Frequent Pattern Growth (FP-Growth) Algorithm An Introduction

Florian Verhein fverhein@it.usyd.edu.au

School of Information Technologies, The University of Sydney, Australia

Copyright 2008 Florian Verhein. Most figures derived from [1].

January 10, 2008

▲□▶ ▲□▶ ▲三▶ ▲三▶ ● ● ●

Outline

Introduction

FP-Tree data structure

Step 1: FP-Tree Construction

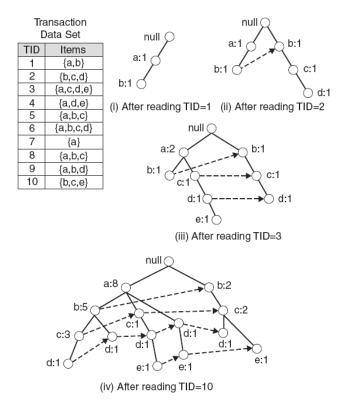
Step 2: Frequent Itemset Generation

Discussion

Introduction

- Apriori: uses a generate-and-test approach generates candidate itemsets and tests if they are frequent
 - Generation of candidate itemsets is expensive (in both space and time)
 - Support counting is expensive
 - Subset checking (computationally expensive)
 - Multiple Database scans (I/O)
- FP-Growth: allows frequent itemset discovery without candidate itemset generation. Two step approach:
 - **Step 1**: Build a compact data structure called the *FP-tree*
 - Built using 2 passes over the data-set.
 - **Step 2**: Extracts frequent itemsets directly from the FP-tree
 - Traversal through FP-Tree

Core Data Structure: FP-Tree



- Nodes correspond to items and have a counter
- FP-Growth reads 1 transaction at a time and maps it to a path
- Fixed order is used, so paths can overlap when transactions share items (when they have the same prefix).
- ▶ In this case, counters are incremented
- Pointers are maintained between nodes containing the same item, creating singly linked lists (dotted lines)
- The more paths that overlap, the higher the compression. FP-tree may fit in memory.
- Frequent itemsets extracted from the FP-Tree.

Step 1: FP-Tree Construction (Example)

FP-Tree is constructed using 2 passes over the data-set:

► Pass 1:

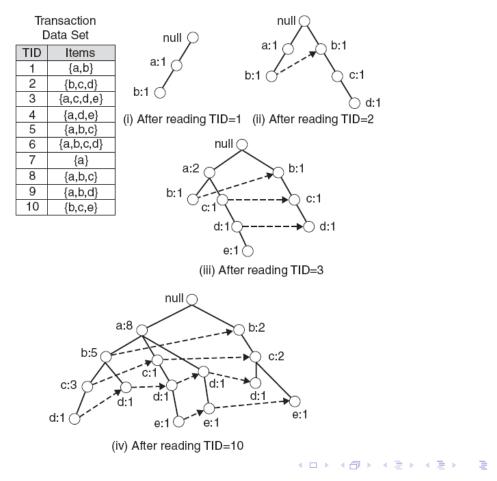
- Scan data and find support for each item.
- Discard infrequent items.
- Sort frequent items in decreasing order based on their support.
 - ► For our example: *a*, *b*, *c*, *d*, *e*
 - Use this order when building the FP-Tree, so common prefixes can be shared.

Step 1: FP-Tree Construction (Example)

- Pass 2: construct the FP-Tree (see diagram on next slide)
 - Read transaction 1: {a, b}
 - Create 2 nodes a and b and the path null → a → b. Set counts of a and b to 1.
 - Read transaction 2: $\{b, c, d\}$
 - Create 3 nodes for b, c and d and the path $null \rightarrow b \rightarrow c \rightarrow d$. Set counts to 1.
 - Note that although transaction 1 and 2 share b, the paths are disjoint as they don't share a common prefix. Add the link between the b's.
 - Read transaction 3: $\{a, c, d, e\}$
 - It shares common prefix item a with transaction 1 so the path for transaction 1 and 3 will overlap and the frequency count for node a will be incremented by 1. Add links between the c's and d's.
 - Continue until all transactions are mapped to a path in the FP-tree.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Step 1: FP-Tree Construction (Example)



