
CSC 4356
Interactive Computer Graphics
Lecture 19: Texture Mapping (part 2)

Jinwei Ye
http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am
218 Tureaud Hall

From Last Time

• Basic Texture Mapping
– Planar, Cylindrical, Spherical, Cubic, etc.

• Texture Coordinate Interpolation
– Linear interpolation is wrong (but fast)
– Perspective-correct interpolation (interpolate

in eye space instead of the screen space)

This Lecture
• Texture Filtering

– Minification & Magnification
– MIP Map
– Summed-Area Table

• Texture Synthesis
– How to create a large texture sample given a

small one?

Sampling Texture Maps
• The uniform sampling pattern in screen space

corresponds to some sampling pattern in texture
space that is not necessarily uniform

Sampling Density Mismatch

• Ideally, the mapping of texels to pixels
would be one-to-one

• However, such mapping (sampling
density) rarely matches
– A small region of texels may be mapped to a

large region of pixels (magnification)
– A large region of texels may be mapped to a

small region of pixels (minification)

Magnification

• In magnification, one texel is mapped to
many pixels

a few texels

many pixels

1 to 16

Minification

• In minification, many texels are mapped to
one pixel

many texels

a few pixels

16 to 1

Minification & Magnification

(Note that minification is not handled very well here)

Handling Magnification

• Texels are larger than pixels
• How to compute color from texels to assign

to a pixel?

pixels

texels

Handling Magnification

• Nearest Neighbor
– Take the color of the

closest texel

pixels

texels

Handling Magnification

• Bilinear Interpolation
– Interpolate color from

four closest texels
– Smooth appearance

pixels

texels

Handling Magnification

• Nearest neighbor vs. bilinear interpolation

Minification
• Texels are smaller than pixels

– Several texels covering one pixel
– Multiple to one mapping

• How to compute color from texels to
assign to a pixel?

?

Texture A Pixel

Aliasing Artifact
• Notice how details in the texture, in particular the mortar between

the bricks, tend to pop (disappear and reappear). This popping is
most noticeable around details (parts of the texture with a high-
spatial frequency). This is called aliasing artifact.

Spatial Filtering
• To avoid aliasing, we need to pre-filter the texture to

remove high frequencies
• Pre-filtering is essentially a spatial integration over the

texture
• Texture integration on the fly is expensive

– perform integration in a pre-process

samples and their extents proper filtering removes aliasing

MIP Mapping
• MIP Mapping is one popular technique for precomputing and performing this

pre-filtering. MIP is an acronym for the Latin phrase multium in parvo, which
means “many in a small place”. The technique was first described by Lance
Williams. The basic idea is to construct a pyramid of images that are pre-
filtered and resampled at sampling frequencies that are a binary fractions
(1/2, 1/4, 1/8, etc) of the original image's sampling.

• While rasterizing we compute the index
of the decimated image that is sampled
at a rate closest to the density of our
desired sampling rate
– Try to maintain pixel to texel ratio

close to 1

• Computing this series of filtered images
requires only a small fraction of
additional storage over the original
texture (How small of a fraction?)

Storing MIP Maps
• One convenient method of storing a MIP map is shown on the right

image
– It also nicely illustrates the 1/3 overhead of maintaining the MIP map

3
4

4
11

1
4
1

0
=

−
=

=∑

∞

=

i

i
sizemapmip

Finding MIP Level
• Idea: Use the projection of a pixel in screen into

texture space to figure out which level to use

thtextureWidus
CyBxAwyxo
CyBxAwuyxu

ooo

uuu

⋅=
++==

++==

/1),(
/),(

*

*

dx
du

du
ds

dx
ds

=

thtextureWid
du
ds

=

2*

),(
),(),()),(/),((

yxo
yxuAyxoA

dx
yxoyxud

dx
du ou −

==

Applying chain rule:

Other derivatives
can be computed
in the same way.

Finding MIP Level

() mlevel 2log=

• Use the lengths of the projected pixel in texture space to define a
measure of mismatch between sampling densities:

• Now choose the appropriate level:

dx
dt

dx
ds

22

+

dx
dt

dx
ds

))()(,)()(max(||)||||,max(|| 2222

dy
dt

dy
ds

dx
dt

dx
ds

dy
pd

dx
pdm ++==

)),max(),,max(max(
dy
dt

dy
ds

dx
dt

dx
ds

≈

MIP Mapping Problem

• Overblurring!
– Isotropic filtering
– When a pixel covers many u texels but few v

texels, we always choose the largest pixel
coverage to decide the level

Non-antialiasing

MIP mapping

Summed-Area Tables

• Summed-area tables perform anisotropic filtering
– It can be used to compute the average color for any arbitrary

rectangular region in the texture space at a constant speed
• Summed-area table is a two dimensional array that has

the same size as the texture

Each entry stores the sum of all the texel
colors above and to the left

Summed-Area Tables

• How to compute the color of a pixel
bounded by (x0, y0) and (x1, y1)?
– Find the sum of region contained in a box

bounded by (x0, y0) and (x1, y1):

• Each entry in the summed area table is the sum of all
entries above and to the left:

),(),(),(),(00011011 yxTyxTyxTyxT +−−
– Divide out area

) - x)(x - y(y 0101

Original Texture Summed-Area Table

Summed-Area Tables
• Less blurry than MIP mapping
• How much storage does a

summed-area table require?
– Same as texture size

• Does it require more or less
work per pixel than a MIP
map?
– Four texture lookups plus math

• Note that only MIP map is
implemented by hardware and
supported by OpenGL

No
Filtering

MIP
mapping

Summed-
Area
Table

Texture Synthesis
• Goal of Texture Synthesis: create new

samples of a given texture
• Many applications: virtual environments, hole-

filling, texturing surfaces

Texture Revisit

• Texture depicts spatially repeating patterns
• Many natural phenomena are textures

radishes rocks yogurt

Challenge in Texture Synthesis

• Need to model the whole spectrum: from
repeated to stochastic texture

Repeated Stochastic Both?

Efros & Leung Algorithm

p

non-parametric
sampling

Input image

– Instead, we search the input image for all similar
neighborhoods — that’s our probability density function
(pdf) for p

– To sample from this pdf, just pick one match at random

• Idea: Assuming Markov property, compute P(p|N(p))
– Building explicit probability tables infeasible

Reference: http://graphics.cs.cmu.edu/people/efros/research/EfrosLeung.html

Neighborhood Window

input

Varying Window Size

Increasing window size

Synthesis Results
french canvas rafia weave

More Results
white bread brick wall

Text Synthesis

Next Time

• Advanced texture mapping techniques
– Shadow map
– Bump map
– Environment map
– …

	CSC 4356�Interactive Computer Graphics�Lecture 19: Texture Mapping (part 2)
	From Last Time
	This Lecture
	Sampling Texture Maps
	Sampling Density Mismatch
	Magnification
	Minification
	Minification & Magnification
	Handling Magnification
	Handling Magnification
	Handling Magnification
	Handling Magnification
	Minification
	Aliasing Artifact
	Spatial Filtering
	MIP Mapping
	Storing MIP Maps
	Finding MIP Level
	Finding MIP Level
	MIP Mapping Problem
	Summed-Area Tables
	Summed-Area Tables
	Summed-Area Tables
	Texture Synthesis
	Texture Revisit
	Challenge in Texture Synthesis
	Efros & Leung Algorithm
	Neighborhood Window
	Varying Window Size
	Synthesis Results
	More Results
	Text Synthesis
	Next Time

