasuWChem.

AcknowledgmentdVe thanks the support of the National Science Foundatiaugir
the Information Technology Research program (CHE-0121&7& CHE-0121706),
and NSF grants CCR-0073800 and EIA-9986052.

References

1. D. Cociorva, J. Wilkins, C. Lam, G. Baumgartner, P. SadayapjpaRamanujam. Loop
Optimizations for a Class of Memory-Constrained Computation®rtrc. 15th ACM Intl.
Conf. on Supercomputingp. 103—113, Sorrento, Italy, June 2001.

2. D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan, J. Rgara, M. Nooijen,

D. Bernholdt, and R. Harrison. Towards Automatic Synthesis of HigffieReance Codes
for Electronic Structure Calculations: Data Locality OptimizatiBroc. of the Intl. Conf. on
High Performance Computing.ecture Notes in Computer Science, Vol. 2228, pp. 237-248,
Springer-Verlag, 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

D. Cociorva, G. Baumgartner, C. Lam, P. Sadayappan, J. RgamnM. Nooijen, D. Bern-
holdt, and R. Harrison. Space-Time Trade-Off Optimization for a Cla&eztronic Struc-
ture Calculations.Proceedings of ACM SIGPLAN 2002 Conference on Programming Lan-
guage Design and Implementation (PLPIune 2002.

. T. D. Crawford and H. F. Schaefer Ill. An Introduction to Coupleldister Theory for

Computational Chemists. [Reviews in Computational Chemistwol. 14, pp. 33-136,
Wiley-VCH, 2000.

. A.Fraboulet, G. Huard and A. Mignotte. Loop alignment for memaeas optimization. In

Proc. 12th International Symposium on System Synthesigs 71-77, San Jose, California,
November 1999.

. G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective loop fiufsiparray contraction.

In Languages and Compilers for Parallel ProcessiNgw Haven, CT, August 1992.

. High Performance Computational Chemistry Group. NWChem, A coatipnal chemistry

package for parallel computers, Version 3.3, 1999. Pacific NoghiNational Laboratory,
Richland, WA 99352.

. C. Lam, P. Sadayappan, and R. Wenger. On optimizing a class ofdmknsional loops

with reductions for parallel executioRarallel Processing Letter&/ol. 7 No. 2, pp. 157-168,
1997.

. C. Lam, P. Sadayappan, and R. Wenger. Optimization of a class ltfdimensional in-

tegrals on parallel machines. Rroc. Eighth SIAM Conference on Parallel Processing for
Scientific Computingylinneapolis, MN, March 1997.

C. Lam, P. Sadayappan, D. Cociorva, M. Alouani, and J. WilkiesfoPmance optimiza-
tion of a class of loops involving sums of products of sparse arrayBrdn. Ninth SIAM
Conference on Parallel Processing for Scientific Comput8ap Antonio, TX, March 1999.
C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan. oeoptimal evaluation of
expression trees involving large objects.Aroc. International Conference on High Perfor-
mance ComputingCalcutta, India, December 1999.

C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan. 2ation of memory usage
requirement for a class of loops implementing multi-dimensional integidald.anguages
and Compilers for Parallel Computingan Diego, August 1999.

C. Lam.Performance optimization of a class of loops implementing multi-dimensicteal in
grals. Ph.D. Dissertation, Ohio State University, Columbus, August 1999. &lsdable as
Technical Report No. OSU-CISRC-8/99-TR22, Dept. of Computdriaformation Science,
The Ohio State University.

T. Lee and G. Scuseria. Achieving chemical accuracy with couglester theory. In S.
R. Langhoff (Ed.),Quantum Mechanical Electronic Structure Calculations with Chemical
Accuracypages 47-109, Kluwer Academic, 1997.

J. Martin. InEncyclopedia of Computational Chemistfy. Schleyer, P. Schreiner, N.
Allinger, T. Clark, J. Gasteiger, P. Kollman, H. Schaefer Il (Edg/)ley & Sons, Berne
(Switzerland). Vol. 1, pp. 115-128, 1998.

V. Sarkar and G. Gao. Optimization of array accesses by colldotigetransformations.
In Proc. ACM International Conference on Supercomputpages 194-205, Cologne, Ger-
many, June 1991.

Y. Song, R. Xu, C. Wang and Z. Li. Data locality enhancement by emgmeduction. In
Proc. of ACM 15th International Conference on Supercompupages 50-64, June 2001.
Y. Song, C. Wang and Z. Li. Locality enhancement by array cotitra InProc. 14th Inter-
national Workshop on Languages and Compilers for Parallel Compufingust 2001.

