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Abstract. The goal of our project is the development of a program synthesis
system to facilitate the development of high-performance parallel programs for
a class of computations encountered in computational chemistry and computa-
tional physics. These computations are expressible as a set of tensor contractions
and arise in electronic structure calculations. This paper provides an overview
of a planned synthesis system that will take as input a high-level specification
of the computation and generate high-performance parallel code for a number of
target architectures. We focus on an approach to performing data locality opti-
mization in this context. Preliminary experimental results on an SGI Origin 2000
are encouraging and demonstrate that the approach is effective.

1 Introduction

The development of high-performance parallel programs for scientific applications is
usually very time consuming. Often, the time to develop an efficient parallel program
for a computational model is the primary limiting factor in the rate of progress of the sci-
ence. Therefore, approaches to automated synthesis of high-performance parallel pro-
grams are very attractive. In general, automatic synthesis of parallel programs is not
feasible. However, for specific domains, a synthesis approach is feasible, as is being
demonstrated, e.g., by the SPIRAL project [35] for the domain of signal processing.

Our long term goal is to develop a program synthesis system to facilitate the de-
velopment of high-performance parallel programs for a class of scientific computations
encountered in computational chemistry and computational physics. The domain of our
focus is electronic structure calculations, as exemplified by coupled cluster methods,
where many computationally intensive components are expressible as a set of tensor
contractions. We plan to develop a synthesis system that can generate efficient paral-
lel code for a number of target architectures from an input specification expressed in a
high-level notation. In this paper, we provide an overview of the planned synthesis sys-
tem, and focus on an optimization approach for one of the components of the synthesis
system that addresses data locality optimization.

The computational structures that we address arise in scientific application domains
that are extremely compute-intensive and consume significant computer resources at
national supercomputer centers. These computational forms arise in in some compu-
tational physics codes modeling electronic properties of semiconductors and metals
[2, 8, 28], and in computational chemistry codes such as ACES II, GAMESS, Gaussian,
NWChem, PSI, and MOLPRO. In particular, they comprise the bulk of the computation
with the coupled cluster approach to the accurate description of the electronic structure



of atoms and molecules [21, 23]. Computational approaches to modeling the structure
and interactions of molecules, the electronic and optical properties of molecules, the
heats and rates of chemical reactions, etc., are crucial to the understanding of chemical
processes in real-world systems.

The paper is organized as follows. In the next section, we elaborate on the com-
putational context of interest and the pertinent optimization issues. Sec. 3 provides an
overview of the synthesis system, identifying its components. Sec. 4 focuses on data lo-
cality optimization and presents a new approach and algorithm for effective tiling in this
context. Sec. 5 presents experimental performance data on the application of the new
algorithm. Related work is covered in Sec. 6, and conclusions are provided in Sec. 7.

2 The Computational Context

In the class of computations considered, the final result to be computed can be expressed
using a collection of multi-dimensional summations of the product of several input
arrays. Due to commutativity, associativity, and distributivity, there are many different
ways to compute the final result, and they could differ widely in the number of floating
point operations required. Consider the following expression:���������	��
��
����� ���� �	� ��� ��� �	� ��� �������	��
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If this expression is directly translated to code (with ten nested loops, for indices 57698 ),
the total number of arithmetic operations required will be :<;>= �*?

if the range of each
index 596@8 is = . Instead, the same expression can be rewritten by use of associative
and distributive laws as the following:���������	��
��
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This corresponds to the formula sequence shown in Fig. 1(a) and can be directly trans-
lated into code as shown in Fig. 1(b). This form only requires JK;L= �

operations.
However, additional space is required to store temporary arrays M$N and MPO .

Generalizing from the above example, we can express multi-dimensional integrals
of products of several input arrays as a sequence of formulae. Each formula produces
some intermediate array and the last formula gives the final result. A formula is either:
(i) a multiplication formula of the form: MRQ�S*T	T%T UWVYXAS�T	T	T UZ;\[]S�T	T%T U , or (ii) a summa-
tion formula of the form: M^Q0S�T	T%T U+V`_bacXAS*T%T	T U , where the terms on the right hand side
represent input arrays or intermediate arrays produced by a previously defined formula.
Let dcX , d [ and d2MRQ be the sets of indices in XAS*T%T	TeU , [9S�T	T	TfU and MRQ�S*T%T	T Uhg respectively.
For a formula to be well-formed, every index in XAS�T	T%T U and []S�T	T%T U , except the sum-
mation index in the second form, must appear in M^Q0S�T	T%T U . Thus dcXjikd [mlnd2MRQ for
any multiplication formula, and dcXo6qp1rtsulYd2MRQ for any summation formula. Such a
sequence of formulae fully specifies the multiplications and additions to be performed
in computing the final result.

