CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2006;00:1-15 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Efficient Search-Space Pruning
for Integrated Fusion and Tiling
Transformations

Xiaoyang Gab, Sriram Krishnamoorthy Swarup

Kumar Sahob, Chi-Chung Lam, Gerald Baumgartnér
J. Ramanujar P. Sadayappan

SUMMARY

Compile-time optimizations involve a number of transformations suchas loop permutation, fusion, tiling,
array contraction, etc. Determination of the choice of these trasformations that minimizes the execution
time is a challenging task. We address this problem in the context of tesor contraction expressions involving
arrays too large to fit in main memory. Domain-specific features oftie computation are exploited to develop
an integrated framework that facilitates the exploration of the ertire search space of optimizations. In
this paper, we discuss the exploration of the space of loop fusion driling transformations in order to
minimize the disk 1/0 cost. These two transformations are integratd and pruning strategies are presented
that significantly reduce the number of loop structures to be evalated for subsequent transformations. The
evaluation of the framework using representative contraction &pressions from quantum chemistry shows
a dramatic reduction in the size of the search space using the stragies presented.

KEY WORDS:. loop fusion, loop tiling, integrated loop transformations, out-of-conmpuotations, pruning the
search-space of optimizations, tensor contractions

1. Introduction

Optimizing compilers incorporate a number of loop transfations such as permutation, tiling, fusion,
etc. Considerable work has addressed loop tiling for erdrarat of data locality [4, 5, 9, 14, 19, 20,
23, 24, 25, 26]. Much work has also been done on improvindityand/or parallelism by loop fusion

*Correspondence to: J. Ramanujam, Department of ElectricalCamdputer Engineering and Center for Computation and
Technology, Louisiana State University, Baton Rouge, LBUZ USA. E-mail: jxr@ece.lsu.edu

TDepartment of Computer Science and Engineering, The Ohice Staiversity, Columbus, OH 43210, USA. E-mail:
{gaox,krishnsr,sahoo,clam,sad@-cse.ohio-state.edu

*Department of Computer Science, Louisiana State UniveBition Rouge, LA 70803, USA. E-mail: gb@csc.Isu.edu
Contract/grant sponsor: US National Science Foundationtract/grant number: 0121676, 0121706, 0403342, 0508245,
0509442, and 0509467

Copyright(© 2006 John Wiley & Sons, Ltd.

2 X. GAO ET AL. @

[7,8, 10, 11, 22]. Fusion can create imperfectly nesteddpapich are more complex to tile effectively
than perfectly nested loops. Several works have addrelsséiing of imperfectly nested loops [2, 23].
Although there has been much progress in developing unifeeddworks for modeling a variety of
loop transformations [1, 2, 16, 17, 26], their use has so éanlrestricted to optimization of indirect
performance metrics such as reuse distance, degree ofgfiana) etc.

The development of model-driven optimization strateglest target direct performance metrics
remains a difficult task; in particular, the size of the shaspace of possible transformations is a
major factor in this. In this paper, we consider the specifimdin of tensor contractions (generalized
matrix products) involving tensors too large to fit into picgd memory. We use special properties
of the computations in this domain to integrate the varigaagformations and investigate pruning
strategies to reduce the search space to be explored.

The large sizes of the tensors involved require the devedoprof out-of-core implementations
that orchestrate the movement of data between disk and maimony. In this paper, we discuss the
integration of loop fusion and tiling transformations witie objective of minimizing disk 1/0O cost.
Loop fusion is used here in the context of fusing the loopslired in a set of tensor contractions.
We first evaluate the set of all fusions to be explored. Fohéasion structure, all loop permutations
and 1/0 placements would be evaluated. A generalized taijpgroach is presented that significantly
reduces the number of loop structures to be explored. Itetsbles subsequent optimizations of I/O
placements and loop permutations. This approach enablegm@aration of the entire search space
using a realistic performance model, without the need tortaés heuristics and search of a limited
subspace of the search space to limit search time.

The rest of this paper is organized as follows. In the nexiaeove elaborate on the computational
context of interest and introduce some preliminary coreepéction 3 describes a tree partitioning
algorithm. In Section 4, we propose a loop structure enutioeralgorithm and prove its completeness.
An overview of the program synthesis system, of which thegnéed framework is a part, is given in
Section 5. The reductions in the space of loop structuregtexiplored is shown for representative
computations in Section 6. Conclusions are provided iniG@eat

2. Computational Context

The work presented in this paper is being developed in théegbof the Tensor Contraction Engine
(TCE) program synthesis tool [3]. The TCE targets a classaatenic structure calculations involving
many computationally intensive components expressechastteontraction expressions. In the context
of optimizing tensor contraction expressions, loop peation, tiling and fusion are the most important
transformations for enhancing performance. There has lbeeansiderable amount of published
research onlooptiling [4, 5, 9, 14, 19, 20, 23, 24, 25, 26]lang fusion [7, 8, 10, 11, 22] as optimizing
transformations. While earlier work focused on perfectlgted loops or sequences of perfectly nested
loops [14, 24, 25], several frameworks have recently beepgsed to transform imperfectly nested
loops [1, 2, 16, 17, 26]. However, none of the prior work hadradsed the use of realistic and
concrete performance models along with an integrated landf loop fusion and loop tiling. The
loop transformation framework being developed for the TGEsurealistic cost models for disk 1/O,
along with a pruning search strategy to explore a large sphakernative loop structures obtainable
through application of loop fusion, tiling and permutatidom the rest of this section, we explain the

Copyright(© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006;00:1-15
Prepared using cpeauth.cls

@ EFFICIENT SEARCH-SPACE PRUNING FOR INTEGRATED FUSION ANDLING 3

computational form of tensor contraction expressionsu@hoan example, and place the work of this
paper in the larger TCE context. The TCE takes as input a leigtl-specification of a computation
expressed as a set of tensor contraction expressions, amfdims it into efficient parallel code.
The current prototype of the TCE incorporates several clatpne optimizations which are treated
in a decoupled manner, with the transformations being pad in a pre-determined sequence. In
[12], we presented an integrated approach to determinégl¢hsizes and 1/O placements for a fixed
structure of the computational loops after fusion and péatian. Techniques to prune the search
space of possible I/O placements, orderings, loop perinntaand tiling for given a choice of fusion
of tensor contractions were presented in [21]. In this paperpresent a technique to enumerate the
various fusion structures and develop an algorithm to Sagmitly reduce the number of loop nests to
be evaluated for each fusion structure.

