
CSC 4356

Interactive Computer Graphics
Lecture 16: Illumination (Part 3)

Jinwei Ye

http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am

218 Tureaud Hall

Ambient Reflectance

• The amount of ambient light that is reflected by

an object is independent of the object's position

or orientation

• Surface properties are used to determine how

much ambient light is reflected

aaambient IkI

Ambient
Reflectance

Ambient
Reflectivity

Ambient Light
Intensity

Computing Diffuse Reflection

• The angle between the surface normal and the incoming

light ray is called the angle of incidence and we can

express a intensity of the light in terms of this angle θ

• In practice, we can use dot product to compute cosθ

– If both the surface normal and the lighting direction are

normalized (unit length) then diffuse reflectance can be

computed as

coslddiffuse IkI

Diffuse
Reflectance

Diffuse
Reflectivity

Light
Intensity

Incident
Angle

)ˆˆ(lnIkI lddiffuse

Diffuse Light Examples

• Below are several examples of a spherical

diffuse reflector with a varying lighting angles.

– Why consider a spherical surface?

– We need only consider angles from 0 to 90 degrees

– Greater angles (where the dot product is negative)

are blocked by the surface and the reflectance is zero

Specular Reflection

• A second surface type is called a specular

reflector (e.g. mirror, polished metal)

– Have bright, view-dependent highlight

– At microscopic level, a specular surface is very smooth

Snell’s Law
• Specular reflection follows the Smell’s Law

– The incoming ray, the surface normal, and the
reflected ray all lie in a common plane.

– The angle that the reflected ray forms with the surface
normal is determined by the angle that the incoming
ray forms with the surface normal, and the relative
speeds of light of the mediums in which the incident
and reflected rays propagate

• In reflection, the medium is

 the same (nl=nr)
– So we simplify the expression to

rrll nn sinsin

rl

How to Compute Reflection Vector?

• The vector reflection vector R can be

computed from the incoming light direction

and the surface normal as shown below:

lnlnr ˆˆ))ˆˆ(2(ˆ nlnlr ˆ))ˆˆ(2(ˆˆ

Non-ideal Specular Reflector

• Snell's law applies only to ideal specular reflectors

• Real materials, other than mirrors and chrome tend to

deviate significantly from ideal specular reflectors

– Roughness of surfaces causes highlight to “spread out”

• Now we introduce an empirical model that is

consistent with our experience (but without capture the

physics of it)

Blurred Highlights

• Blurred highlights caused by surface

roughness

Phong Illumination

• Phong Illumination model approximates this fall off

– This model has no physical basis

– Yet it is one of the most commonly used illumination models in

computer graphics

shinyn

lsspecular IkI)(cos

• is the direction to the viewer

• The nshiny controls how quickly the

highlight falls off

– The larger the exponent, the faster fall off

v
shinyn

ls rvIk)ˆˆ(

v̂

Effect of Shininess

Blinn & Torrance Variation

• Jim Blinn introduced another approach for

computing Phong-like illumination based on the

work of Ken Torrance

• Halfway vector H: a vector bisecting the

incoming light direction and the viewing direction

shinyn

lsspecular HnIkI)ˆˆ(

|ˆˆ|

ˆˆ
ˆ

vl

vl
H

What is the difference?

• The angle between the halfway vector and the

surface normal is likely to be smaller than the

angle between R and V used in Phong's model

– unless the surface is viewed from a very steep angle,

the angle between H and N is likely to be larger

• We can set larger exponent (shininess) for Blinn

Blinn Phong Blinn
(with 4 x nshiny)

Putting It All Together

• Our final empirical illumination model is:

lights

i

n

sdiaatotal

shinyrvklnkIIkI
1

))ˆˆ()ˆˆ((

Lighting in OpenGL

define a directional light

float lightDirection[] = { 2.0f, 0.0f, 1.0f, 0 };

glLightfv(GL_LIGHT0, GL_POSITION, lightDirection);

glEnable(GL_LIGHT0);

set up light colors

float ambientIntensity[] = { 0.1f, 0.1f, 0.1f, 1.0f };

float lightIntensity[] = { 0.9f, 0.9f, 0.9f, 1.0f };

float lightSpec[] = { 1.0f, 1.0f, 1.0f, 1 };

glLightfv(GL_LIGHT0, GL_AMBIENT, ambientIntensity);

glLightfv(GL_LIGHT0, GL_DIFFUSE, lightIntensity);

glLightfv(GL_LIGHT0, GL_SPECULAR, lightSpec);

Lighting in OpenGL

set up surface material properties

float frontColor[] = { 0.2f, 0.7f, 0.7f, 1.0f };

glMaterialfv(GL_FRONT, GL_AMBIENT, frontColor);

glMaterialfv(GL_FRONT, GL_DIFFUSE, frontColor);

glMaterialfv(GL_FRONT, GL_SPECULAR, frontColor);

glMaterialf(GL_FRONT, GL_SHININESS, 100);

Where do we Illuminate?

