
CSC 4356
Interactive Computer Graphics

Lecture 13: Visibility

Jinwei Ye
http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am
218 Tureaud Hall

Clipping & Culling

Visibility
• Problem: for most scenes and viewpoints, some

polygons will overlap and cause occlusions. So
we must determine which portion of each
polygon is visible to eye

Painter’s Algorithm

Draw primitives from
back to front

–Depth sorting

Painter’s Algorithm
• Idea: Sort primitives by

minimum depth, then rasterize
from farthest to nearest

• When there are depth overlaps,
do more tests of bounding areas
to see if one actually occludes
the other

Paint order:
A → C → E → D→ B

Reorder B & D:
A → C → E → B→ D x

Di
st

an
ce

B

D

Problems with Painter’s

• Invisible parts have already been painted
– Waste computation

• Cyclical overlaps and interpenetration are
problematic
– Impossible to determine depth order

BSP Trees
• Binary Space Partitioning:
 Divide space into
 visibility regions

– In 2-D, boundaries are lines
– In 3-D, boundaries are planes

• Basic idea: “spatial sorting” keeps track of
which side of lines/planes primitives are on
– Objects on the same side as the viewer can be

drawn on top of objects on the opposite side
– Objects on one side cannot intersect objects on

the other side

Building A 2D BSP Tree
• Pick oriented line segment (i.e., has a

normal) from list as the root
• Rest of lines partitioned according to

which side they are on
– “Partitioning” line placed at root of subtree
– Sets of lines on “front” side and “back” side

correspond to left & right subtrees,
respectively

– If a line cross the partition line, split it
• Recurse on each child

BSP Tree: Building Example

BSP Tree: Building Example

BSP Tree: Building Example

BSP Tree: Issues
• How to pick partition lines?

– Every object must be drawn
– Overall tree size should be as small as

possible: minimize splitting
– Procedure in practice:

1. Randomly select a small number of candidate
partitioning lines (e.g., 5-10 out of 1,000)

2. Calculate number of lines that cross each
candidate

3. Use candidate with least crossing as the next
partition line

BSP Tree Traversal
• Follow painter’s algorithm: draw objects

from farthest to nearest
– If view location is on front side of a

partitioning line:
• Lines on back side are farther
• Lines on front side are nearer

– If view location is on back side of a
partitioning line:

• Lines on front side are farther
• Lines on back side are nearer

• How to determine which side of a
partitioning line the viewpoint is on?
– Line/Plane equation test

BSP Tree Traversal: Example

Behind root (node 3): Display everything in front of (left
subtree = nodes 1, 2, 5a), then root (node 3), then
everything behind (right subtree = nodes 4 and 5b)

BSP Tree Traversal: Example

In front of root (node 2): Display everything behind
(right subtree = node 1), then root (node 2), then
everything in front of (left subtree = node 5a)

BSP Tree Traversal: Example

In front of root (node 2): Display everything behind
(right subtree = node 1), then root (node 2), then
everything in front of (left subtree = node 5a)

BSP Tree Traversal: Example

Behind root (node 4): Display everything in front of (left
subtree = NULL), then root (node 4), then everything
behind (right subtree = node 5b)

BSP Tree Traversal: Example

Behind root (node 4): Display everything in front of (left
subtree = NULL), then root (node 4), then everything
behind (right subtree = node 5b)

BSP Tree Traversal: Example

Every node is visited from back-to-front, so this is an O(n)
operation (n is the number of primitives after splitting)

Final order: 1, 2, 5a, 3, 4, 5b

BSP Tree Traversal: Psuedocode

void draw_tree(Point eye, bspTree *tree)
{
 if (!tree)
 return;
 if (in_front(eye, tree)) { // eye is on “front” side of divider
 draw_tree(eye, tree->back);
 draw_object(tree);
 draw_tree(eye, tree->front);
 }
 else if (in_back(eye, tree)) { // eye is on “back” side of divider
 draw_tree(eye, tree->front);
 draw_object(tree);
 draw_tree(eye, tree->back);
 }
 else { // eye is aligned with divider
 draw_tree(eye, tree->front);
 draw_tree(eye, tree->back);
 }
}

3D BSP Tree

• Analog of 2D method, but now we deal
with 3D triangles and partitioning planes

• What’s different from 2D case?
– Parameterize partitioning plane from

triangle
– Use plane equation for side test
– Line (triangle edges)-plane intersection

instead of line-line intersection
– Triangle splitting instead of line splitting

BSP Tree: Notes

• Works best for moving viewpoint
– Change viewpoint simply changes traversl

order of the tree
• Works best for static scenes

– Moving primitives can cross partitioning lines
– Dynamic adjustment of tree possible, but

slows things down

Pixel-Level Visibility
• So far, we’ve considered visibility at the level of

primitives (lines/triangles)
• Now we will turn our attention to a class of

algorithms that consider visibility at each pixel

Ray Casting

• Idea: Cast a ray from the viewpoint
through each pixel and intersect with
objects to find the closest one

• Complexity: O(n) in worst case
where n is the number of objects

• Objects could be
polygon, sphere, cone,
cylinder, etc.