In the class of computations considered, the final resuletadmputed can be expressed using a
collection of multi-dimensional summations of the prodofcéeveral input arrays. As an example, we
consider a transformation often used in quantum chemistdgs to transform a set of two-electron
integrals from an atomic orbital (AO) basis to a moleculdital (MO) basis:

B(a,b,c,d) = z C1(d,s) x C2(c,r) x C3(b,q) x C4(a, p) x A(p,q,r,S)
p,g,r,s
Here, all arrays would be initially stored on disk. The irefip, g, r ands have the same randé The
indicesa, b, c andd have the same randg€ Typical values folN range from 60 to 1300; the value for
V is usually between 50 and 1000.

The calculation ofB is done in four steps to reduce the number of floating pointraijmns:
Tl(a,q,r,s) = ypC4(a p) x A(p,q,r,8); T2(a,b,r,s) = 34C3(b,q) x T1(a,q,r,s); T3(ab,c,s) =
3rC2(c,r) x T2(a,b,r,s); andB(a,b,c,d) = S,C1(d,s) x T3(a,b,c,s).

The sequence of contractions in this form can be represdntegh operation tree as shown in
Fig. 1(a). The leaves of the operation tree correspond tanigt arrays and the root to the output
array. The interior nodes, which could be intermediate dpwatuarrays, are produced by the tensor
contraction of their immediate children. The edges in therafion tree represent theroducer-
consumer relationship between the different tensor contractionresgions. Note that an operation
tree is a binary tree in which each node has either zero or hildren.

Assuming that the available memory limit on the machine igthis calculation is less than*
(which is 3TB forV = 800), any of the logical arrays, T1, T2, T3 andB is too large to entirely fit
in memory. Therefore, if the computation is implemented asi@ession of four independent steps,
the intermediate§ 1, T2 andT3 have to be written to disk after they are produced, and read f
disk before they are used in the next step. Furthermore,rttauat of disk access volume could be
much larger than the total volume of the data on disk. Sineeerd these arrays can be fully stored in
memory, it may not be possible to read each element only onogdisk.

Suitable fusion of the common loops involved in the contoad that produce and consume an
intermediate can reduce the size of the intermediate amakjng it feasible to retain it in memory.
An intermediate node is said to be fused if the loops involiveits production are fused with those
involved in its consumption. Henceforth, the term interm&zinode will be used to refer to both the
intermediate array produced in the corresponding interaate of the operation tree, as well as the
contraction that produces it. The reference shall be clean the context.

There are many different ways to fuse the loops and they cadgdlt in different memory usage.
Based on the computation context, there are no fusion-ptieMpdependences in tensor contraction

Copyright(© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006;00:1-15
Prepared using cpeauth.cls

4 X. GAO ET AL. @

B = SUM(T3*C1)

for ar,qsp
/ \ [tlagrs += Apgrs*Clap

T3 = SUM(T2*C2) Cc1 for a. b r. s q
/ \ [t2abrs += tlagrs*C3pq

T2 =SUM(T1"C3) c2 for a bcr,s
/ \ [t3a,b,c,s += t2apb,r,s"‘czc,r

T1 = SUM(A*C4) c3 for ab,cd,s

/ \ [Bapbﬁcﬁd += t?’aLbA,cA,s*Cld#s
A ca

(a) Operation tree for the four-index transform (P) Corresponding unfused code structure

Figure 1. Operation tree and unfused code structure for the foux-tralesform.

expressions [3, 13]. Given a choice of fusion, an interntediade not fused with its parent divides the
operation tree into two parts, both of which can be evaluetgdelpendently. Such an intermediate node
that is not fused, is said to becat-point in the operation tree. A cut-point node is assumed to beewritt
to disk on production and read back during its consumptionoAnected operation tree without any
interior cut-points is called &used sub-tree. The divided operation tree for the four-index transform
corresponding td 1 being a cut-point is shown in Fig. 2(a). The cut-point dégdhe operation tree
into two fused sub-trees, one of which produ@ds and the other consumes it.

Theloop nesting tree (LNT) represents the loop structure corresponding to adfissi-tree. Each
node in an LNT is labeled by the indices of a set of fully perallg loops that appear together at
some level in the resulting overall imperfectly nested Istqicture after applying loop fusion to the
contraction computations in the sub-tree. The leaves septethe innermost loops, while the root
represents the outermost loops. Fig. 2(b) shows possiblesiddrresponding to the two fused subtrees
in Fig. 2(a). The corresponding code structure is showngn Ki).

3. Top Sub-tree Enumeration

In this section, we discuss the procedure to enumerate thed 8 sub-trees. An arbitrary operation
tree withM intermediate nodes has at m&t2™) possible top sub-trees, but not all of the top sub-
trees can be a fully fused operation tree. We can prune thef petssible top sub-trees by using the
following two rules: (i) the fused intermediate array mustfibinto memory; and (ii) the parent of two
fused nodes can not be fused above.

