
CSC 4356
Interactive Computer Graphics

Lecture 17: Shading Language

Jinwei Ye
http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am
218 Tureaud Hall

Why Use Shading Language
• GPU has become increasingly
 more powerful
• Programming powerful hardware

with assembly code is hard
• Most GPUs supports programs

more than 1,000 assembly
instructions long

• Programmers need the benefits
 of a high-level language:

– Easier programming
– Easier code reuse
– Easier debugging

Assembly
…
DP3 R0, c[11].xyzx, c[11].xyzx;
RSQ R0, R0.x;
MUL R0, R0.x, c[11].xyzx;
MOV R1, c[3];
MUL R1, R1.x, c[0].xyzx;
DP3 R2, R1.xyzx, R1.xyzx;
RSQ R2, R2.x;
MUL R1, R2.x, R1.xyzx;
ADD R2, R0.xyzx, R1.xyzx;
DP3 R3, R2.xyzx, R2.xyzx;
RSQ R3, R3.x;
MUL R2, R3.x, R2.xyzx;
DP3 R2, R1.xyzx, R2.xyzx;
MAX R2, c[3].z, R2.x;
MOV R2.z, c[3].y;
MOV R2.w, c[3].y;
LIT R2, R2;
...

Shading Language
float3 cSpecular = pow(max(0, dot(Nf, H)), phongExp).xxx;
float3 cPlastic = Cd * (cAmbient + cDiffuse) + Cs * cSpecular;

Customized Rendering Effect

GPU Shading Languages
• CG

– NVIDIA’s shading language
– Works on OpenGL and DirectX
– Uses hardware profiles that may limit language constructs

• HLSL
– Shading language used in DirectX
– Very similar to CG

• GLSL
– OpenGL’s built in shading language

• Sh
– A C++ library rather than a language
– Can cross-compile to the GPU

OpenGL Shading Language
(GLSL)

• A C-like language and incorporated into
OpenGL 2.0

• Used to write vertex shader and fragment
shader

• No distinction in the syntax between a
vertex shader and a fragment shader

• Platform independent compared to CG

GPU Programmability

• Programmable Processing units
– Programmable per-Vertex Processors
– Programmable per-Fragment Processors

Application Vertex
Processor

Fragment
Processor

Process
and

Rasterize
Primitive

Per
Fragment
& Frame
Buffer

ops

Frame
Buffer

Application
Program

Vertex
Shader

Fragment
Shader

Graphics Pipeline

Vertex Transformation
• A vertex is a set of attributes such as its

location in space, color, normal, texture
coordinates, etc.

• Inputs: individual vertices attributes
• Operations:

– Vertex position transformation
– Lighting computations per vertex
– Generation and transformation of texture

coordinates

Primitive Assembly and Rasterization

• Inputs: transformed vertices and connectivity
information

• Operations:
– Clipping against view frustum and back face

culling
– The actual rasterization determines the

fragments, and pixel positions of the primitive
• Output:

– Position of the fragments in the frame buffer
– Interpolated attributes for each fragment

Fragment Texturing and Coloring

• Input: interpolated fragment information
• A color has already been computed in the

previous stage through interpolation, and
can be combined with a texel

• Texture coordinates have also been
interpolated in the previous stage

• Fog is also applied at this stage
• Output: a color value and a depth for each

fragment

Replacing Fixed Functionalities

• Vertex Transformation:
 Vertex shader
• Primitive Assembly and Rasterization:

Geometry shader
• Fragment Texturing and Coloring:

Fragment shader

How Does It Work

• You specify vertices as usual
– Vertex positions, texture coordinates, etc.
– And some user variables if you want

• The vertex shader modifies/calculates these
variables

• Each fragment gets the interpolated values
• The fragment shader can now work on the

interpolated values, including the user
defined variables

Vertex Shader
• A vertex shader is executed on each vertex

triggered by glVertex*()
• Each vertex shader must output the

information that the rasterizer needs
– At a minimum: transforms the vertex position

• The program can access all OpenGL states
– Current color, texture coordinates, material

properties, transformation matrices, etc
• The application can also supply additional

input variables to the vertex program

Vertex Program Capabilities
• General processing that a vertex shader can

do include:
– Vertex transformation
– Normal transformation, normalization and

rescaling
– Lighting
– Color material application
– Clamping of colors
– Texture coordinate generation
– Texture coordinate transformation
– Etc.