Z-Buffering

• Idea: Maintain an image-sized z-buffer
with z value for each pixel

• What are z values?
– z value is the distance from a scene point to

the viewer (origin)
– Related to depth values

• Typical z buffer size 24-bit
– Same as color buffer

Z-Buffer: Example

A Simple Three Dimensional Scene Z Buffer Representation

Z-Buffer: another example

Z-Buffer Algorithm
• Assumptions:

– Each pixel has storage for a z value (z-buffer), in
addition to RGB (frame buffer)

– All objects are “scan-convertible” (typically are
polygons, triangles, lines or points)

• Algorithm:
Initialize zbuf to maximal value
for each pixel (i,j) obtained
 by scan conversion
 if znew(i,j) < zbuf(i,j)
 zbuf(i,j) = znew(i,j);
 write pixel(i,j);

How to get z-buffer?

• Remember after camera projection, we
have











































−
⋅⋅−

−
+
−
+−

−
⋅

−
+−

−
⋅

=



















1
0100

200

0)(20

0)(02

'
'
'

z
y
x

nearfar
nearfar

nearfar
nearfar

bottomtop
bottomtop

bottomtop
near

leftright
leftright

leftright
near

w
wz
wy
wx

Computing Z
• We get the following expression for z from

our projection matrix

• The mapping of z
 is not linear

– But still monotonic

)(
2)('

nearfarz
nearfarnearfarzz

−⋅
⋅⋅−−⋅

=

Computing Z
• What is the problem with non-linearity?

– z values are non-uniformly quantized
– The number of discrete discernable depths is greater

closer to the near plane than near the far plane
• Cons:

Objects closer to the
viewer are displayed
with higher precision

• Pros:
This may result in
far-away objects
indiscernible

Interpolating Z

• Linear interpolating the interior z values
from triangle vertices

• Plane Equation:

• Compute coefficients using
 edge parameters

 z = Azx + Bzy + Cz

Z Fighting

• Objects closer to each other than
minimum z discrimination mean
interpenetration/improper display is
possible
– Example: piece of paper on a desk top
– Minimize with high-precision Z buffer,

pushing near clip plane out as far as
possible, and/or polygon offset (depth
biasing)

Z Fighting Example

Z-buffering: Notes
• Pros

– Interpolation of pixel values from vertex values is
easy to do and a key idea in graphics

– Nearly constant overhead
• Expensive for simple scenes but good for complex ones

• Cons
– Relatively late in pipeline
– Extra storage (z-buffer)
– Precision of depth buffer limits accuracy of object

depth ordering for large scale scenes (i.e., nearest to
farthest objects)

– No perfect scheme for handling translucent objects

Z-Buffering in OpenGL

• Initial a window with z-buffer
 glutInitDisplayMode(GLUT_DEPTH)
• Enable per-pixel depth testing with

glEnable(GL_DEPTH_TEST)
• Clear depth buffer by setting

glClear(GL_DEPTH_BUFFER_BIT)

	CSC 4356�Interactive Computer Graphics�Lecture 13: Visibility
	Clipping & Culling
	Visibility
	Painter’s Algorithm
	Painter’s Algorithm
	Problems with Painter’s
	BSP Trees
	Building A 2D BSP Tree
	BSP Tree: Building Example
	BSP Tree: Building Example
	BSP Tree: Building Example
	BSP Tree: Issues
	BSP Tree Traversal
	BSP Tree Traversal: Example
	BSP Tree Traversal: Example
	BSP Tree Traversal: Example
	BSP Tree Traversal: Example
	BSP Tree Traversal: Example
	BSP Tree Traversal: Example
	BSP Tree Traversal: Psuedocode
	3D BSP Tree
	BSP Tree: Notes
	Pixel-Level Visibility
	Ray Casting
	Z-Buffering
	Z-Buffer: Example
	Z-Buffer: another example
	Z-Buffer Algorithm
	How to get z-buffer?
	Computing Z
	Computing Z
	Interpolating Z
	Z Fighting
	Z Fighting Example
	Z-buffering: Notes
	Z-Buffering in OpenGL