The first rule is used to prune ineffective fusions. In gehdusing a loop between the producer
of an intermediate array and its consumer eliminates theegponding dimension of the array and
reduces the array size. If the array fits in memory after fusio disk 1/O is required for that array. On
the other hand, if the array does not fit in the physical menewgn after fusion, the disk 1/O cost is
not reduced and thus fusion does not result in any improveriberefore, we force the fusion of any

Copyright(© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006;00:1-15
Prepared using cpeauth.cls

% EFFICIENT SEARCH-SPACE PRUNING FOR INTEGRATED FUSION ANDLING 5

T1 = SUM(A*C4)
loopNest1 :
Tl 50
A o arast [tlagrs += Apgrs*Cdap

loopNest2 :

B = SUM(T3*C1)

a,b for a b
for r, s
T3 = SUM(T2*C2) C1 for q
/ il [oase] | | o = aaeerCha
[t3cs +=12,5xC2r
T2 = SUM(T1*C3) 2 for ¢ d, s ’
/ \ [qm2| [cmy] [Babcd += t3cs+Clas
(b) Loop nesting trees
T1 c3

(a) Divided operation trees (c) Corresponding code structure

Figure 2. Representations involved in generation of a fused code stuctu

loops corresponding to an intermediate node to cause th#ingsintermediate to reside in memory.
We also assume that an intermediate array resides in diskgfaducer is not fused with its consumer.

The second rule is derived from the characteristics of amatipe tree. Consider an intermediate
nodet. If both its children are fused with it, then the loops cop@sding to the summation indices
in the given node must be the outermost loops; and it can nhides with its parent anymore. Thus
eithert or one of its children must be a cut-point. Based on this muecan restrict the number of top
sub-trees t@(M?).

From the first rule, it follows that contraction nodes formhaini. The second rule implies that two
contraction chains may join at a root node, i.e., cut-point.

The function to enumerate the fused sub-trees rooted atem giwde is shown in Algorithm 1. It
is executed at each node of the operation tree in bottom-umenand constructs the fused sub-trees
rooted at a given node from those of its children. Given a rnode first, we create a new sub-tree
including onlyt and its direct children. Then we extend existing sub-treas fone of its children to
include itself. These sub-trees can be further extendedctade the parent df so we call them the
promising sub-trees, which would be in a single chain form (each node has at mastfased child).
We can also create sub-trees by merging two existing s@s-frem both its children. In this cade,
must be a cut-point and this sub-tree cannot be extendedaryin the algorithm, a top sub-trée
is identified by itsCut pointSet, which includes cut-points in its leaves; note that inpuesare not
cut-points. The field.PTreeSet represents the set of promising sub-trees and will be useanstruct
the fused sub-tree rooted at the parertt dfote that we do not know whether a fused node can fit into
memory at this step. This is ensured by the choice of loogtres.

4. Loop Structure Enumeration

In this section, we first present an algorithm that can geedhe set of loop structures corresponding
to a fused subtree. We then prove that for any loop struciuoé the fused subtree, we can find

Copyright(© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006;00:1-15
Prepared using cpeauth.cls

6 X. GAO ET AL. @

a corresponding loop structuf® in the generated set, such tHgitcan be transformed t8 by an
appropriate multi-level tiling strategy.

4.1. Enumeration Algorithm

In the previous section, we showed that a fused subtree ratstdne of these two forms:

e The contraction nodes form a chain. We call doatraction chain. For instance, Fig. 1(a) is such
an operation tree in which the contraction chaiffisT2,T3,B.

t1 = the left child oft
t> = the right child oft
if t1 is an input nodeb; = null, elseb; =t1
if t2 is an input nodeb, = null, elseb, =t2
TreeSat = empty
/ICreate a new sub-tree
Create a new Tre®r with Tr.CutpointSet = {bs,by}
InsertTr into TreeSet
/[Extending promising sub-trees from its left child
if by is notnull then
for each sub-tred int1.PTreeSat do
Create a new Tre&r with Tr.Cut pointSet = st.Cut point Set + b2
InsertTr into TreeSet
end for
end if
/[Extending promising sub-trees from its right child
if by is notnull then
for each sub-treat int2.PTreeSet do
Create a new Tre&r with Tr.Cut pointSet = st.Cut pointSet + bl
InsertTr into TreeSet
end for
end if
t.PTreeSat = TreeSat
/IMerging sub-trees from both children, and extending &sult
if bothby andb, are notnull then
for each pair of sub-trees1 in childSet1 andst2 in childSet2 do
Create a new Treér
Tr.CutpointSet = {st1.Cut point Set, st2.Cut pointSet }
InsertTr into TreeSat
end for
end if
returnTreeSat

Algorithm 1: EnumerateTopSubtreesthe root of a sub-tree) returiiseeSat

Copyright(© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006;00:1-15
Prepared using cpeauth.cls

@ EFFICIENT SEARCH-SPACE PRUNING FOR INTEGRATED FUSION ANDLING 7

e The contraction nodes form two chains joining at the rootendd this case, theontraction
chainis connected by these two chains. An example of such an épetate is shown in Fig. 3,
in which the contraction chain i81,T72,B, T3, T4.

An operation tree witlm contraction nodes, ..., t, can be translated into a sequence of perfectly nested
loops, one for each contraction. Each of the perfectly welsteps can be considered an independent
loop nesting tree. The fusion of sub-trees producing anduwoimg an intermediate node creates an
imperfectly nested loop nest, in which some of the commopda@re merged. Many different choices
exist in the ordering of the fusions within this sequence efigctly nested loop nests. Choosing the
best loop structure for a given fusion structure requiresdatermination of the tile sizes and disk
I/O costs for each of the numerous possibilities, which i®a/\expensive operation. We tackle this
problem by enumeratingpaximally fused |oop structures from which all possible fusion structures can
be derived by appropriate choice of loop tiling.

The process of enumeration of the fusion structure set sporeding to a fully fused operation tree
can be modeled as a paranthesization problem. Consideottigaction chainr 1, T2, T3,B of the
operation tree shown in Fig. 1(a), and one of its parenthéeizs(((T1 T2)T3)B). According to the
nesting of parentheses, the contraction producing T1 amsleoing T1 are fused first, and the resulting
loop nest is fused with the contractions producing T3 andhBhat order.

