#### CSC 4356 Interactive Computer Graphics

#### Jinwei Ye http://www.csc.lsu.edu/~jye/CSC4356/

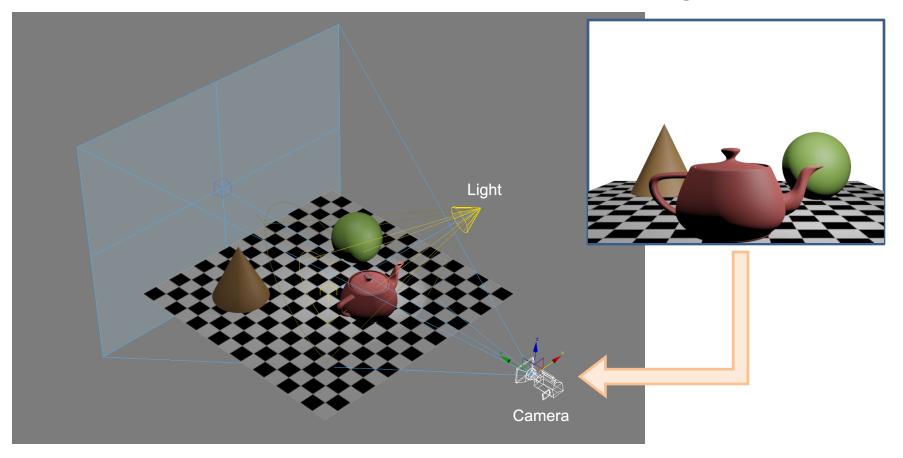
Tue & Thu: 10:30 - 11:50am 218 Tureaud Hall

#### Lecture 1: Welcome to Graphics!

- Introduction to Computer Graphics
  - What is computer graphics?
  - What are the applications?
- Course Overview
  - What is this course about?
  - Course topics
- Course Logistics
  - Office hours, grading, policy...
  - Everything you care about!

# Lecture 1

- Introduction to Computer Graphics
  - What is computer graphics?
  - What are the applications?
- Course Overview
  - What is this course about?
  - Course topics
- Course Logistics
  - Office hours, grading, policy...
  - Everything you care about!


### What is Computer Graphics?

#### • Rendering 3D scenes into 2D images

| 0011 | 0001         | 0010 | 0100 | 0000 | 1000 | 1001 | 0101 | 0110 | 0100 | 0000 | 1000 | 0100 | 0101 0100              |
|------|--------------|------|------|------|------|------|------|------|------|------|------|------|------------------------|
| 1001 | 1010         | 0000 | 0101 | 0001 | 0111 | 1000 | 0000 | 0111 | 0001 | 0111 | 0100 | 0000 | 0771                   |
| 0000 | 1000         | 0111 | 1000 | 1001 | 0110 | 0000 | 1001 | 1100 | 0011 | 0000 | 1110 | 0011 | 0000                   |
| 1000 | 0000         | 0001 | 0011 | 0000 | 0011 | 0111 | 7700 | 1000 | 0000 | 1100 | 0011 | 1000 | 7 7 7 C                |
| 0011 | 0001         | 0010 | 0100 | 0000 | 1000 | 1001 | 0101 | 0110 | 0100 | 0000 | 1000 | 0700 | 0703                   |
| 1001 | 1010         | 0000 | 0101 | 0001 | 0111 | 1000 | 0000 | 0111 | 0001 | 0111 | 0100 | 0000 | 0773                   |
|      | 1000         |      |      |      |      |      |      |      |      |      |      |      |                        |
|      | 0000         |      |      |      |      |      |      |      |      |      |      |      |                        |
|      | 0001         |      |      |      |      |      |      |      |      |      |      |      |                        |
|      | 1010         |      |      |      |      |      |      |      |      |      |      |      |                        |
|      | 1000         |      |      |      |      |      |      |      |      |      |      |      |                        |
|      | 0000         |      |      |      |      |      |      |      |      |      |      |      |                        |
|      | 0001         |      |      |      |      |      |      |      |      |      |      |      |                        |
|      | 1010         |      |      |      |      |      |      |      |      |      |      |      |                        |
|      | 7000         |      |      |      |      |      |      |      |      |      |      |      |                        |
|      |              |      |      |      |      |      |      |      |      |      |      |      |                        |
|      | 0001         |      |      |      |      |      |      |      |      |      |      |      |                        |
|      | 1010<br>1000 |      |      |      |      |      |      |      |      | 0000 |      |      | 0000 0777<br>0777 7007 |
|      |              |      |      |      |      |      |      |      |      |      |      |      |                        |
|      | 000ľ         |      |      |      |      |      |      |      |      |      |      | 0700 |                        |
|      | 1010         |      |      |      |      |      |      |      |      |      |      | 0000 |                        |
|      |              |      | 1000 |      |      |      |      |      |      |      |      |      |                        |
| 1000 |              |      | 0011 |      |      |      |      |      |      |      |      |      |                        |
| 2000 | 0001         |      |      |      |      |      |      |      |      |      |      |      |                        |
|      | 1010         |      |      |      |      |      |      |      |      |      |      |      |                        |
|      | 1000         |      |      |      |      |      |      |      |      |      |      |      |                        |
|      |              |      |      |      |      |      |      |      |      |      |      |      |                        |