The problem of determining an operation-optimal sequence that is equivalent to
the original expression has been previously addressed by us. We have shown that the
problem is NP-complete and have developed a pruning search procedure that is very
efficient in practice [17, 19, 18].

An issue of great significance for this computational context is the management of
memory required to store the elements of the various arrays involved. Often, some of



� ���������	��
���
��
� �

��� �
� ����������
��������������	��
���� �����

� �!�������	�#"	��$%�
� �

& � '
� �%�������	��
���
(�)�+*,��
���
��#"	��$-�

. ��/0����� a �#"	�
� �

1�� 2
� �3�������	�4" ��$%���+56��/(���	� a ��$-�

(a) Formula sequence

read B(*,*,*,*)
read D(*,*,*,*)
T1(*,*,*,*) = 0
FOR b = 1, Nb
FOR c = 1, Nc
FOR d = 1, Nd
FOR e = 1, Ne
FOR f = 1, Nf
FOR l = 1, Nl
T1(b,c,d,f)

+= B(b,e,f,l) * D(c,d,e,l)
END FOR l, f, e, d, c, b
read C(*,*,*,*)
T2(*,*,*,*) = 0
FOR b = 1, Nb
FOR c = 1, Nc
FOR d = 1, Nd
FOR f = 1, Nf
FOR j = 1, Nj
FOR k = 1, Nk
T2(b,c,j,k)

+= T1(b,c,d,f) * C(d,f,j,k)
END FOR k, j, f, d, c, b
read A(*,*,*,*)
S(*,*,*,*) = 0
FOR a = 1, Na
FOR b = 1, Nb
FOR c = 1, Nc
FOR i = 1, Ni
FOR j = 1, Nj
FOR k = 1, Nk
S(a,b,i,j)

+= T2(b,c,j,k) * A(a,c,i,k)
END FOR k, j, i, c, b, a
write S(*,*,*,*)

(b) Direct implementation (unfused code)

Fig. 1. A sequence of formulae and the corresponding unfused code.

the input, output, and intermediate temporary arrays are too large to fit into the available
physical memory. Therefore, the computation must be structured to operate on memory
resident blocks of the arrays that are suitably moved between disk and main memory as
needed. Similarly, effective use of cache requires that appropriate blocking or tiling of
the computation is performed, whereby data reuse in cache is facilitated by operating
on the arrays in blocks.

If all arrays were sufficiently small, the computation could be simply expressed as
shown in Fig. 1(b). Here, all elements of the input arrays 7 , 8 , 9 , and : are first read
in, the three sets of perfectly nested loops perform the needed computations, and the
result array ; is output. However, if any of the arrays is too large to fit in memory, the
computation must be restructured to process the arrays in blocks or “slices.” If, instead
of fully creating an intermediate array (like T1) before using it, a portion of the array
could be created and used before other elements of the array are created, the space
required for the array could be significantly reduced. Similarly, even for input arrays,
instead of reading in the entire array, blocks of the array could be read in and used
before other blocks are brought in. A systematic approach to explore ways of reducing
the memory requirement for the computation is to view it in terms of potential loop
fusions. Loop fusion merges loop nests with common outer loops into larger imperfectly
nested loops. When one loop nest produces an intermediate array that is consumed by
another loop nest, fusing the two loop nests allows the dimension corresponding to the
fused loop to be eliminated in the array. This results in a smaller intermediate array and
thus reduces the memory requirements. For the example considered, the application
of fusion is illustrated in Fig. 2(a). In this case, most arrays can be reduced to scalars
without changing the number of arithmetic operations.