Vertex Program Capabilities

• The vertex program does NOT do:
– Perspective divide and viewport mapping
– Frustum and user clipping
– Backface culling
– Two sided lighting selection
– Polygon mode
– Etc.

Fragment Shader
• The fragment shader is executed after

rasterization and operate on each fragment
– Per-pixel operations

• Vertex attributes (colors, positions, texture
coordinates, etc.) are interpolated across a
primitive automatically as the input to the
fragment program

• Fragment shader can access OpenGL state,
(interpolated) output from vertex program,
and user defined variables

Fragment Shader Capabilities
• General processing that a fragment shader

can do include:
– Operations on interpolated values
– Texture access
– Texture application
– Fog
– Color sum
– Color matrix
– Discard fragment
– Etc.

Fragment Shader Capabilities

• The fragment shader does NOT replace:
– Scissor
– Alpha test
– Depth test
– Stencil test
– Alpha blending
– Etc.

GLSL Data Types
• Three basic data types in GLSL: float, bool, int

– float and int behave just like in C and bool types can
take on the values of true or false

• Vectors with 2,3 or 4 components, declared as:
– vec2, vec3, vec4

• Square matrices 2x2, 3x3 and 4x4:
– mat2, mat3, mat4

• A set of special types are available for texture
access, called sampler
– sampler1D, sampler2D, sampler3D, samplerCube

• Arrays can be declared using the same syntax as
in C, but can't be initialized when declared

• Structures are supported with exactly the same
syntax as C

GLSL Variables
• Declaring variables in GLSL is mostly the same as in C

float a,b;

int c = 2; // c is initialized with 2

bool d = true; // d is true

• Differences: GLSL relies heavily on constructor for initialization
and type casting

float e = (float)2;// incorrect, requires constructors for type
casting

int a = 2;

float c = float(a); // correct. c is 2.0

vec3 f; // declaring f as a vec3

• GLSL is pretty flexible when initializing variables using other variables
vec3 g = vec3(1.0,2.0,3.0); // declaring and initializing g

vec2 a = vec2(1.0,2.0);

vec2 b = vec2(3.0,4.0);

vec4 c = vec4(a,b) // c = vec4(1.0,2.0,3.0,4.0);

vec2 g = vec2(1.0,2.0);

float h = 3.0;

vec3 j = vec3(g,h);

GLSL Variables
• Matrices also follow this pattern

mat4 m = mat4(1.0) // initializing the diagonal of the
matrix with 1.0

vec2 a = vec2(1.0,2.0);

vec2 b = vec2(3.0,4.0);

mat2 n = mat2(a,b); // matrices are assigned in column major
order

mat2 k = mat2(1.0,0.0,1.0,0.0); // all elements are
specified

• The declaration and initialization of structures is
demonstrated below

struct dirlight {

vec3 direction;

vec3 color;

};

dirlight d1;

dirlight d2 = dirlight(vec3(1.0,1.0,0.0),vec3(0.8,0.8,0.4));

GLSL Variables
• Accessing a vector can be done using letters as well

as standard C selectors
vec4 a = vec4(1.0,2.0,3.0,4.0);

float posX = a.x;

float posY = a[1];

vec2 posXY = a.xy;

• One can the letters x,y,z,w to access vectors
components; r,g,b,a for color components; and s,t,p,q for
texture coordinates

• As for structures the names of the elements of the
structure can be used as in C

d1.direction = vec3(1.0,1.0,1.0);