## The Inverse is Computer Vision

Interpret 3D scenes from 2D images



## Why Learn Computer Graphics?

- Computer graphics is *everywhere*!
  - Entertainment
  - Design
  - Simulation
  - Scientific Visualization
  - Medical Imaging

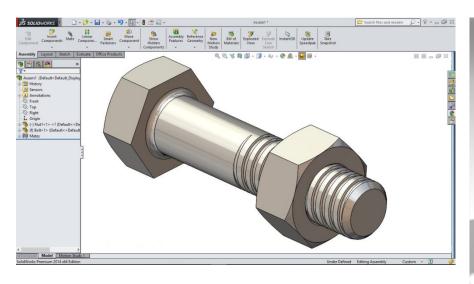
— ...

#### Games

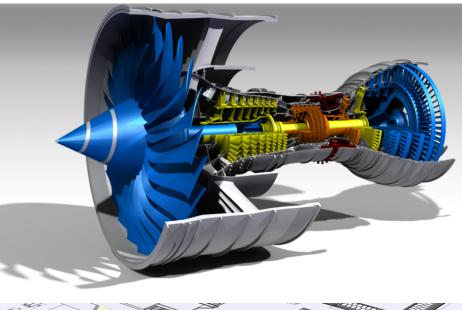






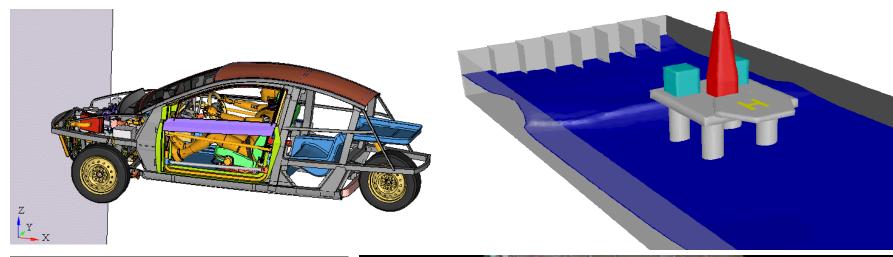

### Movies

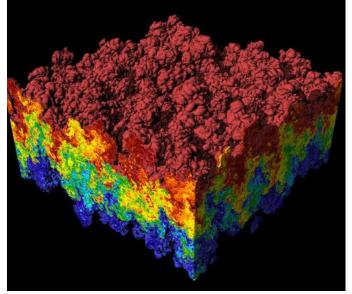


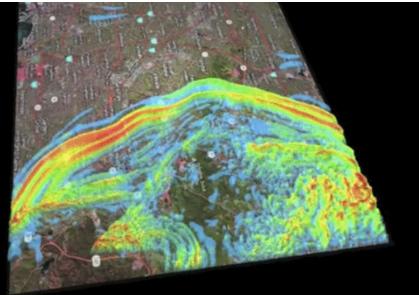

### Movies: Motion Capture



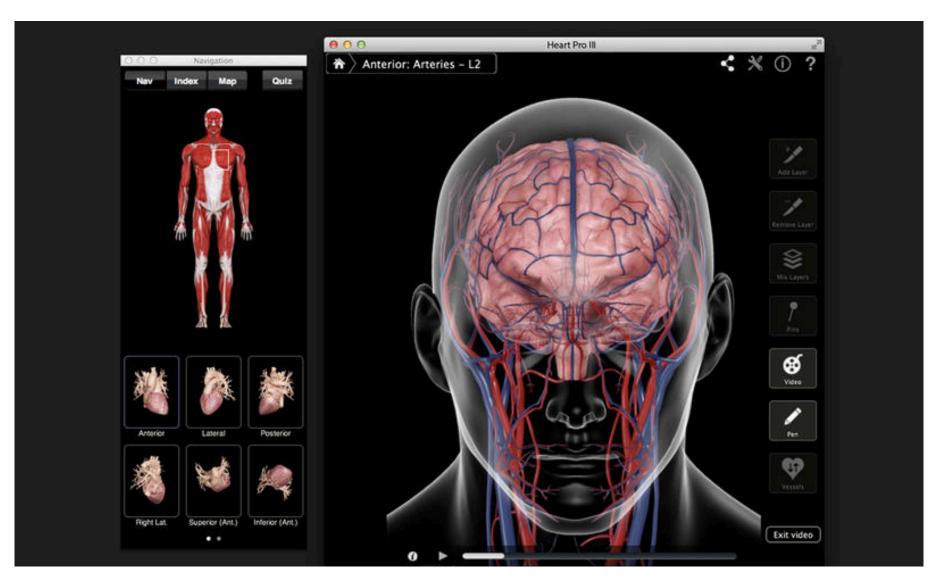
# Computer-Aided Design (CAD)







#### Simulation & Visualization







### **Medical Imaging**



















# Augmented Reality (AR)



Microsoft Hololens

# Augmented Reality (AR)



ARKit - Apple Developer