For a computation consisting of a number of nested loops, there will generally be a
number of fusion choices that are not all mutually compatible. This is because different



FOR b = 1, Nb
Sf(*,*,*) = 0
FOR c = 1, Nc
T2f(*,*) = 0
FOR d = 1, Nd
FOR f = 1, Nf
T1f = 0
FOR e = 1, Ne
FOR l = 1, Nl
Bf = read B(b,e,f,l)
Df = read D(c,d,e,l)
T1f += Bf * Df

END FOR l, e
FOR j = 1, Nj
FOR k = 1, Nk
Cf = read C(d,f,j,k)
T2f(j,k) += T1f * Cf

END FOR k, j, f, d
FOR a = 1, Na
FOR i = 1, Ni
FOR j = 1, Nj
FOR k = 1, Nk
Af = read A(a,c,i,k)
Sf(a,i,j) += T2f(j,k) * Af

END FOR k, j, i, a, c
write S(a,b,i,j) = Sf(a,i,j)

END FOR b

(a) Memory-reduced (fused) version

FOR b = 1, Nb
Sf(*,*,*) = 0
FOR cT = 1, Nc, Tc
T2f(*,*,*) = 0
FOR d = 1, Nd
FOR f = 1, Nf
T1f(*) = 0
FOR e = 1, Ne
FOR l = 1, Nl
Bf = read B(b,e,f,l)
Df(*) = read_tile D(cT,d,e,l)
FOR cI = 1, Tc
T1f(cI) += Bf * Df(cI)

END FOR cI, l, e
FOR j = 1, Nj
FOR k = 1, Nk
Cf = read C(d,f,j,k)
FOR cI = 1, Tc
T2f(cI,j,k) += T1f(cI) * Cf

END FOR cI, k, j, f, d
FOR a = 1, Na
FOR i = 1, Ni
FOR j = 1, Nj
FOR k = 1, Nk
Af(*) = read_tile A(a,cT,i,k)
FOR cI = 1, Tc
Sf(a,i,j) += T2f(cI,j,k) * Af(cI)

END FOR cI, k, j, i, a, cT
write S(a,b,i,j) = Sf(a,i,j)

END FOR b

(b) Tiling of the memory-reduced version

Fig. 2. Pseudocodes for (a) the memory-reduced (fused) solution, and (b) a tiled example of the
same solution. In (b), the loop over

�
is split up in a tiling loop

� � , and an intra-tile loop
���

. The
“tile size” is denoted by

� � . The procedure read tile reads
� � elements from a four-dimensional

array on the disk ( � or
4

) into a one-dimensional memory array of size
� � ( � � or

4 � ).

fusion choices could require different loops to be made the outermost. In prior work,
we addressed the problem of finding the choice of fusions for a given formula sequence
that minimized the total space required for all arrays after fusion [15, 16, 14].

Having provided information about the computational context and some of the op-
timization issues in this context, we now provide an overview of the overall synthesis
framework before focusing on the specific data locality optimization problem that we
address in this paper.

3 Overview of the Synthesis System

Fig. 3 shows the components of the planned synthesis system. A brief description of the
components follows:
Algebraic Transformations: It takes high-level input from the user in the form of
tensor expressions (essentially sum-of-products array expressions) and synthesizes an
output computation sequence. The input is expressed in terms of multidimensional sum-
mations of the product of terms, where each term is either an array, an elemental func-
tion with each arguments being an expression index, or an expression involving only
element-wise operations on compatible arrays. The Algebraic Transformations module
uses the properties of commutativity and associativity of addition and multiplication
and the distributivity of multiplication over addition. It searches for all possible ways
of applying these properties to an input sum-of-products expression, and determines a
combination that results in an equivalent form of the computation with minimal oper-
ation cost. The application of the distributive law to factor a term out of a summation
implies the need to use a temporary array to hold an intermediate result.
Memory Minimization: The operation-minimal computation sequence synthesized by
the Algebraic Transformation module might require an excessive amount of memory
due to the large arrays involved. The Memory Minimization module attempts to perform
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Fig. 3. The Planned Synthesis System

loop fusion transformations to reduce the memory requirements. This is done without
any change to the number of arithmetic operations.
Space-Time Transformation: If the Memory Minimization module is unable to reduce
memory requirements of the computation sequence below the available disk capacity
on the system, the computation will be infeasible. This module seeks a trade-off that
reduces memory requirements to acceptable levels while minimizing the computational
penalty. If no such transformation is found, feedback is provided to the Memory Min-
imization module, causing it to seek a different solution. If the Space-Time Transfor-
mation module is successful in bringing down the memory requirement below the disk
capacity, the Data Locality Optimization module is invoked. A framework for modeling
space-time trade-offs and deriving transformations is currently under study.
Data Locality Optimization: If the space requirement exceeds physical memory ca-
pacity, portions of the arrays must be moved between disk and main memory as needed,
in a way that maximizes reuse of elements in memory. The same considerations are
involved in effectively minimizing cache misses — blocks of data must be moved be-
tween physical memory and the limited space available in the cache. In this paper, we
focus on this step of the synthesis process. Given an imperfectly nested loop generated