For each parenthesization, a maximally fused loop stractepresented in a loop nesting tree is
created by a recursive construction procedure. We catbitimally fused since, in the construction
procedure, each intermediate node will have its indicesdws much as possible with its parent. The
construction procedure is shown in Algorithm 2. It takes eepthesizatiorP as input, and generate
the corresponding LNT. Note that, in Algorithm &,indices denotes all loop indices surrounding
the contraction nodg§. A parenthesization of a contraction chain witmodes has — 1 pairs of
parentheses. Each pair of parentheses includes two elgnadeft and a right element. Each element
is either a single contraction node or a parenthesizati@nsofb-chain within a pair of parentheses.

Consider a parenthesizati¢fir 1(T2 T 3))B) of four-index transform. Fig. 4 shows the setp-by-step
construction of the corresponding LNT. The final loop stouetis shown in Fig. 6(b).

B = SUM(T2*T3)
T2 = SUM(T1*C3) T3 = SUM(C2*T4)
T1 = SUM(A*C4) T4 = SUM(D*C1)

/N /N

Cc1

Figure 3. An operation tree with two chains

Copyright(© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006;00:1-15
Prepared using cpeauth.cls

8 X. GAO ET AL. @

/[Given a parenthesization, the algorithm map it to a makinfiased loop structure in LNT
| =Pleft
r = Pright
if | is a parenthesizatictmen
It = Constructionleft)
else ifl is a contractiorthen
It = Create a new LNT node
It.indices = l.indices
It.children = null
It.contraction =1 {ltis a leaf, which includes a contraction node ih it
end if
if r is a parenthesizatiainen
rt = Construction(ight)
else ifr is a contractiorthen
rt = Create a new LNT node
rt.indices = r.indices
rt.children = null
rt.contraction =r {rt is a leaf, which includes a contraction node i it
end if
comindices = It.indicesNrt.indices
[t.indices = It.indices— comindices
rt.indices = rt.indices— comindices
Int = Create a new LNT node
Int.indices = comindices
Int.children= {It,rt}
returnint

Algorithm 2: Constructiorip)

4.2. Completeness

In this section, we prove that the setrofximally fused loop structures generated by the enumeration
algorithm (shown in Algorithm 2) can represent all loop stures of a fused subtree. The following
definitions are provided to clarify the terms used in the firoo

Definition 1. Each leaf in an LNT includes a contraction node. The set ofraotion nodes from all
the leaves in an LNT is called theafcontractions of the LNT.

Definition 2. Each node in an LNT has exactly one path to the root. tetpperindices denotes the
union of all indices belonging to nodes on the path ftaimthe root. If a subtrednt is rooted at, we
also defineslnt.upperindicesto equal tat.upperindices.

Definition 3. Consider two leavet andt; in an LNT that belong to one subtremt. If there is no
other subtree that contains bdatlandt; and is a subtree afnt, we say thasint is theminimal common
subtree of t; andt;, denoted a¥ICS(t;, t;).

Copyright(© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006;00:1-15
Prepared using cpeauth.cls

% EFFICIENT SEARCH-SPACE PRUNING FOR INTEGRATED FUSION ANDLING 9

Parenthesization LNT
(T2 T3)
a,b,rs
la2) | |cm) |

(T1(T27T3))

[pan] | b |

la2) | | e |

| r | |b,c,d(B)|

((T1(T2T3)) B)

[parn] [o |

la2) | |cm) |

Figure 4. Construction of a maximally fused loop structure for a partiqué@enthesization of the four-index
transform.

Given an arbitrary loop nesting tréet, we can map it to a maximal fused loop nesting traéthat
belongs to the set ahaximally fused loop structures generated by the enumeration algorithraegbo
and can be translated knt with appropriate multi-level tiling. The mapping algorithconsists of two
steps:

1. Generate a parenthesizatiBnof the contraction chain corresponding to the givah using
Algorithm 3.

2. Apply the construction procedure in Algorithm 2 &hto generate a maximally fused loop
structurelnt’.

Int” is obviously in the set afnaximally fused loop structures generated by the enumeration algorithm.
We now show thalnt’ can be translated ot by sinking indices at upper levels down.

Lemma 1. For any pair of contraction nodgsandt;, let common(Int,t;,t;) be the loops shared Ity
andt; in Int. We havecommon(Int,t;,tj) C common(Int’,t;,t;).

Proof: Given a subtreednt, dnt.upperindices represents all common loops shared by
sint.leafcontractions.

Copyright(© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006;00:1-15
Prepared using cpeauth.cls

10 X. GAO ET AL. @

/[Given an LNT, the algorithm map it to a corresponding p#resization
if Int.children # null then
P =null
for each childcin Int.children do
' = Parenthesize]
if Pisnull then
P=P
else
P = new ParenthesizatioR(P')
end if
end for
else
P = c.contraction {c is a leaf and includes a contraction n¢de
end if
returnP

Algorithm 3: Parenthesizbtt)

There is an interesting property wiximally fused loop structures in the way they are constructed.
For any subtrealnt in the LNT of amaximally fused loop structures nt.upperindices includes all
common loops amongint.leafcontractions. In other words, it includes all possibly shared loops
amongsint.leaf contractions. In addition, we can see from the mapping method thait ihas a subtree
snt, then there exists a twin subtrdet’ in Int’ that satisfies the following conditions:

dnt.leafcontractions = dsnt’.leafcontractions
dnt.upperindices C sint’.upperindices

Given any pair of leaf noddsandt;, we definemint = MCS(t;,t;) in Int, wheremint. upperindices =
common(Int,t;,tj). Hence, we can find the corresponding subinba’ in Int’, where

mint.upperindices C mint’.upperindices C common(Int,t;,t;)
Thus, we haveommon(Int,t;,tj) € common(Int’,t;,t;). O

Lemma 2. If common(Int,t;,tj) C common(Int’,t,tj), then we can transforrimt’ to form Int” by
sinking indices down, so thabmmon(Int,t;,tj) = common(Int”,t;,t;).

