CSC 4356

Interactive Computer Graphics
Lecture 11: 3D Interaction

Jinwel Ye
http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am
218 Tureaud Hall

3D Interaction

Transformation Hierarchies

 Many models are composed
of Independent moving parts

it

» Each part defined in its own Q
coordinate system

« Compose transformations to w

position and orient the model — —— 4=

parts

Transformation Hierarchies:
Graph Model

Model parts are nodes
Transforms are edges

o t ot base
ml T W Tworld

-
What transform is applied to the Head O oy
part to get it into world coordinates? M, = M; T e
o t ot base body neck head
m4 = W Tworld I base I body I neck
Suppose that you'd like to rotate the Lt tneck
Neck joint at the point where it meets M; =M, T ooy

the Body. Then what is the Head'’s
transform to world space?

o L o L neck
m3 = m2 Tbody R
U et base body neck head
m4 =W I world I base I body RTneck

head

m: - m; Tneck

Code Example (15t Try)

public void Draw() {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadldentity();

gluLookat(O, 0,-60, 0,0,0, 0,1,0); // world-to-camera transform
glColor3d(0,0,1);

glRotated(-90, 1, 0, 0); // base-to-world transform
Draw(Lamp.BASE);

Draw(Lamp.BODY);

Draw(Lamp.NECK);

Draw(Lamp.HEAD);

glFlush();

Code Example (2" Try)

public void Draw() {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadldentity();
gluLookat(O, 0,-60, 0,0,0, 0,1,0); // world-to-camera transform
glColor3d(0,0,1);
glRotated(-90, 1, 0, 0); // base-to-world transform
Draw(Lamp.BASE);
glTranslated(0,0,2.5); // body-to-base transform
Draw(Lamp.BODY);
glTranslated(12,0,0); // neck-to-body transform
Draw(Lamp.NECK);
glTranslated(12,0,0); // head-to-neck transform
Draw(Lamp.HEAD);
glFlush();

Code Example (3" Try)

public void Draw() {
giClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadldentity();
gluLookat(0O, 12, -60, 0,0,0, 0,1,0); // world-to-camera transform
glColor3d(0,0,1);
glRotated(-90, 1, 0, 0); // base-to-world transform
Draw(Lamp.BASE);
glTranslated(0,0,2.5); // body-to-base transform
glRotated(-30, 0, 1, 0); // rotate body at base pivot
Draw(Lamp.BODY);
glTranslated(12,0,0); // neck-to-body transform
glRotated(-115, O, 1, 0); // rotate neck at body pivo
Draw(Lamp.NECK);
glTranslated(12,0,0); // head-to-neck transform
glRotated(180, 1, O, 0);// rotate head at neck pivot
Draw(Lamp.HEAD);
glFlush();

Interaction Paradigm

« Can move objects or camera

— Object moving is more Iintuitive If the object
“sticks” to the mouse when dragging

e Move w.r.t. to camera frame

— Pan: move In plane perpendicular to view
direction

— Dolly: move along the view direction

— Zoom/Scale: look like dolly (objects gets bigger
or smaller) but position remain fixed

— Rotate & Roll: object spinning about an axis

Example: Trackball

A common Ul for manipulating objects
 Two degree of freedom device

 Differential behavior provides a intuitive
rotation specification

A Virtual Trackball

Imagine the viewport as floating above, and just touching
an actual trackball

You receive the coordinates in screen space of the
MouseDown() and MouseMove() events

What is the axis of rotation?

What is the angle of rotation?

/14

Appllcatlons Design

EH.. & hﬂtlﬁ':.ﬂt

3DS Max

Applications: Games

Pokemon Go

Application: 360" photo/video

Computing the Rotation

Construct a vector a from the center of rotation of the virtual
trackball to the point of the MouseDown() event.

Construct a 2nd vector b from the center of rotation for a given
MouseMove() event.

o ~ b — . -
Normalize a = % ,and b= m , and then computeaxis=axb
a
: 12 KA axis
Then find theangle =cos™(&-b), and construct R = Rotate(angle, e |)

\

W\

axis

/5 v // =

Mapping Mouse Point to Hemisphere

e How to compute aand b?

* Assuming the mouse position is (X,y), our goal isto z
map the mouse position to a point on a Hemisphere

 Hemisphere point P |

— l
- X=X ‘ (% ¥.2) /
_y:y | .

— z=,/1—x%—y? (assume the radius = 1) l /
 If a point is outside the circle, project it /- (X,y,0)/
to the nearest point on the circle X

 We need to normalize mouse position (X,y) to NDC [-
1,1]
— Origin of your viewport is the top-left corner

Implementation: Key Steps

Detect the left-button of the mouse being depressed.
Keep track of the last known mouse position.

Treat the mouse position as the projection of a point on the
hemi-sphere down to the image plane (along the z-axis), and
determine that point on the hemi-sphere.

Detect the mouse movement

Determine the great circle connecting the old mouse-hemi-
sphere point to the current mouse-hemi-sphere point.

Calculate the normal to this plane. This will be the axis about
which to rotate.

Rotate about the axis
Force a redraw of the scene.

Some Help with Virtual Trackball

& Utility routine to calculate the 3D position of a

/ projected unit vecior onto the xy-plane. Given any

+ point on the xy-plane, we can think of it as the projection
W from a sphere down onto the plane. The inverse is what we
W are after.

& Still need to normalize, since we only capped d, not v.

Determine Rotation Axis and Angle

& Handle ary necessary mouse movements

& Left-mouse button is being held down

& Map the mouse position to a logical
i sphere location

& Iflittle movement - do nothing.

& Rotate about the axis that is perpendicular to the great circle connecting the
MOUSE MOVEmSnis.

10N

Apply GL Rotat

the order!

* Very important

Virtual Trackball

 Visualization of the algorithm

/

mouse
outside
circle
u
next
mouse
- \ ™. virtual

trackball

last

mouse
viewport

Other Interactions?

e Translation?
e Scale?
e Order Matters!

GLUT Ul Functions

void glutMouseFunc (void (*func)(int button, int state, Iint X,
Inty));

void glutMotionFunc (void (*func)(int x, int y));

void glutMouseWheelFunc (void(*func)(int wheel, int
direction, int X, int y));

void glutKeyboardFunc (void (*func)(unsigned char key, int
X, Inty));

void glutSpecialFunc (void (*func)(int key, int X, int y));

Programming Assignment 2

I'll post on course website this afternoon
I'll provide skeleton code and OBJ reader

You need to implement basic 3D
Interactions

— Trackball

— Translation

— Scaling

Due on 10/10 midnight (11:59pm)

	CSC 4356�Interactive Computer Graphics�Lecture 11: 3D Interaction
	3D Interaction
	Transformation Hierarchies
	Transformation Hierarchies: �Graph Model
	Code Example (1st Try)
	Code Example (2nd Try)
	Code Example (3rd Try)
	Interaction Paradigm
	Example: Trackball
	A Virtual Trackball
	Applications: Design
	Applications: Games
	Application: 360˚ photo/video
	Computing the Rotation
	Mapping Mouse Point to Hemisphere
	Implementation: Key Steps
	Some Help with Virtual Trackball
	Determine Rotation Axis and Angle
	Apply GL Rotation
	Virtual Trackball
	Other Interactions?
	GLUT UI Functions
	Programming Assignment 2