by the Memory Minimization module, the Data Locality Optimization module is re-
sponsible for generating an appropriately blocked form of the loops to maximize data
reuse in the different levels of the memory hierarchy.
Data Distribution and Partitioning: The final step is to determine how best to partition
the arrays among the processors of a parallel system. We assume a data-parallel model,
where each operation in the operation sequence is distributed across the entire parallel
machine. The arrays are to be disjointly partitioned between the physical memories of
the processors. This model allows us to decouple (or loosely couple) the parallelization
considerations from the operation minimization and memory considerations. The out-
put of this module will be parallel code in Fortran or C. Different target programming
paradigms can be easily supported, including message-passing with MPI and paradigms
with global shared-memory abstractions, such as Global Arrays and OpenMP. Even
with the shared-space paradigms, in order to achieve good scalability on highly parallel
computer systems, careful attention to data distribution issues is essential. Thus the un-
derlying abstraction used in determining good data partitioning decisions remains the
same, independent of the programming paradigm used for the final code.

4 Data Locality Optimization Algorithm

We now address the data locality optimization problem that arises in this synthesis con-
text. Given a memory-reduced (fused) version of the code, the goal of the algorithm
is to find the appropriate blocking of the loops in order to maximize data reuse. The
algorithm can be applied at different levels of the memory hierarchy, for example, to
minimize data transfer between main memory and disk (I/O minimization), or to min-
imize data transfer between main memory and the cache (cache misses). In the rest of
the paper, we focus mostly on the cache management problem. For the I/O optimization
problem, the same approach could be used, replacing the cache size CS by the physical
memory size MS.
Tiling, Data Reuse, and Memory Access Cost: There are two sources of data reuse:
a) temporal reuse, with multiple references to the same memory location, and b) spatial
reuse, with references to neighboring memory locations on the same cache line. To
simplify the treatment in the rest of the paper, the cache line size is implicitly assumed
to be one. In practice, tile sizes are determined under this assumption, and then the
tile sizes corresponding to loop indices that index the fastest-varying dimension of any
array are increased, if necessary, to equal the cache line size. In addition, other tiles may
be sized down slightly so that the total cache capacity is not exceeded.

We introduce a memory access cost model (Cost), an estimate on the number of
cache misses, as a function of tile sizes and loop bounds. For each loop — each node in
the parse tree representation — we count the number Accesses of distinct array elements
accessed in its scope. If this number is smaller than the number of elements that fit into
the cache, then Cost = Accesses. Otherwise, it means that the elements in the cache are
not reused from one loop iteration to the next, and the cost is obtained by multiplying
the cost of the inner loop(s) — child node(s) in the parse tree — by the loop range.

To illustrate the cost model, we consider the fused code presented in Figure 2(a).
The corresponding parse tree is shown in Figure 4(a) . For the subtree rooted at node 8 ,
the number of elements accessed in the 8 loop is = � for the arrays 8 and : , and 1 for the
array M N , for a total of Oc= � � N accesses. The computation of the number of accesses
at the next node in the parse tree � (next loop nesting level) depends on the relative
size of O = � � N with respect to the cache size CS. If Oc= � � N�� 9 ; , there can be no
reuse of the array elements from one iteration of � to the next. Therefore, the number of
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Fig. 4. Parse trees for the fused loop structure shown in Figure 2(a).

accesses for the subtree rooted at � is = � SFO = � � N1U . However, if O = � � N � 9 ; , there
is the possibility of data reuse in the � loop. The number of elements accessed in the �
loop is = ��� = � for the arrays 8 and : , and 1 for the array M$N (the same element of M$N
is repeatedly accessed), for a total of O � = � � = � � N accesses. The new cost is again
compared to CS, and then the next node in the parse tree is considered.

