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Why Use Shading Language 
• GPU has become increasingly  
    more powerful 
• Programming powerful hardware 

with assembly code is hard 
• Most GPUs supports programs  

more than 1,000 assembly  
instructions long 

• Programmers need the benefits  
    of a high-level language: 

– Easier programming 
– Easier code reuse 
– Easier debugging 

 

Assembly 
… 
DP3 R0, c[11].xyzx, c[11].xyzx; 
RSQ R0, R0.x; 
MUL R0, R0.x, c[11].xyzx; 
MOV R1, c[3]; 
MUL R1, R1.x, c[0].xyzx; 
DP3 R2, R1.xyzx, R1.xyzx; 
RSQ R2, R2.x; 
MUL R1, R2.x, R1.xyzx; 
ADD R2, R0.xyzx, R1.xyzx; 
DP3 R3, R2.xyzx, R2.xyzx; 
RSQ R3, R3.x; 
MUL R2, R3.x, R2.xyzx; 
DP3 R2, R1.xyzx, R2.xyzx; 
MAX R2, c[3].z, R2.x; 
MOV R2.z, c[3].y; 
MOV R2.w, c[3].y; 
LIT R2, R2; 
... 

Shading Language 
float3 cSpecular = pow(max(0, dot(Nf, H)), phongExp).xxx; 
float3 cPlastic = Cd * (cAmbient + cDiffuse) + Cs * cSpecular; 



Customized Rendering Effect 



GPU Shading Languages 
• CG 

– NVIDIA’s shading language 
– Works on OpenGL and DirectX 
– Uses hardware profiles that may limit language constructs 

• HLSL 
– Shading language used in DirectX 
– Very similar to CG 

• GLSL 
– OpenGL’s built in shading language 

• Sh 
– A C++ library rather than a language 
– Can cross-compile to the GPU 



OpenGL Shading Language 
(GLSL) 

• A C-like language and incorporated into 
OpenGL 2.0 

• Used to write vertex shader and fragment 
shader 

• No distinction in the syntax between a 
vertex shader and a fragment shader 

• Platform independent compared to CG 



GPU Programmability 

• Programmable Processing units  
– Programmable per-Vertex Processors 
– Programmable per-Fragment Processors 
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Graphics Pipeline 



Vertex Transformation 
• A vertex is a set of attributes such as its 

location in space, color, normal, texture 
coordinates, etc. 

• Inputs: individual vertices attributes 
• Operations: 

– Vertex position transformation 
– Lighting computations per vertex 
– Generation and transformation of texture 

coordinates 



Primitive Assembly and Rasterization 

• Inputs: transformed vertices and connectivity 
information  

• Operations: 
– Clipping against view frustum and back face 

culling 
– The actual rasterization determines the 

fragments, and pixel positions of the primitive 
• Output:  

– Position of the fragments in the frame buffer  
– Interpolated attributes for each fragment 

 
 



Fragment Texturing and Coloring 

• Input: interpolated fragment information 
• A color has already been computed in the 

previous stage through interpolation, and 
can be combined with a texel 

• Texture coordinates have also been 
interpolated in the previous stage 

• Fog is also applied at this stage 
• Output: a color value and a depth for each 

fragment 



Replacing Fixed Functionalities 

• Vertex Transformation:  
   Vertex shader 
• Primitive Assembly and Rasterization: 

Geometry shader 
• Fragment Texturing and Coloring: 

Fragment shader 
 



How Does It Work 

• You specify vertices as usual 
– Vertex positions, texture coordinates, etc.  
– And some user variables if you want 

• The vertex shader modifies/calculates these 
variables 

• Each fragment gets the interpolated values 
• The fragment shader can now work on the 

interpolated values, including the user 
defined variables 



Vertex Shader 
• A vertex shader is executed on each vertex 

triggered by glVertex*() 
• Each vertex shader must output the 

information that the rasterizer needs 
– At a minimum: transforms the vertex position 

• The program can access all OpenGL states 
– Current color, texture coordinates, material 

properties, transformation matrices, etc 
• The application can also supply additional 

input variables to the vertex program 



Vertex Program Capabilities 
• General processing that a vertex shader can 

do include: 
– Vertex transformation 
– Normal transformation, normalization and 

rescaling 
– Lighting 
– Color material application 
– Clamping of colors 
– Texture coordinate generation 
– Texture coordinate transformation 
– Etc. 



Vertex Program Capabilities 

• The vertex program does NOT do: 
– Perspective divide and viewport mapping 
– Frustum and user clipping 
– Backface culling 
– Two sided lighting selection 
– Polygon mode 
– Etc. 



Fragment Shader 
• The fragment shader is executed after 

rasterization and operate on each fragment 
– Per-pixel operations 

• Vertex attributes (colors, positions, texture 
coordinates, etc.) are interpolated across a 
primitive automatically as the input to the 
fragment program 

• Fragment shader can access OpenGL state, 
(interpolated) output from vertex program, 
and user defined variables 



Fragment Shader Capabilities 
• General processing that a fragment shader 

can do include: 
– Operations on interpolated values 
– Texture access 
– Texture application 
– Fog 
– Color sum 
– Color matrix 
– Discard fragment 
– Etc. 