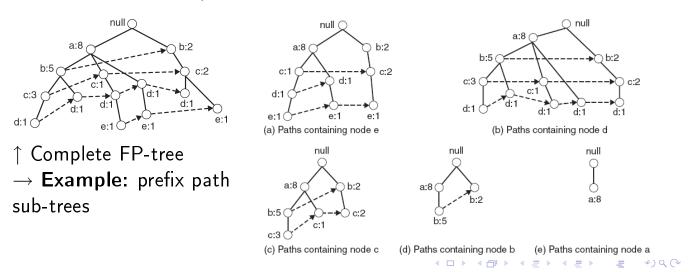
FP-Tree size

- The FP-Tree usually has a smaller size than the uncompressed data – typically many transactions share items (and hence prefixes).
 - Best case scenario: all transactions contain the same set of items.
 - ► 1 path in the FP-tree
 - Worst case scenario: every transaction has a unique set of items (no items in common)
 - Size of the FP-tree is *at least* as large as the original data.
 - Storage requirements for the FP-tree are higher need to store the pointers between the nodes and the counters.
 - The size of the FP-tree depends on how the items are ordered
 - Ordering by decreasing support is typically used but it does not always lead to the smallest tree (it's a heuristic).

Sac

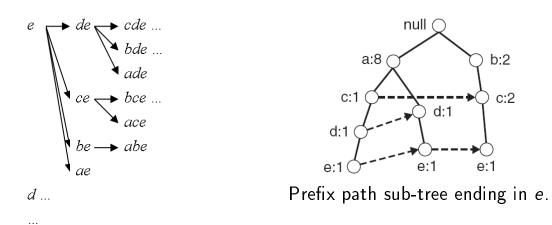
Step 2: Frequent Itemset Generation

- ► FP-Growth extracts frequent itemsets from the FP-tree.
- Bottom-up algorithm from the leaves towards the root
 - Divide and conquer: first look for frequent itemsets ending in e, then de, etc... then d, then cd, etc...
- First, extract prefix path sub-trees ending in an item(set). (*hint*: use the linked lists)



Step 2: Frequent Itemset Generation

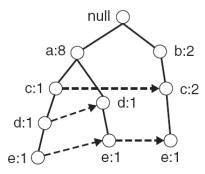
- Each prefix path sub-tree is processed recursively to extract the frequent itemsets. Solutions are then merged.
 - E.g. the prefix path sub-tree for e will be used to extract frequent itemsets ending in e, then in de, ce, be and ae, then in cde, bde, cde, etc.
 - Divide and conquer approach



Example

Let minSup = 2 and extract all frequent itemsets containing e.

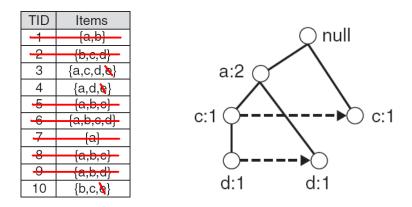
▶ 1. Obtain the prefix path sub-tree for *e*:



- 2. Check if e is a frequent item by adding the counts along the linked list (dotted line). If so, extract it.
 - Yes, count =3 so $\{e\}$ is extracted as a frequent itemset.
- 3. As e is frequent, find frequent itemsets ending in e. i.e. de, ce, be and ae.
 - i.e. decompose the problem recursively.
 - To do this, we must first to obtain the conditional FP-tree for e.

Conditional FP-Tree

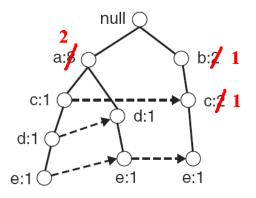
- The FP-Tree that would be built if we only consider transactions containing a particular itemset (and then removing that itemset from all transactions).
- **Example**: FP-Tree conditional on *e*.



Conditional FP-Tree

To obtain the *conditional FP-tree* for *e* from the *prefix sub-tree* ending in *e*:

- Update the support counts along the prefix paths (from e) to reflect the number of transactions containing e.
 - b and c should be set to 1 and a to 2.