In practice, the problem has two additional aspects: the parse tree has branches (a
parent node with multiple children nodes, corresponding to an outer loop with sev-
eral adjacent inner loops), and each node in the tree is split into a parent-child pair,
corresponding to a tiling loop node, and an intra-tile loop node. Figures 4(a) and 4(b)
present the parse trees for the same computation, performed without and with loop
tiling, respectively. For a given = -node untiled parse tree, the data locality optimiza-
tion algorithm proceeds as follows: first, each node is split into a tiling/intra-tile pair.
Subsequently, the resulting O = -node parse tree is transformed by loop permutation and
intra-tile loop fission into an equivalent parse tree with the property that any tiling loop
is exterior to any intra-tile loop (Figure 4(b)). Then, we pick starting values for the =
tile sizes, thus fixing the loop ranges for the O = nodes in the parse tree (if the original
range of a loop is = a , choosing a tile size M a for the intra-tile loop also fixes the range= a�� M a of the tiling loop).

We thus obtain a Oc= -node parse tree with well-defined loop ranges. Using a recur-
sive top-down procedure, we compute the memory access cost of the parse tree (Fig-
ure 5). Each node is associated with a loop index LoopIndex, a boolean value Exceed
that keeps track of the number of distinct accesses in the loop scope in relation to the
cache size CS, a list of arrays ArrayList accessed in its scope, and a memory access cost
Cost. The key of the algorithm is the procedure ComputeCost, presented in a pseudo-
code format in Figure 5. ComputeCost (Node X ) computes the memory access cost



Node: �
Index LoopIndex
boolean Exceed
int Cost
Node[] Children
Array[] ArrayList

�
Array: �

Index[] Indices
int Accesses

�

boolean ContainIndex (Array
5

, Index LoopIndex
� �

� T if LoopIndex � 5��
Indices; F otherwise �

InsertArrayList (Node � , Node � )
foreach Array

5 ��� � ArrayList
if
��5 ��� � ArrayList

�
then

� � ArrayList � � � ArrayList � 5

ComputeCost (Node � ):� � ArrayList = NULL� � Cost = 0� � Exceed = F
foreach Node �	�
� � Children

ComputeCost
� � �

InsertArrayList
� � � � �

if ( � � Exceed) then � � Exceed = T
if ( � � Exceed) then

foreach Node �	��� � Children� � Cost += � � Cost ��� � Index.Range
foreach Array

5 ��� � ArrayList5��
Accesses � 5��

Accesses ��� � Index.Range
else

int NewCost = 0
foreach Array

5 ��� � ArrayList
if (ContainIndex (

56� � � LoopIndex)) then
NewCost +=

5��
Accesses ��� � Index.Range

else NewCost +=
5��

Accesses
if
�
NewCost 
 CacheSize

�
then

� � Exceed = F� � Cost � NewCost
foreach Array

5 �
� � ArrayList
if (ContainIndex (

56� � � LoopIndex)) then5��
Accesses *= � � Index.Range

else� � Exceed = T
foreach Array

5 �
� � ArrayList5��
Accesses *= � � Index.Range� � Cost +=

5��
Accesses

Fig. 5. Procedure ComputeCost for computing the memory access cost by a top-down
recursive traversal of the parse tree.

of a sub-tree rooted at X , using the cost model based on the counting of distinct array
elements accessed in the scope of the loop. The procedure outlines the computation ofXkT Cost for the general case of a branched sub-tree with any number of children nodes.

Using this cost model, we arrive at a total memory access cost for the O = -node
parse tree for given tile sizes. The procedure is then repeated for different sets of tile
sizes, and new costs computed. In the end the lowest cost is chosen, thus determining
the optimal tile sizes for the parse tree. We define our tile size search space in the
following way: if = a is a loop range, we use a tile size starting from M a V N (no tiling),
and successively increasing M a by doubling it until it reaches = a . This ensures a slow
(logarithmic) growth of the search space with increasing array dimension for large = a .
If = a is small enough, an exhaustive search can instead be performed.

