
CSC 4356
Interactive Computer Graphics

Lecture 21: Ray Tracing (Part 1)

Jinwei Ye
http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am
218 Tureaud Hall

Illumination Models
• Interaction between light sources and objects in

scene that results in perception of intensity and
color at eye

• Local vs. global models
– Local illumination: Perception of a particular

primitive only depends on light sources directly
affecting that one primitive

• Geometry
• Material properties

– Global illumination: Also take into account indirect
effects on light of other objects in the scene

• Shadows cast
• Light reflected/refracted

“Forward” Ray Tracing
• Proper global illumination

means simulation of physics
of light
– Rays are emitted from light

source, bounce off objects in
the scene, and some eventually
hit our eye, forming an image

• Problem: Not many rays
make it to the image
– Waste of computation for those

that don’t

“Backward” Ray Tracing

• Idea: Only consider those rays that create
the image
– Trace rays from pixels

Backward Ray “Following”: Types

• Ray casting: Compute
illumination at first
intersected surface point
only
– Takes care of hidden surface

elimination
• Ray tracing: Recursively

spawn rays at hit points to
simulate reflection,
refraction, etc.

Lighting a point
• Let c = (r, g, b) be perceived material

color, s(l) be color of light l
• Sum over all lights l for each color

channel (clamp overflow to [0, 1]):

∑ ++=
l

specdiffambtotal lclclcc)()()(

)()(lsmlc ambambamb ⊗=
)())(,0max()(lsmllc diffdiffdiff ⊗⋅= ln

)())(,0max()(lsmllc specspec
shine

spec ⊗⋅= rv

One of the earliest ray-traced scenes

Ray Tracing: Example

Ray Tracing: More recent example

Ray Tracing: Example from “Cars”

Ray Tracing: Another car

From a CAD model using Nvidia’s mental ray
(http://www.nvidia-arc.com/products/nvidia-mental-ray)

Ray Casting
• Simulation of irradiance

(incoming light ray) at each pixel
• Send a ray from the focal point

through each pixel and out into
the scene and see if it intersects
an object
– Use background color if nothing

is hit
• Local shading model is applied to first point hit

Ray Casting: Details
• Must compute 3D ray into

scene for each 2D image pixel

• Compute 3-D position of ray’s intersection with
nearest object and normal at that point

• Apply lighting model such as Phong to get color
at that point and fill in pixel with it

dop t+= o

d

Does Ray Intersect any Scene
Primitives?

• Test each primitive in scene for intersection
individually

• Different methods for different kinds of primitives
– Polygon
– Sphere
– Cylinder, torus
– Etc.

• Make sure intersection point is in front of eye and
nearest one

Ray-Sphere Intersection I

• Combine implicit definition of sphere

with ray equation

Thus we have

0|| 22 =−− rcpp

dop t+=

0|| 22 =−−+ rt cpdo

• To solve for t, resulting in a quadratic equation
with roots given by:

– d is a unit vector |d| = 1

• Notes
– Real solutions mean there actually are 1 or 2

intersections -- what does this correspond to?
– Negative solutions are behind eye

Ray-Sphere Intersection II
• Substitute and use opp −=∆ c

222 ||2|||| bbaaba +⋅+=+

)|(|)(222 rppdpdt −∆−∆⋅±∆⋅=

Ray-Polygon Intersection
• Express point p on a ray as some distance t

along direction d from origin o: p = o + td
• Use plane equation n ⋅ x + m= 0, substitute

o + td for x, and solve for t
• Only positive t’s mean the intersection is in

front of the eye
• Then plug t back into p = o + td to get p
• Is the 2-D location of p on the plane inside

the 2-D polygon?
– For convex polys, Cohen-Sutherland-style

outcode test will work

Ray-Triangle Intersection

• Direct barycentric coordinates expression

• Set this equal to parametric form of ray
o + td and solve for intersection point
(t, u, v)

• Only inside triangle if u, v, and 1 – u – v
are between 0 and 1

210)1(),(vvvt vuvuvu ++−−=

How to render shadow?

Shadow Rays

• For point being locally shaded, spawn new
ray in each light direction and check for
intersection to make sure light is “visible”

Shadow Rays
• For point p being locally shaded, only add diffuse

& specular components for light l if light is not
blocked

• Test for occlusion of l for p:
– Spawn shadow ray for l with origin p, direction l(l)
– Check whether shadow ray intersects any scene

object
– Intersection only “counts” if:

||0 pp −<< lt

Ray-Cast Scene with and without
Shadows

Next Time…

• More about ray tracing
• Programming assignment 3 is due today!
• Office hour change (this week only)

– Friday (tomorrow) morning 10:00-12:00

	CSC 4356�Interactive Computer Graphics�Lecture 21: Ray Tracing (Part 1)
	Illumination Models
	“Forward” Ray Tracing
	“Backward” Ray Tracing
	Backward Ray “Following”: Types
	Lighting a point
	One of the earliest ray-traced scenes
	Ray Tracing: Example
	Ray Tracing: More recent example
	Ray Tracing: Example from “Cars”
	Ray Tracing: Another car
	Ray Casting
	Ray Casting: Details
	Does Ray Intersect any Scene Primitives?
	Ray-Sphere Intersection I
	Ray-Sphere Intersection II
	Ray-Polygon Intersection
	Ray-Triangle Intersection
	How to render shadow?
	Shadow Rays
	Shadow Rays
	Ray-Cast Scene with and without Shadows
	Next Time…