# Lecture 1

- Introduction to Computer Graphics
  - What is computer graphics?
  - What are the applications?
- Course Overview
  - What is this course about?
  - Course topics
- Course Logistics
  - Office hours, grading, policy...
  - Everything you care about!

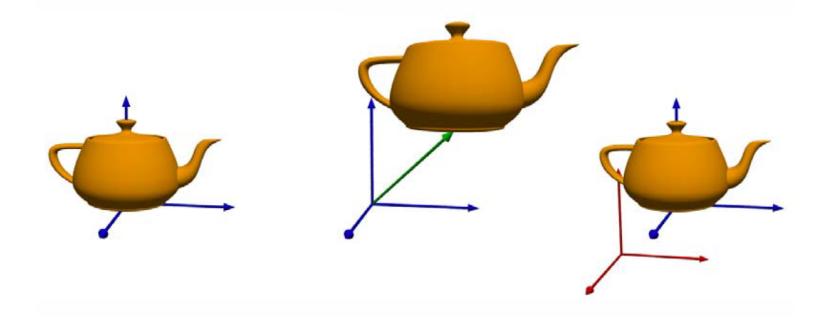
# What is the course about?

- NOT about:
  - Paint and imaging packages (Photoshop)
  - CAD packages (AutoCAD)
  - Rendering packages (Maya)
  - Modeling packages(3D Max, RenderMan)

- We will cover ...
  - Graphics algorithms
  - Graphics data structure
  - Graphics programming language (OpenGL)
  - Graphical user interface (GLUT)
  - Applied geometry and modeling

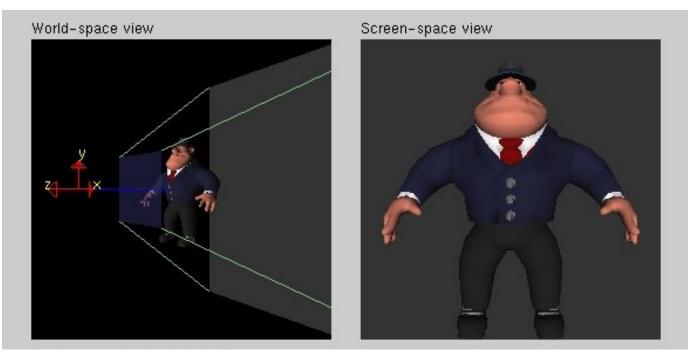
# What you can expect?