5 Experimental Results

In this section, we present results of an experimental performance evaluation of the
effectiveness of the data locality optimization algorithm developed in this paper. The
algorithm from Section 4 was used to tile the code shown in Figure 1(b). Measurements
were made on a single processor of a Silicon Graphics Origin 2000 system consisting
of 32 300MHz IP31 processors and 16GB of main memory. Each processor has a MIPS
R12000 CPU and a MIPS R12010 floating point unit, as well as 64KB on-chip caches
(32KB data cache and 32KB instruction cache), and a secondary, off-chip 8MB uni-
fied data/instruction cache. The tile size selection algorithm presented earlier assumes
a single cache. It can be extended in a straightforward fashion to multi-level caches, by
multi-level tiling. However, in order to simplify measurement and presentation of ex-
perimental data, we chose to apply the algorithm only to the secondary cache, in order
to minimize the number of secondary cache misses. For each computation, we deter-
mined the number of misses using the hardware counters on the Origin 2000. Three
alternatives were compared:

– UNF: no explicit fusion or tiling



� Memory requirement Performance (MFLOPs) Cache misses
TA FUS UNF TA FUS UNF TA FUS UNF

0.2 8MB 30KB 32MB 484 88 475
� � �,� �*?�� � � �,� �*?�� � � �,� �*?��

0.4 8MB 0.2MB 0.5GB 470 101 451
� � � � �*?�� � � �,� �*?�� � � �,� �*?��

0.5 8MB 0.5MB 1.2GB 491 80 460
� � 	,� �*?�� � � �,� �*?�
 � � � � �*?��

0.6 8MB 0.8MB 2.6GB 477 97 407
� � �,� �*?�� � � �,� �*?�
 � � �,� �*?��

0.7 8MB 1.3MB 4.8GB 482 95 N/A
� � ? � �*?�� � � ? � �*?�


N/A
0.8 8MB 1.9MB 8.2GB 466 83 N/A

� � 	,� �*?�� � � 	,� �*?�

N/A

1 16MB 3.7MB 20GB 481 92 N/A
� � �,� �*?�� � � 	,� �*?���


N/A
1.2 48MB 6.5MB 41GB 472 98 N/A

� � �6� �*?�
 � � �,� �*?���

N/A

1.4 80MB 10MB 77GB 486 85 N/A
� � �,� �*?�
 � � �,� �*?���


N/A
1.6 120MB 15MB 131GB 483 82 N/A

� � �,� �*?�
 � � �,� �*?����
N/A

1.8 192MB 22MB 211GB 465 77 N/A
� � �6� �*?�
 � � �,� �*?����

N/A
2 240MB 29MB 318GB 476 79 N/A

� � �6� �*?�
 � � ? � �*?����
N/A

Table 1. Performance data for fusion, plus tiling algorithm (TA), compared with performance
data for fused alone (FUS), and unfused loops (UNF).

– FUS: use of fusion alone, to reduce memory requirements
– TA: use of fusion, followed by tiling using algorithm presented in Section 4

We chose various array sizes for the problem to test the algorithm for a range of calcula-
tions typical in size for computational chemistry codes: = a V = " V`= $ V = � V : ��� ,= / V = � V = � V = 
 V�� ����� , and = � V = 
 V�� ��� , for

�
running from 0.2 to 2

(Table 1). For larger
�

, some arrays (e.g., M$N ) are so large that the the system’s virtual
memory limit is exceeded, so that loop fusion is necessary to bring the total memory
requirements under the limit.

The codes were all compiled with the highest optimization level of the SGI Ori-
gin 2000 FORTRAN compiler (-O3). The performance data was generated over mul-
tiple runs, and average values are reported. Standard deviations are typically around
10MFLOPs. The experiments were run on a time-shared system; so some interference
with other processes running at the same time on the machine was inevitable, and its
effects are especially pronounced for the larger

�
tests.

Table 1 shows the memory requirement, measured performance, and the number
of secondary cache misses generated by the three alternatives. The main observations
from the experiment are:

– The total memory requirement is minimized by fusion of the loops over � , � , � ,
and � (FUS), bringing all four-dimensional arrays (e.g., MPO ) down to at most two
explicit dimensions. However, the memory requirement of fusion plus the tiling al-
gorithm (TA) is not much higher, since the tiling loops are fused, and the arrays
are reduced to much smaller “tile” sizes. The UNF version has significantly higher
memory requirements since no fusion has been applied to reduce temporary mem-
ory requirements. As

�
is increased, the UNF version requires more memory than

the per-process virtual memory limit on the system.
– The maximally fused version (FUS) has the lowest memory requirement, but in-

curs a severe performance penalty due to the constraints imposed on the resulting
loops that prevents effective tiling and exploitation of temporal reuse of some of
the arrays, which leads to a higher number of cache misses, as shown in Table 1.

