
CSC 4356
Interactive Computer Graphics
Lecture 12: Hidden Surface Removal

Jinwei Ye
http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am
218 Tureaud Hall

Hidden Surfaces
• Back face (self-occlusion)
• Occlusion
• Behind the camera
• Out of the viewing frustum
• Out of the viewport

Clipping & Culling
• Culling

– Throws away entire
objects or primitives that
cannot possibly be visible

• Clipping
– “Clips off” the invisible

portion of a object or
primitive

– Used to create “cut-away”
views of a model

• Optimize and speed up
the rendering pipeline

When to clip & cull?
• The earlier in the pipeline invisible primitives are

removed, the less computation (such as lighting,
texturing etc.) is wasted on them

Example

• Power plant model
– 1.7 M triangles

By Brandon L.. Loyd, UNC

Example

By Brandon L.. Loyd, UNC

Full model
1.7 Mtris

View frustum culling
1.4 Mtris

Occlusion culling
89 Ktris

5% of the original model!

Clipping
• Removal of portions of geometric primitives

outside viewing volume
• Given a viewing volume (VV):

– Trivial acceptance: Complete inside VV
– Trivial rejection: Completely outside VV
– Crossing clip plane(s): Partially outside, so must trim

to fit
• Different primitives require different methods

– Points: Only trivial accept/reject
– Lines: Chop at intersection with clip plane
– Triangles/Polygons: Must trim so as to maintain

connectivity

Line Clipping
• Testing which side of a clipping plane

– Which side of a line in 2D case
• How to trim primitives that span border

– Find the intersection of a line segment and a clipping
plane

Outcode Clipping
(a.k.a Cohen-Sutherland Clipping)

• Idea: Consider rectangular viewing area as
intersection of half spaces defined by the
four edges of the rectangle

The Outcode

• An outcode identifies the appropriate half
plane location of a point relative to all of
the clipping edges/planes

• Test half plane by edge equation
Ax + By + C = 0

• Outcodes are usually
 stored as bit vectors.

How to Clip using Outcode?
• An outcode identifies the location of a point

relative to the viewing area
• Trivial line clipping cases

– Accept line (p1, p2):
 Both p1 and p2 are inside

• o(p1) = 0000 and o(p2) = 0000
– Reject line (p1, p2):
 Both p1 and p2 are outside and
on the same side of a edge

• Both outcodes have a 1 at the
same bit position

• o(p1) = 1100 and o(p2) = 1000

Non-Trivial Cases

• Basic idea: Subdivide non-trivial lines by
sequentially clipping portions outside rectangle
edge lines until what’s left is trivial
– Arbitrary order: Left, right, bottom, top

Computing Intersection
• What is the intersection point c = (cx, cy)?

– Obviously, in this case cx = xmax and cy = ay - d
– Noting that e = ax - xmax and e/Δx = d/Δy , we can

compute d = e Δy/Δx and obtain cy

• A similar approach works for the other clip line

Psuedo-Code

3D Generalization

• Instead of having four half-planes, there
are six half-planes

• Outcodes now have six bits
– Two more bits for the
– near and far planes

Triangle Clipping by Outcode

• For triangles, we need to perform
inside/outside test for three vertices

One-Plane-at-a-Time Clipping
(a.k.a. Sutherland-Hodgeman Algorithm)

• The Sutherland-Hodgeman
triangle clipping algorithm uses a
divide-and-conquer strategy

• It first solves the simple problem
of clipping a triangle against a
single plane
– Four cases

• Each of the clipping planes are
applied in succession to every
triangle.

Triangle Cases

Keep Complete
Triangle

Reject Complete
Triangle

Keep Triangle
Portion Inside

Keep
Quadrilateral
Portion Inside
and Split into
Two Triangles

One-Plane-at-a-Time Clipping
• The results of Sutherland-Hodgeman clipping can get

complicated very quickly once multiple clipping planes
are considered.

• However, the algorithm is still very simple. Each clipping
plane is treated independently, and each triangle is
treated by one of the four cases mentioned previously.

Alternatives to Plane-at-a-time
Over the years there have been improvements to
one-plane-at-a-time clipping.
• Wieler-Atherton clipping: clipping against

concave volumes
– Can clip arbitrary polygons against arbitrary polygons
– Maintains more state than plane-at-a-time clipping
 • Nicholle-Lee-Nicholle clipping:

handle all planes at once
– It waits before generating triangles to

reduce the number of clip sections
generated

Back Face Culling
• Back-face culling addresses a special case of occlusion called

convex self-occlusion
• If an object is closed (having a well defined inside and outside) then

some parts of the outer surface must be blocked by other parts of
the same surface.

• On such surfaces we need only consider the normals of surface
elements to determine if they are visible.

Removing Back-Faces
• Basic Idea: Compare the normal of each

face with the viewing direction

• Given n, the outward-pointing normal of F
– for each face F of object
– if (n ∙ v > 0)
 throw away the face

• Does it always work?

n ∙ v > 0

Fixing the Problem
We can’t do view direction clipping just anywhere!

Downside: Projection comes fairly late in the pipeline. It would be
nice to cull objects sooner.
Upside: Computing the dot product is simpler.

Culling Technique #2
Detect a change in screen-space
orientation.
• If all face vertices are ordered in a

consistent way, back-facing primitives
can be found by detecting a reversal
in this order. One choice is a
counterclockwise ordering when
viewed from outside of the manifold.
This is consistent with computing face
normals (Why?). If, after projection,
we ever see a clockwise face, it must
be back facing.

• This approach will work for all cases,

but it comes even later in the pipe, at
triangle setup. We already do this
calculation in our triangle rasterizer. It
is equivalent to determining a triangle
with negative area.

Culling Plane Test
• Here is a culling test that will work anywhere in the pipeline.
• Remove faces that have the eye in their negative half-

space. This requires computing a plane equation for each
face considered.

0

1

]0[=−



















d
z
y
x

nnn zyx

Culling Plane Test
• Once we have the plane equation, we substitute the

coordinate of the viewing point (the eye coordinate in our
viewing matrix). If it is negative, then the surface is
backfacing.

• Example:

Back Face Culling in OpenGL

• Back Face Culling is available as a mode
setting in OpenGL
– Very flexible (can cull fronts as well as backs)
– It can double your performance!

• glEnable(GL_CULL_FACE)
glCullFace(GL_BACK)

	CSC 4356�Interactive Computer Graphics�Lecture 12: Hidden Surface Removal
	Hidden Surfaces
	Clipping & Culling
	When to clip & cull?
	Example
	Example
	Clipping
	Line Clipping
	Outcode Clipping�(a.k.a Cohen-Sutherland Clipping)
	The Outcode
	How to Clip using Outcode?
	Non-Trivial Cases
	Computing Intersection
	Psuedo-Code
	3D Generalization
	Triangle Clipping by Outcode
	One-Plane-at-a-Time Clipping�(a.k.a. Sutherland-Hodgeman Algorithm)
	Triangle Cases
	One-Plane-at-a-Time Clipping
	Alternatives to Plane-at-a-time
	Back Face Culling
	Removing Back-Faces
	Fixing the Problem
	Culling Technique #2
	Culling Plane Test
	Culling Plane Test
	Back Face Culling in OpenGL