- After taking this course, you can
  - write complex 3D rendering programs
  - understand the underlying math and algorithms for modern graphics systems
- The course is heavy on math and programming <sup>(3)</sup>
- But lots of fun and rewarding! ③


# Topics

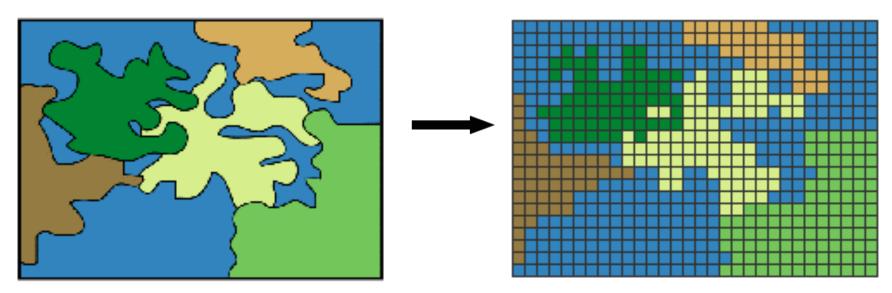
- Model transformation
- Viewing and projection
- Hidden surface removal
- Rasterization
- Lighting and shading
- Global illumination
- Texture mapping
- GPU programming




# Model Transformation

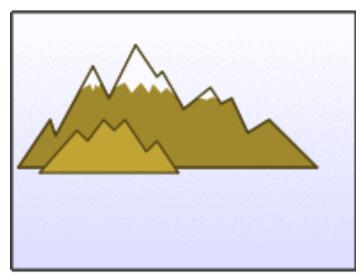
- Homogeneous coordinates
- 2D & 3D transformation
   Translation, rotation, scaling