Fragment Shader Capabilities 

• The fragment shader does NOT replace: 
– Scissor 
– Alpha test 
– Depth test 
– Stencil test 
– Alpha blending 
– Etc. 



GLSL Data Types  
• Three basic data types in GLSL: float, bool, int 

– float and int behave just like in C and bool types can 
take on the values of true or false 

• Vectors with 2,3 or 4 components, declared as: 
– vec2, vec3, vec4 

• Square matrices 2x2, 3x3 and 4x4: 
– mat2, mat3, mat4  

• A set of special types are available for texture 
access, called sampler 
– sampler1D, sampler2D, sampler3D, samplerCube 

• Arrays can be declared using the same syntax as 
in C, but can't be initialized when declared 

• Structures are supported with exactly the same 
syntax as C  



GLSL Variables 
• Declaring variables in GLSL is mostly the same as in C 

float a,b;  

int c = 2; // c is initialized with 2 

bool d = true; // d is true 

• Differences: GLSL relies heavily on constructor for initialization 
and type casting 

float e = (float)2;// incorrect, requires constructors for type 
casting 

int a = 2; 

float c = float(a); // correct. c is 2.0 

vec3 f; // declaring f as a vec3 

• GLSL is pretty flexible when initializing variables using other variables 
vec3 g = vec3(1.0,2.0,3.0); // declaring and initializing g 

vec2 a = vec2(1.0,2.0); 

vec2 b = vec2(3.0,4.0); 

vec4 c = vec4(a,b) // c = vec4(1.0,2.0,3.0,4.0); 

vec2 g = vec2(1.0,2.0); 

float h = 3.0; 

vec3 j = vec3(g,h); 



GLSL Variables 
• Matrices also follow this pattern 

mat4 m = mat4(1.0) // initializing the diagonal of the 
matrix with 1.0 

vec2 a = vec2(1.0,2.0); 

vec2 b = vec2(3.0,4.0); 

mat2 n = mat2(a,b); // matrices are assigned in column major 
order 

mat2 k = mat2(1.0,0.0,1.0,0.0); // all elements are 
specified 

• The declaration and initialization of structures is 
demonstrated below 

struct dirlight { 

vec3 direction; 

vec3 color; 

}; 

dirlight d1; 

dirlight d2 = dirlight(vec3(1.0,1.0,0.0),vec3(0.8,0.8,0.4)); 



GLSL Variables 
• Accessing a vector can be done using letters as well 

as standard C selectors 
vec4 a = vec4(1.0,2.0,3.0,4.0); 

float posX = a.x; 

float posY = a[1]; 

vec2 posXY = a.xy; 

• One can the letters x,y,z,w to access vectors 
components; r,g,b,a for color components; and s,t,p,q for 
texture coordinates 

• As for structures the names of the elements of the 
structure can be used as in C 

d1.direction = vec3(1.0,1.0,1.0); 



GLSL Variable Qualifiers 
• Qualifiers give a special meaning to the 

variable. In GLSL the following qualifiers are 
available: 
– attribute: per-vertex data values provided to the 

vertex shader  
– uniform: variables set for the entire primitive, i.e., 

may not be set inside glBegin()/glEnd() 
– varying: used for interpolated data between a 

vertex shader and a fragment shader (output for 
vertex shader but input for fragment shader). 
Defined on a per vertex basis but interpolated 
over the primitive for the fragment shader 



Built-in Variables 

• For ease of programming 
• OpenGL state mapped to variables 
• Some special variables are required to be 

written to, others are optional  
 



Built-in Attributes 
attribute vec4 gl_Vertex; 
attribute vec3 gl_Normal; 
attribute vec4 gl_Color; 
attribute vec4 gl_SecondaryColor; 
attribute vec4 gl_MultiTexCoordn; 
attribute float gl_FogCoord;  

 



Built-in Uniforms 
uniform mat4 gl_ModelViewMatrix; 
uniform mat4 gl_ProjectionMatrix; 
uniform mat4 gl_ModelViewProjectionMatrix; 
uniform mat3 gl_NormalMatrix;   //transpose of the   
     //inverse of the upper  
     //leftmost 3x3 of   
     //gl_ModelViewMatrix 
uniform mat4 gl_TextureMatrix[n]; 
 
struct gl_MaterialParameters { 
          vec4 emission; 
          vec4 ambient; 
          vec4 diffuse; 
          vec4 specular; 
          float shininess; 
}; 
 
uniform gl_MaterialParameters gl_FrontMaterial; 
uniform gl_MaterialParameters gl_BackMaterial; 



Built-in Uniforms 
struct gl_LightSourceParameters { 

vec4 ambient; 
vec4 diffuse; 
vec4 specular; 
vec4 position; 
vec4 halfVector; 
vec3 spotDirection; 
float spotExponent; 
float spotCutoff; 
float spotCosCutoff; 
float constantAttenuation 
float linearAttenuation 
float quadraticAttenuation 

}; 
 
uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights];  
 