– The TA and UNF versions show comparable performance for smaller
�

. The SGI
compiler is quite effective in tiling perfectly nested loops such as the sequence of
three matrix-matrix products present in the UNF version. The performance using



the BLAS library routine DGEMM was found to be the same as that of the UNF
version with a sequence of three nested loops corresponding to the three matrix
products.

6 Related Work

Much work has been done on improving locality and parallelism through loop fusion.
Kennedy and co-workers [11] have developed algorithms for modeling the degree of
data sharing and for fusing a collection of loops to improve locality and parallelism.
Singhai and McKinley [29] examined the effects of loop fusion on data locality and
parallelism together. Although this problem is NP-hard, they were able to find optimal
solutions in restricted cases and heuristic solutions for the general case. Gao et al. [6]
studied the contraction of arrays into scalars through loop fusion as a means to reduce
array access overhead. Their study is motivated by data locality enhancement and not
memory reduction. Also, they only considered fusions of conformable loop nests, i.e.,
loop nests that contain exactly the same set of loops.

However, the work addressed in this paper considers a different use of loop fu-
sion, which is to reduce array sizes and memory usage of automatically synthesized
code containing nested loop structures. Traditional compiler research has not addressed
this use of loop fusion because this problem does not arise with manually-produced
programs. Recently, we investigated the problem of finding optimal loop fusion trans-
formations for minimization of intermediate arrays in the context of the class of loops
considered here [15]. To the best of our knowledge, the combination of loop tiling for
data locality enhancement and loop fusion for memory reduction has not previously
been considered.

Memory access cost can be reduced through loop transformations such as loop
tiling, loop fusion, and loop reordering. Although considerable research on loop trans-
formations for locality has been reported in the literature [22, 24, 33], issues concerning
the need to use loop fusion and loop tiling in an integrated manner for locality and mem-
ory usage optimization have not been considered. Wolf et al. [34] consider the integrated
treatment of fusion and tiling only from the point of view of enhancing locality and do
not consider the impact of the amount of required memory; the memory requirement
is a key issue for the problems considered in this paper. Loop tiling for enhancing data
locality has been studied extensively [27, 33, 30], and analytic models of the impact
of tiling on locality have been developed [7, 20, 25]. Recently, a data-centric version
of tiling called data shackling has been developed [12, 13] (together with more recent
work by Ahmed et al. [1]) which allows a cleaner treatment of locality enhancement in
imperfectly nested loops.

The approach undertaken in this project bears similarities to some projects in other
domains, such as the SPIRAL project which is aimed at the design of a system to gen-
erate efficient libraries for digital signal processing algorithms [35]. SPIRAL generates
efficient implementations of algorithms expressed in a domain-specific language called
SPL by a systematic search through the space of possible implementations. Several fac-
tors such as the lack of a need to perform space-time trade-offs renders the task faced by
efforts such as SPIRAL and FFTW [5] less complex than what computational chemists
face. Other efforts in automatically generating efficient implementations of programs
include the telescoping languages project [10], the ATLAS [32] project for deriving ef-
ficient implementation of BLAS routines, and the PHIPAC [3] and TUNE [31] projects.

Recently, using a very different approach, we considered the data locality optimiza-
tion problem arising in this synthesis context [4]. In that work, we developed an inte-



grated approach to fusion and tiling transformations for the class of loops addressed.
However, that algorithm was only applicable when the sum-of-products expression sat-
isfied certain constraints on the relationship between the array indices in the expression.
The algorithm developed in this paper does not impose any of the restrictions assumed
in [4]. It takes a very different approach to effective tiling — first perform fusion to
minimize memory requirements, followed by a combination of loop fission, tiling and
array expansion transformations to maximize data reuse.

7 Conclusion

This paper has described a project on developing a program synthesis system to facili-
tate the development of high-performance parallel programs for a class of computations
encountered in computational chemistry and computational physics. These computa-
tions are expressible as a set of tensor contractions and arise in electronic structure
calculations. The paper has provided an overview of the planned synthesis system and
has presented a new optimization approach that can serve as the basis for a key com-
ponent of the system for performing data locality optimizations. Preliminary results are
very encouraging and show that the approach is effective.
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