GLSL Variable Qualifiers
• Qualifiers give a special meaning to the

variable. In GLSL the following qualifiers are
available:
– attribute: per-vertex data values provided to the

vertex shader
– uniform: variables set for the entire primitive, i.e.,

may not be set inside glBegin()/glEnd()
– varying: used for interpolated data between a

vertex shader and a fragment shader (output for
vertex shader but input for fragment shader).
Defined on a per vertex basis but interpolated
over the primitive for the fragment shader

Built-in Variables

• For ease of programming
• OpenGL state mapped to variables
• Some special variables are required to be

written to, others are optional

Built-in Attributes
attribute vec4 gl_Vertex;
attribute vec3 gl_Normal;
attribute vec4 gl_Color;
attribute vec4 gl_SecondaryColor;
attribute vec4 gl_MultiTexCoordn;
attribute float gl_FogCoord;

Built-in Uniforms
uniform mat4 gl_ModelViewMatrix;
uniform mat4 gl_ProjectionMatrix;
uniform mat4 gl_ModelViewProjectionMatrix;
uniform mat3 gl_NormalMatrix; //transpose of the
 //inverse of the upper
 //leftmost 3x3 of
 //gl_ModelViewMatrix
uniform mat4 gl_TextureMatrix[n];

struct gl_MaterialParameters {
 vec4 emission;
 vec4 ambient;
 vec4 diffuse;
 vec4 specular;
 float shininess;
};

uniform gl_MaterialParameters gl_FrontMaterial;
uniform gl_MaterialParameters gl_BackMaterial;

Built-in Uniforms
struct gl_LightSourceParameters {

vec4 ambient;
vec4 diffuse;
vec4 specular;
vec4 position;
vec4 halfVector;
vec3 spotDirection;
float spotExponent;
float spotCutoff;
float spotCosCutoff;
float constantAttenuation
float linearAttenuation
float quadraticAttenuation

};

uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights];

Built-in Varyings
• For vertex shader

varying vec4 gl_FrontColor;
varying vec4 gl_BackColor;
varying vec4 gl_FrontSecondaryColor;
varying vec4 gl_BackSecondaryColor;
varying vec4 gl_TexCoord[];
varying float gl_FogFragCoord;

• For fragment shader
varying vec4 gl_Color;
varying vec4 gl_SecondaryColor;
varying vec4 gl_TexCoord[];
varying float gl_FogFragCoord;

Special Built-ins

• Vertex shader
vec4 gl_Position; // must be written

vec4 gl_ClipPosition; // may be written

float gl_PointSize; // may be written

• Fragment shader
float gl_FragColor; // may be written

float gl_FragDepth; // may be read/written

vec4 gl_FragCoord; // may be read

bool gl_FrontFacing; // may be read

Built-in Functions

• Angles & Trigonometry
– radians, degrees, sin, cos, tan, asin, acos,

atan
• Exponentials

– pow, exp2, log2, sqrt, inversesqrt
• Common

– abs, sign, floor, ceil, fract, mod, min, max,
clamp

Built-in Functions

• Interpolations
– mix(x,y,a) x*(1.0-a) + y*a
– step(edge,x) x <= edge ? 0.0 : 1.0
– smoothstep(edge0,edge1,x)

t = (x-edge0)/(edge1-edge0);
t = clamp(t, 0.0, 1.0);
return t*t*(3.0-2.0*t);

Built-in Functions

• Geometric
– length, distance, cross, dot, normalize,

faceForward, reflect
• Matrix

– matrixCompMult
• Vector relational

– lessThan, lessThanEqual, greaterThan,
greaterThanEqual, equal, notEqual, any, all

Vertex Shader Input
• Vertex shader is executed once each time a vertex

position is specified
– Via glVertex or glDrawArrays or other vertex array

calls
• Per-vertex input values are called “attributes”

– Change every vertex
– Passed through normal OpenGL mechanisms (per-

vertex API or vertex arrays)
• More persistent input values are called “uniforms”