Proof: We define mint and mint’ as MCS(tj,t;) in Int and Int’ respectively. Any loop in
common(Int’,tj,t;) belongs to the root or an ancestormifnt’. Assuming loopl is in the difference
of common(Int,t;,tj;) andcommon(Int’,tj,t;). We remove from the original node, and insert it to
all children ofr. After that, if| still belongs to the root or an ancestorrolfnt’, we repeat the sinking
operation described above, untik not inmint’.upperindices any more. The same method is applied
for all indices in the difference afommon(Int,t;,t;) andcommon(Int’,t;,tj). The new LNT is denoted
asint”. Then, we haveommon(lInt,t;,tj) = common(Int”,t;,tj). O

Applying the sinking operation in Lemma 2 for each pair of wanotion nodet;, t;), we can
transformint’ to Int”, which satisfies the conditiotv(t;, t;), common(Int,t,t;) = common(Int”,t,t;).
After that, if a node has no indices in.indices, we remove from Int”, and put all children of to its
parent. Thenlnt” is same asnt.

Copyright(© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006;00:1-15
Prepared using cpeauth.cls

% EFFICIENT SEARCH-SPACE PRUNING FOR INTEGRATED FUSION ANDLING 11

aTi,s

| atTe,r | | ali, b,c,d (81

alj.range x al1.range = a.range

alp.range x alp.range = als.range

| alz, p,q (T1)| | aTs,b | aTs.range x alz.range = al,.range

| alaq (T2) | | ab,c (T3) |
(a) Multi-level tiling loopa (b) Range of different level tiles

Figure 5. An example of multi-level tiling in LNT.

Using multi-level tiling strategy, a maximally fused loop structure can be transformed into an
arbitrarily fused loop structure by appropriate choiceile sizes.Multi-level tiling can transform
the LNT of a loop structure as follows. Each loop present srtbot is split into two components, an
inter-tile loop and an intra-tile loop. The intra-tile loggplaced on the child nodes of the root. Then
the loops present in each of the child nodes including thedtile loops from the root are again split
and intra-tile loops are placed on their respective childaso This process is performed recursively till
the leaf nodes are encountered. The loop structure comdsppto the LNT can also be transformed
accordingly. Fig. 5 shows the way to tile logpin the LNT in Fig. 4 and the relationship between
different tiles, where.range represents the range of loap

The sinking operation in an LNT can be modeledvasti-level tiling of the loop structure. Tiling a
given fused loop structure with a tile size equal to its loapge leads to the same result as sinking the
loop index from the original node to all its children. LeandS be loop structures represented|by
andInt’ respectively. Since we can transfolnt’ to Int by sinking operations, we can also transform
StoS

We illustrate the transformation procedure using an exar#ah arbitrary fully fused loop structure
Sof four-index transform is shown in Fig. 6(a), and the cqomxling maximally fused loop structure
S is in Fig. 6(b). After we apply multi-level tilingS is translated to the format shown in Fig. 7(a). In
addition, if we set ranges of inter-tile loops accordinghe following formulasaT, = al; = sT; =
sT, =slz3 = rT, = Ty = 1; aTy = arange; andrly = r.range. Now, if we remove all loops with
range = 1, thenS can be rewritten in the format shown in Fig. 7(b), which isakathe same as
S It should be noted that the indexing of the intermediatayahas been shown in a more generic
way.

4.3. Complexity

The total number of loop structures generated by the endimer@gorithm is the same as the number
of parenthesizations of the contraction chain. For a cotitna chain withn nodes, the number of
all possible parenthesizations is given by tif&Catalan number. It is exponential in the number of
intermediate nodes with an upper bound o®(4"/n%?). In contrast, the number of possible loop
structures is potentially exponential in the total numbledistinct loop indices in tha intermediate

Copyright(© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006;00:1-15
Prepared using cpeauth.cls

12 X. GAO ET AL.

e

for a
[for r
for q,s p
[tlsq += Apgrs*Clap
for b,s g
[t2b,,7s += tlsy‘q *C3b,q
for bcr,s
[t3b,t:,s += t2b,r.,s*czc,r
for bcd, s
L [Ba,b,c,d += t3b,c,s*C1d,s

(a) Arbitrary fused loop structure: S

for a s
[for r
for g
for p
[[+= Ap7q1r’s*c4a7p
for b
[t2p +=t1xC3pq
for b, c
[t3b.C +: t2b*C2Q’r
for b,c, d
L [Babcd +=1t3pc*Clgs

(b) Maximally fused loop structure: S’

Figure 6. An arbitrary loop structure and the corresponding maximadigdstructure.

for aTy, sy
[for rTy, aTy, Sh
for Ty, rTy, aTs, ST
“for p,qly,rly, als, sls
[tla giri,s+ = Apgrs*Clap
for b, qly, rlp, alz, slz
[t2apr1,8+=tlagirig *C3pq
for b, crlq, alp, sl
[t3aIAb,c,sIJF :tzal,b,rl,SI *C2¢r
for alg, b, c d, sy
L [Ba,b,c,d+ :t3al,b,c,sl >“Cld,s

(a) After inserting intra-tile loops

for aTy
[for Ty
for p,qly, sls
[tla g ri,s+ = Apgrs*Clap
for b, qly, sl3
[t2apr1s+=1tlagiri.8 *C3pq
for b,crlq, alp, sl
[t3al,b,c,sl+ :tzal,b,rlsl *C2
for b,cd, sl
L [Ba,b,c,d+ :t3al.b,c,sl *Cld,s

(b) After selecting proper tile counts

Figure 7. Translating S’ to S by using a multi-level tiling strategy.