• To this point, we have discussed how to compute an

illumination model at a point on a surface. But, at which

points on the surface is the illumination model applied?

• Where and how often it is applied has a noticeable effect

on the result

• For models defined by collections of polygonal facets or

triangles:

– Each facet has a common surface normal

– If the light is directional then the diffuse contribution is constant

across the facet

– If the eye is infinitely far away and the light is directional then the

specular contribution is constant across the facet

Flat Shading

• The simplest shading method applies only one

illumination calculation for each primitive

– This technique is called constant or flat shading

– Often used on polygonal primitives

• Which point on the facet should we use for

computing illumination?

– The centroid

Issues with Flat Shading

• Polygonal shape is still apparent
– Constant color for each facet

• For point light sources, the direction to the light
source varies over the facet

• For specular reflections, the direction to the eye
varies over the facet

• To overcome this limitation, normals are
introduced at each vertex
– Usually different than the polygon normal

– Used only for shading (not backface culling or other
geometric computations)

– Better approximates the "real" surface

Vertex Normals
• In most obj files, the vertex normals are provided in

object specifications

- f int//int int//int int//int …

• If vertex normals are not provided, they can often be

approximated by averaging the normals of the facets

which share the vertex

- This only works if the polygons reasonably

approximate the underlying surface

Gouraud Shading

• The Gouraud Shading applies the illumination model on

a subset of surface points and interpolates the intensity

of the remaining points on the surface

– In the case of a polygonal mesh the illumination model is applied

at each vertex and the colors in the triangles interior are linearly

interpolated from these vertex values

– The linear interpolation can be accomplished using the plane

equation method discussed in the lecture on rasterizing polygons

– Notice that facet artifacts are still visible

Interpolating Color

• Now we know how to draw a solid triangle
(All vertices have the same color)

• What if they have different colors (or other
parameters, e.g. depth)? How to interpolate?

• Idea: triangles are planar in any space:
– This is the “redness”

parameter space

– Also need to do this
for green and blue

– Plane equation

 z = Arx + Bry + Cr

(here z stands for redness of

a point (x,y) inside the triangle)

Gouraud Shading Artifacts

• Poor handling on specular highlights

– Issue lessons by using finer detailed geometry

Phong Shading

• In Phong shading (not to be confused with Phong's

illumination model), the surface normal is linearly

interpolated across polygonal facets, and the illumination

model is applied at every point

– Better handling on specular high lights and usually results in a

very smooth appearance

– Slower than Gouraud shading

– NOT built into OpenGL (OpenGL uses Gouraud)

– Can be implemented on graphics card using fragment shader

Flat vs. Gouraud vs. Phong

Compute illumination
model once on facet
centroid

Compute illumination model
on the vertices of a facet and
then interpolate color for
interior points

Interpolate normal for every
point and then compute
illumination model for each
point on a facet

Revisit The Empirical Model

• Now we know where to apply this illumination
model

• Even with Phong shading, any problem with
this model?
– What are ka, ks, and nshiny? Are they measurable

quantities?

– What are the coefficients for copper?

– Is my picture accurate?

lights

i

n

sdiaatotal

shinyrvklnkIIkI
1

))ˆˆ()ˆˆ((

Cook-Torrance Result

Reference: http://inst.eecs.berkeley.edu/~cs283/sp13/lectures/cookpaper.pdf

Plastic-looking copper vase

rendered using Phong model

A copper vase with a

more metallic appearance

BRDF

• Bi-directional Reflectance Distribution Function

describes the transport of incoming light to

outgoing light (surface radiance)

– Ratio between outgoing surface radiance and

incoming irradiance

– Characterize surface reflectance/material

iii

rr
iirr

dL

L

cos),(

),(
),,,(

Measuring BRDF

• Goniophotometer

– 4 degree-of-freedom gantry

– Measure one incoming/

outgoing light pair at time

– Slow

– Accurate

Data Driven BRDF Modeling

• Acquisition system

– Homogeneous sphere

– Fixed camera

– Orbiting light source

• 20 – 80 million reflectance

 per material sample

– Each camera pixel in an image

 samples a BRDF

– 330 pictures to cover half circle

 Reference: https://people.csail.mit.edu/wojciech/DDRM/ddrm.pdf

How to use BRDF data
• Directly use the BRDF measurements for rendering

• Linear combination of acquired BRDFs can be used to

synthesize new materials

Nickel Hematite Gold Paint Pink Felt

BRDF Editing

• BRDF Shop

– Video:
https://www.youtube.com/watch?v=HmvkNqrGvxs

Complex BRDFs/Materials

Next Time …

• Programming the GPU

– Shading Language

– Fragment shader

– Vertex shader

• Reading:

– Textbook Chapter 22

• Office Hour Change (This Week Only)

– Thursday 2-4pm -> Tuesday 2-4pm

