
CSC 4356 
Interactive Computer Graphics 

Lecture 11: 3D Interaction 

Jinwei Ye  
http://www.csc.lsu.edu/~jye/CSC4356/ 

Tue & Thu: 10:30 - 11:50am 
218 Tureaud Hall   



3D Interaction 

 



Transformation Hierarchies 
• Many models are composed 

of independent moving parts 
 

• Each part defined in its own 
coordinate system 
 

• Compose transformations to 
position and orient the model 
parts 



Transformation Hierarchies:  
Graph Model 

• Model parts are nodes 
• Transforms are edges  
• What transform is applied to the Head 

part to get it into world coordinates? 
 

• Suppose that you’d like to rotate the 
Neck joint at the point where it meets 
the Body. Then what is the Head’s 
transform to world space?  

Tbase
world

tt wm  =1

Tbody
base

tt mm  12 =

Tneck
body

tt mm  23 =

Thead
neck

tt mm  34 =

TTTT head
neck

neck
body

body
base

base
world

tt wm  =4

RTneck
body

tt mm  23 =

RTTTT head
neck

neck
body

body
base

base
world

tt wm  =4



Code Example (1st Try) 
public void Draw() { 
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);            
 glLoadIdentity(); 
 gluLookat(0, 0,-60, 0,0,0, 0,1,0); // world-to-camera transform 
 glColor3d(0,0,1); 
 glRotated(-90, 1, 0, 0); // base-to-world transform 
 Draw(Lamp.BASE); 
 Draw(Lamp.BODY); 
 Draw(Lamp.NECK); 
 Draw(Lamp.HEAD); 
 glFlush(); 
} 



Code Example (2nd Try) 
public void Draw() { 
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
 glLoadIdentity(); 
 gluLookat(0, 0,-60, 0,0,0, 0,1,0); // world-to-camera transform 
 glColor3d(0,0,1); 
 glRotated(-90, 1, 0, 0); // base-to-world transform 
 Draw(Lamp.BASE); 
 glTranslated(0,0,2.5); // body-to-base transform 
 Draw(Lamp.BODY); 
 glTranslated(12,0,0); // neck-to-body transform 
 Draw(Lamp.NECK); 
 glTranslated(12,0,0); // head-to-neck transform 
 Draw(Lamp.HEAD); 
 glFlush(); 
} 



Code Example (3rd Try) 
public void Draw() { 
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
 glLoadIdentity(); 
 gluLookat(0, 12, -60, 0,0,0, 0,1,0); // world-to-camera transform 
 glColor3d(0,0,1); 
 glRotated(-90, 1, 0, 0); // base-to-world transform 
 Draw(Lamp.BASE); 
 glTranslated(0,0,2.5); // body-to-base transform 
 glRotated(-30, 0, 1, 0); // rotate body at base pivot 
 Draw(Lamp.BODY); 
 glTranslated(12,0,0); // neck-to-body transform 
 glRotated(-115, 0, 1, 0); // rotate neck at body pivot 
 Draw(Lamp.NECK); 
 glTranslated(12,0,0); // head-to-neck transform 
 glRotated(180, 1, 0, 0);// rotate head at neck pivot 
 Draw(Lamp.HEAD); 
 glFlush(); 
} 



Interaction Paradigm 
• Can move objects or camera 

– Object moving is more intuitive if the object 
“sticks” to the mouse when dragging 

• Move w.r.t. to camera frame 
– Pan: move in plane perpendicular to view 

direction 
– Dolly: move along the view direction 
– Zoom/Scale: look like dolly (objects gets bigger 

or smaller) but position remain fixed 
– Rotate & Roll: object spinning about an axis 



Example: Trackball 

• A common UI for manipulating objects 
• Two degree of freedom device 
• Differential behavior provides a intuitive 

rotation specification 



A Virtual Trackball 
• Imagine the viewport as floating above, and just touching 

an actual trackball 
• You receive the coordinates in screen space of the 

MouseDown() and MouseMove() events 
• What is the axis of rotation? 
• What is the angle of rotation? 



Applications: Design 

 

3DS Max 



Applications: Games 

 

Pokemon Go 



Application: 360˚ photo/video 

 



Computing the Rotation 
• Construct a vector     from the center of rotation of the virtual 

trackball to the point of the MouseDown() event. 
• Construct a 2nd vector     from the center of rotation for a given 

MouseMove() event. 
• Normalize               , and                 , and then compute 
   
• Then find the                                , and construct 

a

b


|a|
aâ 



=
|b|

bb̂ 



= b̂â  axis ×=

)ˆˆ(cos -1 baangle ⋅= )
|axis|

axisangle,( Rotate=R



Mapping Mouse Point to Hemisphere 
• How to compute    and   ? 
• Assuming the mouse position is (x,y), our goal is to 

map the mouse position to a point on a Hemisphere 
• Hemisphere point P 

– x = x 
– y = y 
– z = 1 − 𝑥2 − 𝑦2  (assume the radius = 1) 

• If a point is outside the circle, project it  
     to the nearest point on the circle 
• We need to normalize mouse position (x,y) to NDC [-

1,1] 
– Origin of your viewport is the top-left corner 

a b




Implementation: Key Steps 
• Detect the left-button of the mouse being depressed. 
• Keep track of the last known mouse position. 
• Treat the mouse position as the projection of a point on the 

hemi-sphere down to the image plane (along the z-axis), and 
determine that point on the hemi-sphere. 

• Detect the mouse movement 
• Determine the great circle connecting the old mouse-hemi-

sphere point to the current mouse-hemi-sphere point. 
• Calculate the normal to this plane. This will be the axis about 

which to rotate. 
• Rotate about the axis 
• Force a redraw of the scene. 



Some Help with Virtual Trackball  



Determine Rotation Axis and Angle 



Apply GL Rotation 

• Very important: the order! 



Virtual Trackball 

• Visualization of the algorithm  



Other Interactions? 

• Translation? 
• Scale? 
• Order Matters! 



GLUT UI Functions 
• void glutMouseFunc (void (*func)(int button, int state, int x, 

int y)); 
 //  sets the mouse callback for the current window. 

• void glutMotionFunc (void (*func)(int x, int y));  
 //  set the motion callbacks respectively for the current window. 

• void glutMouseWheelFunc ( void(*func)(int wheel, int 
direction, int x, int y));   

 // Sets the mouse wheel callback for the current window. 

• void glutKeyboardFunc (void (*func)(unsigned char key, int 
x, int y)); 

 // sets the keyboard callback for the current window. 

• void glutSpecialFunc (void (*func)(int key, int x, int y)); 
 // sets the special keyboard callback for the current window. 
  



Programming Assignment 2 

• I’ll post on course website this afternoon 
• I’ll provide skeleton code and OBJ reader 
• You need to implement basic 3D 

interactions  
– Trackball 
– Translation  
– Scaling 

• Due on 10/10 midnight (11:59pm) 


	CSC 4356�Interactive Computer Graphics�Lecture 11: 3D Interaction
	3D Interaction
	Transformation Hierarchies
	Transformation Hierarchies: �Graph Model
	Code Example (1st Try)
	Code Example (2nd Try)
	Code Example (3rd Try)
	Interaction Paradigm
	Example: Trackball
	A Virtual Trackball
	Applications: Design
	Applications: Games
	Application: 360˚ photo/video
	Computing the Rotation
	Mapping Mouse Point to Hemisphere
	Implementation: Key Steps
	Some Help with Virtual Trackball 
	Determine Rotation Axis and Angle
	Apply GL Rotation
	Virtual Trackball
	Other Interactions?
	GLUT UI Functions
	Programming Assignment 2