– Can come from OpenGL state or from the application
– Constant across at least one primitive, typically

constant for many primitives
– Passed through new OpenGL API calls

Vertex Shader Output
• Vertex shader uses input values to compute output values
• Vertex shader must compute gl_Position

– Mandatory, needed by the rasterizer
• Other output values are called “varying” variables

– E.g., color, texture coordinates, arbitrary data
– Will be interpolated across the primitives
– Defined by the vertex shader
– Can be of type float, vec2, vec3, vec4, mat2, mat3, mat4, or

arrays of these
• Output of vertex processor feeds into OpenGL fixed

functionality
– If a fragment shader is active, output of vertex shader must

match input of fragment shader
– If no fragment shader is active, output of vertex shader must

match the needs of fixed functionality fragment processing

Fragment Shader Input
• Output of vertex shader is the input to the fragment

shader
– Compatibility is checked when linking occurs
– Compatibility between the two is based on varying

variables that are defined in both shaders and that
match in type and name

• Fragment shader is executed for each fragment
produced by rasterization

• For each fragment, fragment shader has access to
the interpolated value for each varying variable
– Color, normal, texture coordinates, arbitrary values

Fragment Shader Input
• Fragment shader may access:

– gl_FrontFacing – contains “facingness” of
primitive that produced the fragment

– gl_FragCoord – contains computed window
relative coordinates x, y, z, 1/w

• Uniform variables are also available
– OpenGL state or supplied by the application,

same as for vertex shader
• If no vertex shader is active, fragment shader

get the results of OpenGL fixed functionality

Fragment Shader Output

• Output of the fragment processor goes on to the
fixed function fragment operations and frame
buffer operations using built-in variables
– gl_FragColor – computed R, G, B, A for the fragment
– gl_FragDepth – computed depth value for the

fragment
– gl_FragData[n] – arbitrary data per fragment, stored

in multiple render targets
– Values are destined for writing into the frame buffer if

all back end tests (stencil, depth etc.) pass
• Clamping or format conversion to the target buffer

is done automatically outside of the fragment
shader

How to Use Shaders
• Four steps to using a shader

– Send shader source to
OpenGL

– Compile the shader
– Create an executable (i.e.,

link compiled shaders
together)

– Install the executable as
part of the current state

Shader Wrapper Code

Programming Assignment 3

• PA 3 is posted on our course website
• Due on 11/9/2017, 11:59pm

– Two weeks
• Implement shaders using a GLSL editor

– Shader Maker
http://cgvr.cs.uni-bremen.de/teaching/shader_maker/

http://cgvr.cs.uni-bremen.de/teaching/shader_maker/

Next Time …

• Texture mapping
• Reading:

– Textbook Chapter 18

	CSC 4356�Interactive Computer Graphics�Lecture 17: Shading Language
	Why Use Shading Language
	Customized Rendering Effect
	GPU Shading Languages
	OpenGL Shading Language (GLSL)
	GPU Programmability
	Graphics Pipeline
	Vertex Transformation
	Primitive Assembly and Rasterization
	Fragment Texturing and Coloring
	Replacing Fixed Functionalities
	How Does It Work
	Vertex Shader
	Vertex Program Capabilities
	Vertex Program Capabilities
	Fragment Shader
	Fragment Shader Capabilities
	Fragment Shader Capabilities
	GLSL Data Types
	GLSL Variables
	GLSL Variables
	GLSL Variables
	GLSL Variable Qualifiers
	Built-in Variables
	Built-in Attributes
	Built-in Uniforms
	Built-in Uniforms
	Built-in Varyings
	Special Built-ins
	Built-in Functions
	Built-in Functions
	Built-in Functions
	Vertex Shader Input
	Vertex Shader Output
	Fragment Shader Input
	Fragment Shader Input
	Fragment Shader Output
	How to Use Shaders
	Shader Wrapper Code
	Programming Assignment 3
	Next Time …

