CSC 4356 Interactive Computer Graphics Lecture 14: Illumination (Part 1)

Jinwei Ye http://www.csc.Isu.edu/~jye/CSC4356/

Tue \& Thu: 10:30-11:50am
218 Tureaud Hall

Lecture 14 Illumination

- So far, we have talked a lot about geometry
- This time, let's shed some light ...
- Reading: Chap 17

Appearance of An Scene

Illumination
Geometry
Scene Geometry

Scene Appearance
 Scene Appearance

Illumination
Spectrum

Viewpoint

Example: Time-lapse Photo

- Daytime

Example: Time-lapse Photo

- Sunset

Example: Time-lapse Photo

- After Sunset

The Dress

Two Interpretations

Image from Wikipedia

What is Light?

- Light is electromagnetic radiation that is visible to eyes
-3D position
- Propagation direction
- Wavelength
- ...

- We assume objects are large...
- Much larger than the visible light wavelength
- We don't consider interference and diffraction

How to Measure Light?

- Human eyes

Retina

How to Measure Light?

- Camera

Measure Light: Mathematical Models

- Irradiance E
- Light power per area that arrives at surface from all visible direction
- Radiosity B

- Light power per area that leaves a surface in all directions
- Also called "Radiant Exitance"

Irradiance

- Power of light is measured by flux in radiometry - Unit: Lumen (Im) or Watts (W)
- Given a sensor with area A, we can consider the average flux over the entire sensor area:

$$
\frac{\Phi}{A}
$$

- Irradiance (E) is given by taking the limit of area at a point on the sensor:

$$
E(\mathrm{p})=\lim _{\Delta \rightarrow 0} \frac{\Delta \Phi(\mathrm{p})}{\Delta A}=\frac{\mathrm{d} \Phi(\mathrm{p})}{\mathrm{d} A}
$$

Beam Power in Irradiance

- Let's consider a beam of light with flux ϕ incident on surface with area A

Tilted Surface

- Let's consider a beam of light with flux ϕ incident on an tilted surface with area A'

Here A is the projected area of surface relative to the direction of beam

Foreshortening

- Irradiance is proportional to cosine of the angle between light direction and surface normal

$$
E=\frac{\Phi}{A^{\prime}}=\frac{\Phi \cos \theta}{A}
$$

$$
A=A^{\prime} \cos \theta
$$

Distance Attenuation

- Assume a light source emitting flux in a uniform angular distribution
- Consider two sphere surfaces:

$$
\begin{aligned}
& E_{1}=\frac{\Phi}{4 \pi r_{1}^{2}} \rightarrow \Phi=4 \pi r_{1}^{2} E_{1} \\
& E_{2}=\frac{\Phi}{4 \pi r_{2}^{2}} \rightarrow \Phi=4 \pi r_{2}^{2} E_{2} \\
& \frac{E_{2}}{E_{1}}=\frac{r_{1}^{2}}{r_{2}^{2}}
\end{aligned}
$$

Radiance

- Irradiance doesn't tell us where the light comes from
- Integrate light over all directions
- Radiance L
- Power of light per area in a given direction
- Since light is a cone, direction is defined in solid angle
- Can be both incoming and outgoing

Solid Angle

- Angle: ratio of subtended arc length on a circle to radius

Circle has 2π radians

- Solid angle: ratio of subtended area on sphere to radius squared

$$
\Omega=\frac{A}{r^{2}}
$$

Differential Solid Angle

$$
\begin{aligned}
\mathrm{d} A & =(r \mathrm{~d} \theta)(r \sin \theta \mathrm{~d} \phi) \\
& =r^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \\
\mathrm{~d} \omega & =\frac{\mathrm{d} A}{r^{2}}=\sin \theta \mathrm{d} \theta \mathrm{~d} \phi
\end{aligned}
$$

Entire Sphere:

$$
\begin{aligned}
\Omega & =\int_{S^{2}} \mathrm{~d} \omega \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \sin \theta \mathrm{d} \theta \mathrm{~d} \phi \\
& =4 \pi
\end{aligned}
$$

Surface Radiance

- Surface Radiance (L) is light power per area per solid angle leaving the surface
- Irradiance per solid angle
- Unit: W/(m².sr)

$$
L(p, \omega)=\frac{d E(p)}{d \omega}=\frac{d^{2} \Phi(p)}{d A d \omega}
$$

Surface Radiance

- If the surface is not oriented in the ray direction:

Radiance: Incoming vs. Outgoing

- Radiance could be in both directions
- General on the same surface point p :

$$
L_{i}(\mathbf{p}, \omega) \neq L_{o}(\mathbf{p}, \omega)
$$

BRDF

- Bi-directional Reflectance Distribution Function describes the transport of incoming light to outgoing light (surface radiance)
- Ratio between outgoing surface radiance and incoming irradiance
- Characterize surface reflectance/material

$$
\rho\left(\theta_{r}, \phi_{r}, \theta_{i}, \phi_{i}\right)=\frac{L\left(\theta_{r}, \phi_{r}\right)}{L\left(\theta_{i}, \phi_{i}\right) \cos \theta d \omega_{i}}
$$

BRDF Property

- Reciprocity principle

$$
\rho\left(\theta_{r}, \phi_{r}, \theta_{i}, \phi_{i}\right)=\rho\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right)
$$

BRDF Property

- Energy conservation

$$
\int_{H^{2}} \rho\left(\theta_{r}, \phi_{r}, \theta_{i}, \phi_{i}\right) \leq 1
$$

where H^{2} is a hemisphere

Incoming light

Measuring BRDF

- Goniophotometer
- 4 degree-of-freedom gantry
- Measure one incoming/ outgoing light pair at time
- Slow
- Accurate

BRDF Examples

CHROME

MATERIAL STUDY: STUDIO

What are we measuring?

- Irradiance

- Radiosity

- Radiance
- Reflected radiance

Reflectance Equation

$$
L_{r}\left(\omega_{r}\right)=L_{i}\left(\omega_{i}\right) f\left(\omega_{i}, \omega_{r}\right)\left(\omega_{i} \cdot n\right)
$$

Reflected Radiance (Output Image)

Incident
Radiance (from light soure)

BRDF
Cosine of Incident Angle

Reflectance Equation

Reflectance Equation

Matching Reality

- Cornell box comparison

Photo

Rendered

Summary

- Radiance is a fundamental field quantity that characterize the distribution of light in environment
- quantity associate with a light ray
- constant along a ray in vacuum
- We use BRDF to characterize surface material property
- Rendering is about computing reflected radiance
- The reflectance equation

Next time...

- We'll have a midterm review
- The second programming assignment is due on midnight next Tuesday (10/10)
- We'll have midterm exam on next Thursday (10/12) - worth 15% of your total score
- Exam will focus on lecture material
- Question types: mostly explanations, definitions, and some calculations
- Closed-book, no computer, no smartphone
- But, you are allowed to bring one single-page letter-sized cheatsheet and calculator

