
CSC 4356
Interactive Computer Graphics
Lecture 20: Texture Mapping (part 3)

Jinwei Ye
http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am
218 Tureaud Hall

From Last Time

• Texture filtering
– MIP mapping
– Summed area table

• Texture synthesis
– Efros-Leung algorithm

This Lecture

• Advanced texture mapping techniques
– Shadow Map
– Environment Map
– Bump Map
– Displacement Map
– Multi-Texture

What is Shadow?

• Shadows occur on surfaces that are not
fully visible the light

Shadows

• Improved understanding of an object’s
shape and position

• Enhance realism

Types of Shadow

Hard Shadow Soft Shadow

Types of Shadow

• Different types of light sources generate
different types of shadows
– Point or directional light (hard shadow)
– Area light (soft shadow)

Point Directional Area

Soft Shadow Hard Shadows

Shadow Map

Shadow Map
• Render an image from the light’s point of view

– Camera look-from point is the light position
– Aim camera to look at objects in scene
– Render only the z-buffer depth values

• Don’t need colors
• Don’t need to compute lighting or shading

– (unless a procedural shader would make an object transparent)

• Store result in a shadow map (a.k.a. depth map)
– Store the depth values (z-buffer)
– Also store the (inverse) camera & projection transform

• Remember, z-buffer pixel holds depth of closest object to the
camera
– A shadow map pixel contains the distance of the closest object

to the light (because camera is in the position of light)

Shadow Map

• Directional light source
– Use orthographic shadow camera

• Point light source
– Use perspective shadow camera

Rendering Shadow
• When lighting a point on a surface

– For each light that has a shadow map…
– Transform the point to the shadow map’s image

space
• Get X,Y,Z values
• Compare Z to the depth value at X,Y in the shadow map
• If the shadow map depth is less than Z

– some other object is closer to the light than this point
– this light is blocked, don’t include it in the illumination

• If the shadow map is the same as Z
– this point is the one that’s closest to the light
– illuminate with this light
– (because of numerical inaccuracies, test for almost-the-same-as Z)

Shadow Mapping: Example

• A scene with shadows

the point
light source

Shadow Mapping: Example

• Without and with shadows

with shadows without shadows

Shadow Mapping: Example

• The scene from the shadow camera
– no need to save the color image

from the eye’s
point-of-view

Shadow Mapping: Example

• The shadow map depth buffer
– Darker is closer to the camera

from the light’s
point-of-view

Shadow Mapping: Example
• Visualization

– Green: surface light Z is (approximately) equal to
depth map Z

– Non-green: surface is in shadow

Shadow Mapping: Notes
• Very commonly used
• Problems:

– Blocky shadows, depending on resolution of shadow
map

– Shadow map pixels & image samples don’t
necessarily line up

• Hard to tell if object is really the closest object
• Typically add a small bias to keep from self-interfering
• But the bias causes shadows to separate from their objects

– No great ways to get soft shadows

Questions?

Images from Cass Everitt et al.,
“Hardware Shadow Mapping”

NVIDIA SDK White Paper

Light’s View Depth/Shadow Map Eye’s View

Environment Maps
We can use transformed surface normals to compute indices into the
texture map. These sorts of mapping can be used to simulate
reflections, and other shading effects. This approach is not completely
accurate. It assumes that all reflected rays begin from the same point,
and that all objects in the scene are the same distance from that point.

Environment Mapping Steps
• Create a 2D environment map
• For each pixel on a reflective object,

compute the normal
• Compute the reflection vector based on

the eye position and surface normal
• Use the reflection vector to compute an

index into the environment texture
• Use the corresponding texel to color the

pixel

How to compute reflection vector?

• Given viewing vector v and surface normal
n, the reflection vector r can be computed
as: vnvnr −⋅=)(2

r n v

Environment Mapping Example

Terminator II, 1991

Sphere Mapping Basics
• OpenGL provides special support for a particular form of

Normal mapping called sphere mapping. It maps the
normals of the object to the corresponding normal of a
sphere. It uses a texture map of a sphere viewed from
infinity to establish the color for the normal.