Built-in Varyings 
• For vertex shader 

varying vec4 gl_FrontColor; 
varying vec4 gl_BackColor; 
varying vec4 gl_FrontSecondaryColor; 
varying vec4 gl_BackSecondaryColor; 
varying vec4 gl_TexCoord[];  
varying float gl_FogFragCoord; 

• For fragment shader 
varying vec4 gl_Color; 
varying vec4 gl_SecondaryColor; 
varying vec4 gl_TexCoord[];  
varying float gl_FogFragCoord; 

 



Special  Built-ins 

• Vertex shader 
vec4 gl_Position; // must be written 

vec4 gl_ClipPosition; // may be written 

float gl_PointSize; // may be written 

• Fragment shader 
float gl_FragColor; // may be written 

float gl_FragDepth; // may be read/written 

vec4 gl_FragCoord; // may be read 

bool gl_FrontFacing; // may be read 



Built-in Functions 

• Angles & Trigonometry 
– radians, degrees, sin, cos, tan, asin, acos, 

atan 
• Exponentials 

– pow, exp2, log2, sqrt, inversesqrt 
• Common 

– abs, sign, floor, ceil, fract, mod, min, max, 
clamp 



Built-in Functions 

• Interpolations 
– mix(x,y,a)         x*( 1.0-a) + y*a 
– step(edge,x)    x <= edge ? 0.0 : 1.0 
– smoothstep(edge0,edge1,x) 

t = (x-edge0)/(edge1-edge0); 
t = clamp( t, 0.0, 1.0); 
return t*t*(3.0-2.0*t); 



Built-in Functions 

• Geometric 
– length, distance, cross, dot, normalize, 

faceForward, reflect 
• Matrix 

– matrixCompMult 
• Vector relational 

– lessThan, lessThanEqual, greaterThan, 
greaterThanEqual, equal, notEqual, any, all 



Vertex Shader Input 
• Vertex shader is executed once each time a vertex 

position is specified 
– Via glVertex or glDrawArrays or other vertex array 

calls 
• Per-vertex input values are called “attributes” 

– Change every vertex 
– Passed through normal OpenGL mechanisms (per-

vertex API or vertex arrays) 
• More persistent input values are called “uniforms” 

– Can come from OpenGL state or from the application 
– Constant across at least one primitive, typically 

constant for many primitives 
– Passed through new OpenGL API calls 



Vertex Shader Output 
• Vertex shader uses input values to compute output values 
• Vertex shader must compute gl_Position 

– Mandatory, needed by the rasterizer 
• Other output values are called “varying” variables 

– E.g., color, texture coordinates, arbitrary data 
– Will be interpolated across the primitives 
– Defined by the vertex shader 
– Can be of type float, vec2, vec3, vec4, mat2, mat3, mat4, or 

arrays of these 
• Output of vertex processor feeds into OpenGL fixed 

functionality 
– If a fragment shader is active, output of vertex shader must 

match input of fragment shader 
– If no fragment shader is active, output of vertex shader must 

match the needs of fixed functionality fragment processing 



Fragment Shader Input 
• Output of vertex shader is the input to the fragment 

shader 
– Compatibility is checked when linking occurs 
– Compatibility between the two is based on varying 

variables that are defined in both shaders and that 
match in type and name 

• Fragment shader is executed for each fragment 
produced by rasterization 

• For each fragment, fragment shader has access to 
the interpolated value for each varying variable 
– Color, normal, texture coordinates, arbitrary values 



Fragment Shader Input 
• Fragment shader may access: 

– gl_FrontFacing – contains “facingness” of 
primitive that produced the fragment 

– gl_FragCoord – contains computed window 
relative coordinates x, y, z, 1/w 

• Uniform variables are also available 
– OpenGL state or supplied by the application, 

same as for vertex shader 
• If no vertex shader is active, fragment shader 

get the results of OpenGL fixed functionality 



Fragment Shader Output 

• Output of the fragment processor goes on to the 
fixed function fragment operations and frame 
buffer operations using built-in variables 
– gl_FragColor – computed R, G, B, A for the fragment 
– gl_FragDepth – computed depth value for the 

fragment 
– gl_FragData[n] – arbitrary data per fragment, stored 

in multiple render targets 
– Values are destined for writing into the frame buffer if 

all back end tests (stencil, depth etc.) pass 
• Clamping or format conversion to the target buffer 

is done automatically outside of the fragment 
shader 



How to Use Shaders  
• Four steps to using a shader 

 
 

– Send shader source to 
OpenGL 

– Compile the shader 
– Create an executable (i.e., 

link compiled shaders 
together) 

– Install the executable as 
part of the current state 



Shader Wrapper Code 

 



Programming Assignment 3 

• PA 3 is posted on our course website 
• Due on 11/9/2017, 11:59pm 

– Two weeks 
• Implement shaders using a GLSL editor 

– Shader Maker  
http://cgvr.cs.uni-bremen.de/teaching/shader_maker/ 

 

http://cgvr.cs.uni-bremen.de/teaching/shader_maker/


Next Time … 

• Texture mapping 
• Reading:  

– Textbook Chapter 18 
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