nodes, a considerably larger number. The fused operaserigmot very long for most representative
computations. In most practical applications, a fusedrsehisually has no more than five contractions
in a single chain. Note that tm¥" Catalan number is not very large wheis small. The first six Catalan

numbers are listed here;1,2,5,14,42,

5. Integrated Framework

5.1. Optimization Process

In this section, we describe the overall program synthegstem that incorporates the steps
described earlier in the paper. The program synthesismytkes an operation tree representing a
set of tensor contractions as input, and generates an efficep structure with explicit disk I/O
statements to implement the computation. The loop streaifian operation tree can be defined by

Copyright(© 2006 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls

Concurrency Computat.: Pract. Exper. 2006;00:1-15

% EFFICIENT SEARCH-SPACE PRUNING FOR INTEGRATED FUSION ANDLING 13

/[Given a sub-tree rooted gtthe algorithm finds the optimal loop structure with minirdak 1/0
TopTree = EnumerateTopSubrees(t)
for each sub-trets in TopTree do
tes=t5.Cut pointSet
leafCost =0
for each cut-pointt in tcsdo
leafCost = LeafCogt + ct.FS.Cost
end for
/[Enumeatrte all fusion structures of fused sub-tege
LoopSet = Enumerateloop(ts)
OptCost =
//Compute the minimal disk 1/O cost of sub-tree
for each loop structuréfsin LoopSet do
mt fs= multiTiling(f fs)
Cogt = datalocality(mtfs)
if Cost < OptCosgt then

OptCost = Cost

OptFfs= ffs
end if
end for

Cost = OptCogt + leafCost

if Cost <t.FSCos ort.FS=null then
t.FSCos = Cost
t.FSTCS=TCS
t FSFFS= OptFfs

end if

end for . .
Algorithm 4: OptimalLoopStructuré&(the root of a sub-tree)

two factors: (1) the partitioning method to divide the opemratree into a set of fused sub-trees; and
(2) the internal loop structure (fusion and tiling) of eaakdd sub-tree. The process to find the optimal
loop structure may be viewed in terms of the following steps:

1. Operation Tree Partitioning: In this step, we enumerditeree partitioning methods. A tree
partitioning method divides the original operation tre®iseveral fused sub-trees by identifying
a set of cut-points. The optimal fusion structures for tHe-saes are independent of each other,
and are determined separately.

2. Loop Structures Enumeration: For each fused sub-treefindea set of candidate fusion
structures to be evaluated, as a set of LNTs. The optimabriusiructure would be included
in the candidate set.

3. Intra-Tile Loop Placements: For a given LNT, we tile abhjs at each node and propagate intra-
tile loops to all the nodes below it.

4. Disk I/O Placements and Orderings: We then explore vanmmssible placements and orderings
of disk I/O statements for each disk array in a tiled loop cttrce with a pruning strategy to

Copyright(© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006;00:1-15
Prepared using cpeauth.cls

14 X. GAO ET AL. @

determine the best placement and ordering.

5. Tile Size Selection: For each combination of loop tramsfttions and 1/O placements, the I/O
cost is formulated as a non-linear optimization problermremms of the tile sizes. The tile sizes
that minimize the disk 1/0 cost are determined using a gésmengpose non-linear optimization
solver.

6. Code Generation: We calculate the disk access cost forsgdgtion obtained, and generate code
for the one with the minimal disk 1/O cost.

5.2. Dynamic Programming Algorithm

A dynamic programming algorithm is employed to find the optiloop structure of an operation tree.
The algorithm calculates the minimal disk 1/0 cost and cspomding loop structure of each possible
sub-tree of the original tree in bottom-up fashion. At a caction nodet, all sub-trees rooted at its
interior nodes are evaluated before, whose minimal diskckd&t and optimal loop structure stored
in their roots. Thus, we will only evaluate these new fuselg-saes, which are rooted aiand will

be referred asop sub-trees of t in later description. The optimal top sub-tree would be the that
minimizes the sum of the disk cost occurred in itself and oth-trees rooted at its leaves. After
traversing the entire operation tree, the optimal loopcstme can be obtained by tracking back the
optimal top sub-trees from root to leaves.

Algorithm 4 is employed to find the optimal loop structure foe operation tree rooted at a given
nodet. It will be executed at each node of the operation tree frottobo-up. For an arbitrary node
lett.F Sdenote its optimal top sub-tree, which includes three fidl@S, FF SandCog. TCSincludes
cut-points in its leaved$; F Srepresents its loop structure; afdst represents the disk /O cost occurred
in it.

In the algorithm, the functioEnumerateTopSubtree(t) returns the set of all possible top sub-trees of
t. After that, each of these sub-trees is evaluated in turreterchine the optimal loop structure. The
initial cost of a sub-tree is the sum of the costs of its leavaen, for a fused sub-trés, the function
Enumerateloop(ts) will return the set of candidate fusion structures represgkhy loop nesting trees.
Given a fully fused loop structuréfs, the functionmultiTiling(ffs) will insert multi-level intra-tile
loops in it and return a tiled loop structure. For a tiled I®tpicturemt fs, the search space of disk
I/0 placements and orderings, loop permutations and tikesss modeled and pruned as a non-linear
optimization problem, which is then solved to determine itigimal disk 1/0 cost. This process is
encapsulated in the procedutaal ocality(mtfs). The implementation details can be found in [21].

5.3. Example

For the operation tree in Fig. 1(a), we start at the lowestraction nodeT 1, which has only one
top sub-tree11 as showed in Fig. 8(a). Then we haVé.FS=t11. The optimal loop structure
and minimal cost ot11 is calculated using the functiosumerateLoop(t11), multiTiling(t11),
and datalocality(t11). For simplicity, we do ignore the specifics of this functiomdaassume that
t11.Cost = 100.