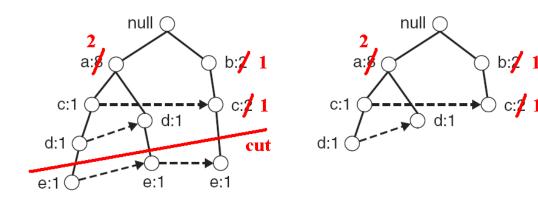


・ロト・日本・キャー・マンクタイン

Conditional FP-Tree

To obtain the *conditional FP-tree* for *e* from the *prefix sub-tree* ending in *e*:

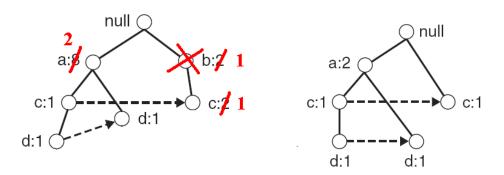
Remove the nodes containing e – information about node e is no longer needed because of the previous step



Conditional FP-Tree

To obtain the *conditional FP-tree* for *e* from the *prefix sub-tree* ending in *e*:

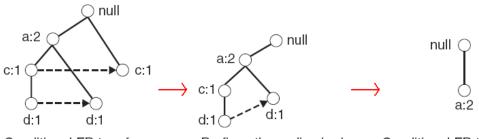
- Remove infrequent items (nodes) from the prefix paths
- E.g. b has a support of 1 (note this really means be has a support of 1). i.e. there is only 1 transaction containing b and e so be is infrequent – can remove b.



Question: why were c and d not removed?

Example (continued)

- 4. Use the conditional FP-tree for e to find frequent itemsets ending in de, ce and ae
 - Note that be is not considered as b is not in the conditional FP-tree for e.
 - For each of them (e.g. de), find the prefix paths from the conditional tree for e, extract frequent itemsets, generate conditional FP-tree, etc... (recursive)
 - Example: e → de → ade ({d, e}, {a, d, e} are found to be frequent)



Conditional FP-tree for e

Prefix paths ending in de

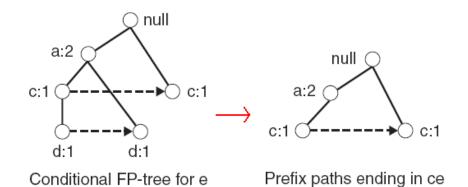
Conditional FP-tree for de

3

Sac

Example (continued)

- 4. Use the conditional FP-tree for e to find frequent itemsets ending in de, ce and ae
 - **Example:** $e \rightarrow ce$ ({c, e} is found to be frequent)



etc... (ae, then do the whole thing for b,... etc)

Result

Frequent itemsets found (ordered by suffix and order in which they are found):

Suffix	Frequent Itemsets
е	$\{e\}, \{d,e\}, \{a,d,e\}, \{c,e\}, \{a,e\}$
d	$\{d\}, \{c,d\}, \{b,c,d\}, \{a,c,d\}, \{b,d\}, \{a,b,d\}, \{a,d\}$
с	$\{c\}, \{b,c\}, \{a,b,c\}, \{a,c\}$
b	$\{b\}, \{a,b\}$
a	$\{a\}$

Discussion

- Advantages of FP-Growth
 - only 2 passes over data-set
 - "compresses" data-set
 - no candidate generation
 - much faster than Apriori
- Disadvantages of FP-Growth
 - ▶ FP-Tree may not fit in memory!!
 - ► FP-Tree is expensive to build
 - Trade-off: takes time to build, but once it is built, frequent itemsets are read off easily.
 - Time is wasted (especially if support threshold is high), as the only pruning that can be done is on *single items*.
 - support can only be calculated once the entire data-set is added to the FP-Tree.

References

- [1] Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining, Addison-Wesley.
 - Chapter 6: Association Analysis: Basic Concepts and Algorithms.
 - Available from

http:

//www-users.cs.umn.edu/~kumar/dmbook/index.php