Sphere Mapping
• Mapping the normal to a point on the sphere

+

=+=

0
1
0
0

0
z

y

x

r
r
r

vrnα

2
1

2
'

2
1

2
' +=+=

p
r

t
p

rs yx

nvr
vnvnr

α=+
−⋅=)(2

Recall:

r

n
v

(-1,-1)

(1,1)

−−
=

0
1 22 ts

t
s

n

222

1

)1(
0

+++=

=
+

zyx

p
r

p
r
p
r

rrrp

n
n

z

y

x

α
α

p
r

t
p
rs yx ==

2
1

2
'

2
1

2
' +=+=

ttss

s

t

r1

r2

r3

n3

v3

n2

v2

n1 v1

Sphere Mapping Steps
• To access the sphere map texture

– The surface normal (n) and view (v) vectors need
to be first transformed to the eye space

– Then compute the reflection vector as usual
 (r = (rx,ry,rz) = 2(n∙v)n - v)
– Normalize it and use x and y to access the

sphere texture map: s = rx / 2p + 1 ⁄ 2 ; t = ry / 2p
+ 1 ⁄ 2;

– Now, compute the sphere normal in the local
space

 n = (rx,ry,rz) + (0,0,1)
 where p = sqrt(rx^2 + ry^2 + (rz+1)^2)

OpenGL code Example
// this gets inserted where the texture is created

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, (int) GL_SPHERE_MAP);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, (int) GL_SPHERE_MAP);

glEnable(GL_TEXTURE_2D);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);

This was a very special purpose
hack in OpenGL, however, we
have it to thank for a lot of the
flexibility in today’s graphics
hardware… this hack was the
genesis of programmable vertex
shading.

What’s the Best Map?
• A sphere map is not the only representation

choice for environment maps. There are
alternatives, with more uniform sampling
properties, but they require different normal-
to-texture mapping functions.

Questions?

Image by Henrik Wann Jensen
Environment map by Paul Debevec

Bump Mapping

• What's Missing?
– What's the difference between a real

brick wall and a photograph of the
wall texture-mapped onto a plane?

– What happens
if we change
the lighting or
the camera
position?

Bump Mapping
• Textures can be used to alter the surface normals of an object. This

does not actual shape of the surface -- we are only shading it as if it
were a different shape! This technique is called bump mapping.

• The texture map is treated as a single-valued height function. The
value of the function is not actually used, just its partial derivatives.
The partial derivatives tell how to alter the true surface normal at
each point on the surface to make the object appear as if it were
deformed by the height function.

Sphere w/Diffuse Texture Swirly Bump Map Sphere w/Diffuse Texture & Bump Map

Another Bump Map Example

Cylinder w/Diffuse Texture

Bump Map

Cylinder w/Diffuse Texture & Bump Map

• Since the actual shape of the object does not change, the silhouette
edge of the object will not change. Bump Mapping also assumes
that the Illumination model is applied at every pixel (as in Phong
Shading).

Displacement Mapping
• Texture maps can be used to actually move surface points.
• This is called displacement mapping. How is this fundamentally

different than bump mapping?

Questions?

Textures in GLSL

• Textures are just uniforms of type
sampler2D

• Tell GLSL that you want one of these
sampler2Ds to be GL_TEXTUREi by
setting the corresponding uniform to i

uniform sampler2D dayTexture;
uniform sampler2D nightTexture;

Multi-Texturing
• Shaders will often have uses for multiple textures, how

do you bind them?
• How do you specify multiple texture coordinates for a

vertex?

uniform sampler2D dayTexture;
uniform sampler2D nightTexture;

void main ()
{

 …

 vec4 dayColor = texture3D (dayTexture, gl_TexCoord[0].xy);

 …

}

Fragment Program with Multiple Textures

Multi-Texture: Globe

• How will you render this?