The second nod&2 has two top sub-tre¢21 andt22 as shown in Fig. 8(b). Assuming the internal
disk cost oft21 is 150 and of22 is 200. But, since the ledfl of sub-tred21 is the root of another

Copyright(© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006;00:1-15
Prepared using cpeauth.cls

% EFFICIENT SEARCH-SPACE PRUNING FOR INTEGRATED FUSION ANDLING 15

sub-treet1l, the total disk cost of21 would be 250, higher thar22. So, we havd 2.FS = t22,
T2.FSTCS=andT2.FSCos = 200.

Fig. 8(c) represents three top sub-trees of nb8gwhere we assume their internal disk cost are 200,
250, and 300 respectively. Sint22 is rooted at a leaf df31 andt11 is rooted at a leaf af32, we
get the total cost of these sub-tree¢2sCost = 400,t32.Cost = 350, and33.Cost = 300.t33 has the
minimal total cost, then the optimal top sub-treel& would bet33 with Cost = 300.

The four sub-trees identified at the root of the operaipare shown in Fig. 8(d). The internal cost of
these sub-trees are assumed to be 250, 300, 350, and 50(fithaldop sub-tree oB is determined
to betB3 with Cost = 450, which is also the minimal disk cost of the given operatiee in Fig. 1(a).
The optimal tree partitioning method of the operation trae be obtained by tracking back from the
cut-points set of the rooB.F STCShas one cut-poinf 1 andT 1.FSTCSis empty. Hence the optimal
tree partitioning method will divide the operation treeoitivo sub-trees at nodel. The optimal loop
structures of these sub-trees can be fourllFSFFSandT1.FSFFS

6. Results

The enumeration algorithm discussed in Section 4.1 gezreeaset of candidates loop structures to be
considered for data locality optimization. Without thigalithm and generalized tiling, the set of loop
structures to be evaluated might be too large, precludiag tomplete evaluation and necessitating
the use of heuristics.

We evaluate the effectiveness of our approach using thewilh tensor contractions from
representative computations from the quantum chemistmyadio

1. Four-index transform (4index): This is the sequence of contractions introduced in Section 2

2. CCSD: The second and the third computations are from the class opl€éd Cluster (CC)
equations [6, 15, 18] for ab initio electronic structure maliy. The sequence of tensor
contraction expressions extracted from this computasahown as follows:

S(j,i,b,a) = ;(A(I,k, b,a) x (Z(Z(B(d,c,l,k) x C(i,c)) x D(j,d)))

C
3. CCSDT: This is a more accurate CC model. A sub-expression from theiCtheory is:
S(h37 h4a p17 p2) = ZpQ,hG,hB (y*OOOV\N(h8a h67 h47 pga plv pZ) X
2 h10 (t,VO(pga th) X Zp7 (t,VO(p7, h8) X
3 ps (t-vo(p5, h6) x v_oow(h10,h3, p7, p5)))))
We evaluated the fused subtree corresponding to the empin&tion tree without any cut-points. The
number of all possible loop structures and the number ofidatelloop structures enumerated by our

approach are shown in Table I. It can be seen that a very laagiidn of the set of possible loop
structures, up to 98%, is pruned away using the approachapmebin this paper.

7. Conclusions

In this paper, we discussed the exploration of the spaceapf fosion and tiling transformations in
order to minimize the disk access cost of tensor contraetiafuation. These two transformations were

Copyright(© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006;00:1-15
Prepared using cpeauth.cls

16 X. GAO ET AL.

T1
Cost = 100

A Cc4
t11: InterCost = 100
(a) TLFS =tl11; T1.FS.Cost = 100; T1.FS.TCS = {}

T2
T2
Cost =250
Cost =250
T1
T1 Cc3 / \ 3
Cost = 100 A c4
21: InterCost = 150 22: InterCost = 200
(b) T2.FS =1t22; T2.FS.Cost =200; T2.FS.TCS = {}
T3
T3 Cost = 300
13 Cost =350
Cost =400 ™ 2
v c2 / \
T2 c2
\ T C3
Cost = 200 T1 Cc3 / \
Cost = 100 A C4
t31: InterCost = 200 32: InterCost = 250 t33: InterCost = 300
(c) T3.FS =133; T3.FS.Cost =300; T1.FS.TCS = {}
B
B Cost = 500
B Cost = 450
B Cost = 500 T3 C1

Cost = 550 T3 C1 / \

T3 C1 T2 Cc2 /
Cost = 300 T2 C2 / \ T1 C3
Cost =200 T c3 / \

Cost = 100 A Cc4

tB1: InterCost = 250 tB2: InterCost = 300 tB3: InterCost = 350 tB4: InterCost = 500

(d) B.FS =tB3; B.FS.Cost =450; B.FS.TCS = {T1}

Figure 8. How to find the optimal loop structure of an operation tree by Alyord

Table I. Effectiveness of pruning of loop structures.

#Contractions #Loop structures Reduction
Total Pruned

4index 4 241 5 98%
CCSD 3 69 2 97%
CCSDT 4 182 5 98%
Copyright(© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006;00:1-15

Prepared using cpeauth.cls

% EFFICIENT SEARCH-SPACE PRUNING FOR INTEGRATED FUSION ANDLING 17

integrated and pruning strategies are presented thafisagrtly reduce the number of loop structures to
be evaluated for subsequent transformations. We discapgedaches to partitioning the operation tree
into fused sub-trees and generating a small set of “maxynfafied” loop structures that “cover” all
possible imperfectly nested fused loop structures. Theoamh was evaluated on a set of computations
representative of the targeted quantum chemistry domaimaignificant reduction was demonstrated
in the number of loop structures to be evaluated.

ACKNOWLEDGEMENTS

This work is supported in part by the National Science Foundation thrawginds 0121676, 0121706, 0403342,
0508245, 0509442, and 0509467.

REFERENCES

10.
. K. Kennedy and K. S. McKinley. Maximizing loop paralleti@nd improving data locality via loop fusion and distribatio

12.