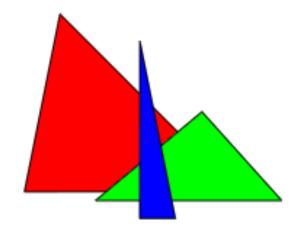



# **Viewing & Projection**

- Viewport transformation
- Orthographic projection
- Projective projection




### Rasterization


- Line drawing
- Triangle drawing
- Clipping
- Displays and raster devices



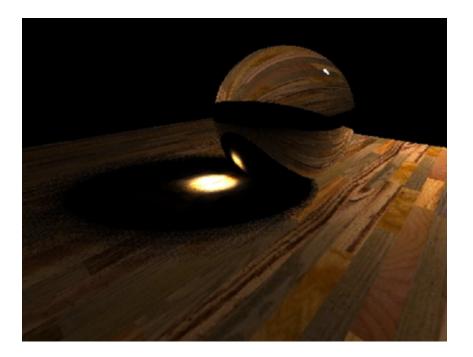
# Hidden Surface Removal

- Visibility problem
- BSP tree
- Ray casting
- Z buffer





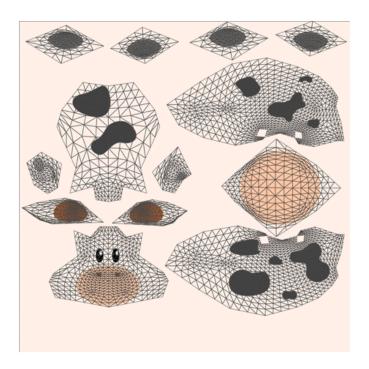
# Lighting and Shading


- Illumination model
- Shading models

   Flat, Gouraud, Phong
- Surface material



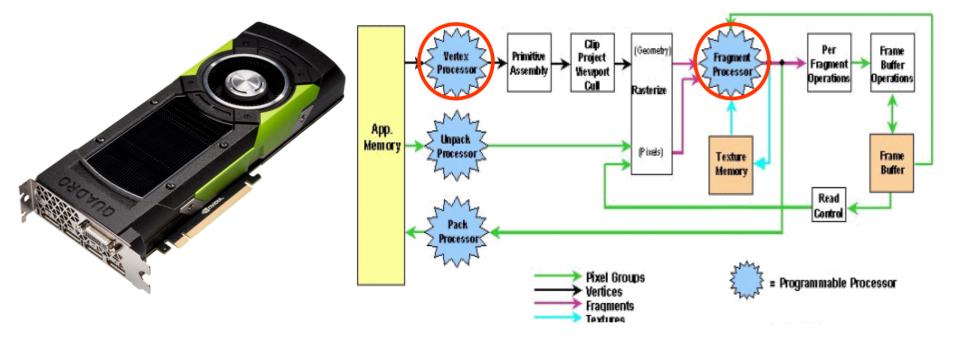
# **Global Illumination**


- Ray tracing
- Radiosity lighting
- Photon mapping






# **Texture Mapping**


- What is texture
- Mipmaps and anti-aliazing
- Reflection and environment mapping





# **GPU Programming**

- GPU Hardware Architecture
- Shading language (GLSL)
   Fragment shader & Vertex shader

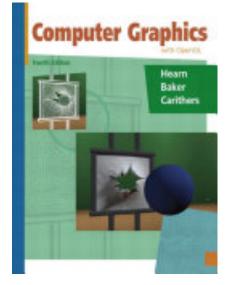


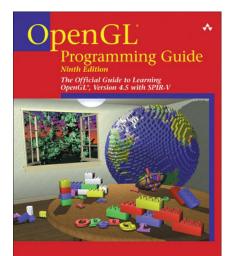
# Lecture 1

- Introduction to Computer Graphics
  - What is computer graphics?
  - What are the applications?
- Course Overview
  - What is this course about?
  - Course topics
- Course Logistics
  - Office hours, grading, policy...
  - Everything you care about!

# Staff

- Instructor: Jinwei Ye (jinweiye@lsu.edu)
- Office hours: 2:00-3:00 pm Tue & Thu
- Location: 3272T PFT
- TA: Simron Thapa (sthapa5@lsu.edu)
- Office hours: 2:00-4:00pm Tuesday
- Location: 174A Coates Hall (may change to PFT soon)
- No office hour this week!


# Textbook


• Computer graphics with OpenGL (Fourth Edition)

• Optional:

OpenGL Programming Guide (the Red Book)

• Other materials available on course website





John Kessenich • Graham Sellers • Dave Shreiner The Khronos OpenGL ARB Working Group

# **Pre-requisites**

- Basic mathematics
  - For example matrix multiplication, inversion etc.
- Programming in C/C++
- Knowledge in OpenGL is not required

# Grading

- Warm-up Math Problem Set (5%)
- Four Programming Assignments (4 x 15% = 60%)
- Midterm Exam (15%)
- Final Exam (20%)
- Extra Credit (2%)
  - Course participation
  - Complete course evaluation

# **Assignment Logistics**

- No programming in math problem set
  - Assign next time
  - Due on next Thursday 8/31 (submit in class)
- Programming assignments
  - Submit to CSE Linux server classes.csc.lsu.edu
  - Individual accounts and instruction will be given with the first assignment
  - Due at midnight (11:59pm) on deadline day

# Late Policy

- You have three FREE late days
- Use for programming assignments only
- No more free late days?
   Grade will be reduced by 10% per late day
- No assignment will be accepted more than three days past the deadline

# **Cheating Policy**

- No Cheating! Zero tolerance!
- Do problem set and programming assignments individually
- Code from the web:
  - OK to use as long as it is a SMALL portion of your assignment



## Next Time ...

- Math Review/Preview
  - Vector, Matrices, Linear Algebra
  - Textbook Appendix A
- Make the rest of the course easier!