Day texture Night texture

Night and Day
• Use one texture for day, one for night
• Use the same texture coordinates for both texture
• Components

– Vertex program
– Fragment program
– OpenGL application

Night and Day
Vertex Program

/* this vector will store the normal in eye coordinates */
varying vec3 normal;

void main ()
{

 /* store the transformed normal in normal */
 normal = gl_NormalMatrix * gl_Normal;

 /* pass texture coordinate to the fragment program */
 gl_TexCoord[0] = glMultiTexCoord0;

 /* use the standard OpenGL transformation matrix */
 gl_Position = ftransform ();

}

Night and Day
Fragment Program

/* this vector will store the normal in eye coordinates */
varying vec3 normal;

/* the fraction of overlap between textures */
uniform float overlap;

/* uniform texture map for the day’s texture */
uniform sampler2D dayTexture;

/* uniform texture map for the night’s */
uniform sampler2D nightTexture;

void main ()
{

 /* make sure we have unit normal while interpolating */
 vec3 N = normalize (normal);

 /* unit light direction, (assume) stored in eye coordinates */
 vec3 L = normalize (gl_LightSoure[0].position.xyz);

 …

}

Night and Day
Fragment Program (Cont.)

float NdotL = dot (N,L);

/* calculate the day’s and night’s weights */
vec4 dayWeight =
 gl_FronetMaterial.diffuse * gl_LightSoure[0].diffuse *
 max (NdotL + overlap, 0.0) / (1.0 + overlap);

vec4 nightWeight = max (overlap – dayWeight, 0.0) / overlap;

/* sample day’s color */
vec4 dayColor = texture2D (dayTexture, gl_TexCoord[0].xy);

/* sampel explosion color */
vec4 nightColor = texture2D (nightTexture, gl_TexCoord[0].xy);

/* set output color to the weighted combination */
gl_FragColor =
 dayColor * dayWeight +
2.5 * nightColor * nightWeight;

/* make alpha always 1 */
gl_FragColor.w = 1.0;

Night and Day
OpenGL Program

// bind and enable texture unit 0, set it to be the day’s texture map
glActiveTexture (GL_TEXTURE0);
glBindTexture (GL_TEXTURE_2D, dayTexture);
glEnable (GL_TEXTURE_2D);

// tell the program that earthTexture is in GL_TEXTURE0
Glunit dayLoc = glGetUniformLocation (program, “dayTexture”);
glUniformi (dayLoc, 0);

// bind and enable texture unit 1, set it to be night’s texture map
glActiveTexture (GL_TEXTURE1);
glBindTexture (GL_TEXTURE_2D, nightTexture);
glEnable (GL_TEXTURE_2D);

// tell the program that nightTexture is in GL_TEXTURE1
Glunit nightLoc = glGetUniformLocation (program, “nightTexture”);
glUniformi (dayLoc, 1);

// draw the earth
TexturedSphere ();

Next Time…

• Ray tracing
– Textbook Chapter 21-1

• Programming Assignment 3 is due on 11/9

	CSC 4356�Interactive Computer Graphics�Lecture 20: Texture Mapping (part 3)
	From Last Time
	This Lecture
	What is Shadow?
	Shadows
	Types of Shadow
	Types of Shadow
	Shadow Map
	Shadow Map
	Shadow Map
	Rendering Shadow
	Shadow Mapping: Example
	Shadow Mapping: Example
	Shadow Mapping: Example
	Shadow Mapping: Example
	Shadow Mapping: Example
	Shadow Mapping: Notes
	Questions?
	Environment Maps
	Environment Mapping Steps
	How to compute reflection vector?
	Environment Mapping Example
	Sphere Mapping Basics
	Sphere Mapping
	Sphere Mapping Steps
	OpenGL code Example
	What’s the Best Map?
	Questions?
	Bump Mapping
	Bump Mapping
	Another Bump Map Example
	Displacement Mapping
	Questions?
	Textures in GLSL
	Multi-Texturing
	Multi-Texture: Globe
	Night and Day
	Night and Day�Vertex Program
	Night and Day�Fragment Program
	Night and Day�Fragment Program (Cont.)
	Night and Day�OpenGL Program
	Next Time…