13.
14.
15.
16.

17.

N. Ahmed, N. Mateev, and K. Pingali. Synthesizing transfations for locality enhancement of imperfectly nested loops.
In Proc. of ACM Intl. Conf. on Supercomputing, 2000.

. N. Ahmed, N. Mateev, and K. Pingali. Tiling imperfectly-teloops nests. IRroc. of SC 2000, 2000.
. G. Baumgartner, A. Auer, D. Bernholdt, A. Bibireata, V. @pella, D. Cociorva, X. Gao, R. Harrison, S. Hirata,

S. Krishnamoorthy, S. Krishnan, C. Lam, Q. Lu, M. Nooijen, Rz®&, J. Ramanujam, P. Sadayappan, and A. Sibiryakov.
Synthesis of high-performance parallel programs for a clasd dnitio quantum chemistry modelsroceedings of the
|EEE, 93(2):276—292, February 2005.

. J. Chame and S. Moon. A tile selection algorithm for datalibcand cache interference. Rroc. of ACM Intl. Conf. on

Supercomputing, pages 492-499, 1999.

. S. Coleman and K. S. McKinley. Tile Size Selection Usingl@a®rganization and Data Layout. Pnoc. of the SGPLAN

'95 Conference on Programming Languages Design and Implementation, 1995.

. T. Crawford and H. F. Schaefer Ill. An Introduction to Ctagp Cluster Theory for Computational Chemists. In K.

Lipkowitz and D. Boyd, editorReviewsin Computational Chemistry, volume 14, pages 33—-136. John Wiley, 2000.

. C.Ding and K. Kennedy. Improving effective bandwidth thgh compiler enhancement of global cache reudsParallel

Distrib. Comput., 64(1):108-134, 2004.

. G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collectivepusion for Array Contraction. IRroc. of the Fifth LCPC

Workshop, 1992.

. S. Ghosh, M. Martonosi, and S. Malik. Precise Miss Analysr Program Transformations with Caches of Arbitrary

Associativity. InProc. of the Eighth ACM Intl. Conf. on Architectural Support for Programming Languages and Operating
Systems, 1998.
K. Kennedy. Fast greedy weighted fusion.Phoc. of ACM Intl. Conf. on Supercomputing, 2000.

In Proc. of Languages and Compilersfor Parallel Computing, pages 301-320. Springer-Verlag, 1993.

S. Krishnan, S. Krishnamoorthy, G. Baumgartner, C. Lam,aid&hujam, P. Sadayappan, and V. Choppella. Efficient
synthesis of out-of-core algorithms using a nonlinear oétion solver.Journal of Parallel and Distributed Computing,
66(5):659-673, May 2006.

C. Lam. Performance Optimization of a Class of Loops Implementing Multi-Dimensional Integrals. PhD thesis, The Ohio
State University, Columbus, OH, August 1999.

M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache perfoaaamd optimizations of blocked algorithms. Rroc. of
Fourth Intl. Conf. on Architectural Support for Programming Languages and Operating Systems, 1991.

T.J. Lee and G. E. Scuseria. Achieving chemical accurétyogupled cluster theory. In S. R. Langhoff, editQuantum
Mechanical Electronic Sructure Calculations with Chemical Accuracy, pages 47—-109. Kluwer Academic, 1997.

A. W. Lim and M. S. Lam. Maximizing Parallelism and MinimigirSynchronization with Affine PartitionsParallel
Computing, 24(3-4):445-475, May 1998.

A. W. Lim, S.-W. Liao, and M. S. Lam. Blocking and array caation across arbitrarily nested loops using ane
partitioning. InProc. of the Eigth ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming,
pages 103-112, 2001.

Copyright(© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006;00:1-15
Prepared using cpeauth.cls

18

X.GAO ET AL. %

18

19.

20.

21.

22.

. J. M. L. Martin. Benchmark Studies on Small Molecules. Im.RR. Schleyer, P. R. Schreiner, N. L. Allinger, T. Clark,
J. Gasteiger, P. Kollman, and H. F. Schaefer I, editBreyclopedia of Computational Chemistry, volume 4, pages 115—
128. John Wiley, 1998.
G. Rivera and C.-W. Tseng. A Comparison of Compiler Tilinggkithms. InCC '99: Proc. 8th Intl. Conf. Compiler
Construction, pages 168-182. Springer-Verlag, 1999.
G. Rivera and C.-W. Tseng. Tiling optimizations for 3Desttific computations. Ir8upercomputing '00: Proc. 2000
ACM/IEEE conference on Supercomputing (CDROM), 2000.
S. K. Sahoo, S. Krishnamoorthy, R. Panuganti, and P. Sagay. Integrated loop optimizations for data locality
enhancement of tensor contraction expression®rdn. of Supercomputing (SC 2005), 2005.
S. Singhai and K. S. McKinley. Loop Fusion for Parallgisnd Locality. InProc. of Mid-Atlantic States Student
Workshop on Programming Languages and Systems, 1996.
. Y. Song and Z. Li. New Tiling Techniques to Improve Cacheperal Locality. InProc. of ACM SSGPLAN PLDI, 1999.
. M. E. Wolf and M. S. Lam. A Data Locality Algorithm. IRroc. of ACM SSGPLAN PLDI, 1991.
. M. E. Wolf, D. E. Maydan, and D. J. Chen. Combining loop $farmations considering caches and scheduling?rae.
of the Twenty Ninth Annual International Symposium on Microarchitecture, pages 274—-286, 1996.
. Q. Yi, V. Adve, and K. Kennedy. Transforming loops to restom for multi-level memory hierarchies. PRLDI '00:
Proceedings of the ACM SIGPLAN 2000 conference on Programming language design and implementation, pages 169—
181, 2000.

Copyright(© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006;00:1-15
Prepared using cpeauth.cls

