
CSC 4356
Interactive Computer Graphics
Lecture 18: Texture Mapping (part 1)

Jinwei Ye
http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am
218 Tureaud Hall

The Quest for Visual Realism

Parameterization

geometry

+ =

image texture map

• Q: How do we decide where on the geometry
 each color from the image should go?

Options: Varieties of Mappings

How to map object to texture?
• To each vertex (x,y,z in object coordinates), must

associate 2D texture coordinates (s,t)
• So texture fits “nicely” over object

Planar Mapping
• Like projections, take vertex coordinate (x,y,z) and throw

away one dimention
– e.g., drop z such that texture coord (u,v) = (x/W,y/H)

Cylindrical Mapping
• Cylinder: r, θ, z with (u,v) = (θ/(2π),z)

– Note seams when wrapping around (θ = 0 or 2π)

Basic Mapping Procedure
• First, map (square) texture to basic map

shape
• Then, map basic map shape to object

– Or vice versa: Object to map shape, map
shape to square

• Usually, this is straightforward
– Maps from square to cylinder, plane, …
– Maps from object to these are simply

coordinate transform

Spherical Mapping
• Convert to spherical coordinates: use

latitude/longitude
– Singularities at north and south poles

Cube Mapping

Decal Textures

• The concept is very simple

Questions?

Texture maps in OpenGL

(x4,y4)
(u4,v4)

(x3,y3)
(u3,v3)

(x1,y1)
(u1,v1)

(x2,y2)
(u2,v2)

• Specify normalized texture coordinates
at each of the vertices (u, v)

– Within range [0,1]

• Texel indices

(s,t) = (u, v) ⋅(width, height)

• Texture dimensions are usually a
power of 2

void Draw() {
glClear(GL_COLOR_BUFFER_BIT
| GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
:
// Draw Front of the Cube
glEnable(GL_TEXTURE_2D);
between and 1
glBegin(GL_QUADS);
glTexCoord2d(0, 1);
glVertex3d(1.0, 1.0, 1.0);
glTexCoord2d(1, 1);
glVertex3d(-1.0, 1.0, 1.0);
glTexCoord2d(1, 0);
glVertex3d(-1.0,-1.0, 1.0);
glTexCoord2d(0, 0);
glVertex3d(1.0,-1.0, 1.0);
glEnd();
glDisable(GL_TEXTURE_2D);
:
glFlush();
}

Wrapping
• The behavior of texture coordinates outside of the range

[0,1] is determined by the texture wrap options.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, wrap_mode)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, wrap_mode)

GL_CLAMP GL_REPEAT

Linear Interpolation of Texture
Coordinates

• Simple linear interpolation of u and v over a triangle
leads to unexpected results
– Same linear interpolation as used in z-buffer, Gouraud shading
– Distortion when the triangle vertices don’t have the same depth
– Noticable during animation

Why?

• Equal spacing in screen (pixel) space is
NOT the same as in eye (texture) space in
perspective projection
– Perspective foreshortening

Linear Interpolation of Texture
Coordinates

• Uniform steps along the edge projection in screen space
do not correspond to uniform steps along the actual
edge in eye space

Perspective Projection

Linear Interpolation in Screen
Space

Linear interpolation in screen space

−+=−+=

1

1

2

2

1

1
121)()(

z
x

z
xt

z
xpptptp

Linear Interpolation in Eye Space

Linear interpolation in eye space:

−

+

=

1

1

2

2

1

1

z
x

z
x

s
z
x

z
x

)(
)(

121

121

zzsz
xxsx

z
x

P
−+
−+

=

Projection in screen space after interpolation

Correcting the Interpolation
We want to interpolate in eye space, but in terms of our screen space. So we
need to find a mapping from t values to s values.

Solve for s in terms of t giving:

)(
)(

121

121

1

1

2

2

1

1

zzsz
xxsx

z
x

z
xt

z
x

−+
−+

=

−+

)(122

1

zztz
zt

s
−+

=

Unfortunately, at this point in the pipeline (after projection) we no longer have z1
and z2 lingering around (Why?). However, we do have w1 = 1/z1 and w2 = 1/z2.

)()11(1

1

121

2

122

1

wwtw
wt

ww
t

w

w
t

s
−+

=
−+

=

Interpolating Parameters
We can now use this expression for s to interpolate arbitrary parameters, such
as texture indices (u, v), over our 3-space triangle. This is accomplished by
substituting our solution for s given t into the parameter interpolation

)(122 uusuu −+=

)(
)(

)(
)(121

112211
12

121

2
2 wwtw

wuwutwu
uu

wwtw
wt

uu
−+
−+

=−
−+

+=

Therefore, if we pre-multiply all parameters that we wish to interpolate in
eye space by their corresponding w value and add a new plane equation to
interpolate the w values themselves, we can interpolate the numerators and
denominator in screen-space. We then need to perform a divide to map the
screen-space interpolants to their corresponding eye space values.

Perspective-Correct Interpolation

For obvious reasons this method of interpolation is called
perspective-correct interpolation. The fact is, the name
could be shortened to simply correct interpolation. You
should be aware that not all 3-D graphics APIs implement
perspective-correct interpolation

perspective-correct interpolation linear interpolation

Dealing with Incorrect Interpolation
• You can reduce the perceived artifacts of non-perspective correct

interpolation by subdividing the texture-mapped triangles into
smaller triangles (why does this work?). But, fundamentally the
screen-space interpolation of projected parameters is wrong

Perspective Correction Hint
• Texture coordinate and color interpolation:

– Linearly in screen space (wrong) OR
– Perspective correct interpolation (slower)

• glHint (GL_PERSPECTIVE_CORRECTION_HINT, hint);
where hint is one of:
– GL_NICEST: Perspective
– GL_FASTEST: Linear
– GL_DONT_CARE: Linear

Review of Textures
• Increases the apparent complexity of simple

geometry
• Requires perspective projection correction

 • Specifies
variations in
shading within a
primitive:
– Surface

Reflectance

	CSC 4356�Interactive Computer Graphics�Lecture 18: Texture Mapping (part 1)
	The Quest for Visual Realism
	Parameterization
	Options: Varieties of Mappings
	How to map object to texture?
	Planar Mapping
	Cylindrical Mapping
	Basic Mapping Procedure
	Spherical Mapping
	Cube Mapping
	Decal Textures
	Questions?
	Texture maps in OpenGL
	Wrapping
	Linear Interpolation of Texture Coordinates
	Why?
	Linear Interpolation of Texture Coordinates
	Perspective Projection
	Linear Interpolation in Screen Space
	Linear Interpolation in Eye Space
	Correcting the Interpolation
	Interpolating Parameters
	Perspective-Correct Interpolation
	Dealing with Incorrect Interpolation
	Perspective Correction Hint
	Review of Textures

