CSC 4356

Interactive Computer Graphics
Lecture 21: Ray Tracing (Part 1)

Jinwel Ye
http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am
218 Tureaud Hall

lllumination Models

* Interaction between light sources and objects in
scene that results in perception of intensity and
color at eye

e Local vs. global models

— Local illumination: Perception of a particular
primitive only depends on light sources directly
affecting that one primitive

o Geometry
« Material properties

— Global illumination: Also take into account indirect

effects on light of other objects in the scene
e Shadows cast
 Light reflected/refracted

“Forward” Ray Tracing

* Proper global illumination
means simulation of physics
of light

— Rays are emitted from light
source, bounce off objects In
the scene, and some eventually
hit our eye, forming an image

* Problem: Not many rays
make it to the image

— Waste of computation for those
that don’t

“Backward” Ray Tracing

 Idea: Only consider those rays that create
the image
— Trace rays from pixels

Backward Ray “Following”: Types

 Ray casting: Compute
Illumination at first
Intersected surface point
only
— Takes care of hidden surface

elimination

 Ray tracing: Recursively
spawn rays at hit points to
simulate reflection,
refraction, etc.

Lighting a point

e Letc=(r,g,b)beperceived material ¢ Q
color, s(l) be color of light |

« Sum over all lights | for each color S
channel (clamp overflow to [0, 1]):

e x’]’r] -

Ciotal = anmb(l) + Cyitr (1) + Cypec (1)

Camb (I)I = My ® S (1)

Cqirr (1) = max(0,n-1(1)) My @Sy (1)
(1) = max(0, v-r(l))"" Mqee @ Seec (1)

spec

One of the earliest ray-traced scenes

Ray Tracing: Example

Ray Tracing: More recent example

Ray Tracing: Example from “Cars”

Ray Tracing: Another car

From a CAD model using Nvidia’s mental ray
(http://www.nvidia-arc.com/products/nvidia-mental-ray)

Ray Casting

e Simulation of irradiance
(incoming light ray) at each pixel

e Send a ray from the focal point
through each pixel and out into
the scene and see If it Intersects
an object

— Use background color if nothing
IS hit
* Local shading model is applied to first point hit

Ray Casting: Detalls

e Must compute 3D ray into
scene for each 2D image pixel

 Compute 3-D position of ray’s intersection with |
nearest object and normal at that point

* Apply lighting model such as Phong to get color

at that point and fill in pixel with it

Does Ray Intersect any Scene
Primitives?
Test each primitive in scene for intersection

individually

Different methods for different kinds of primitives
— Polygon

— Sphere

— Cylinder, torus

— Etc.

Make sure intersection point is in front of eye and
nearest one

a) b)

= e —

Ray-Sphere Intersection |

e Combine implicit definition of sphere

|p_pc ‘2 _r2 =0
with ray equation
D=0+td

Thus we have
lo+td—p_[°-r*=0

Ray-Sphere Intersection |l

» Substitute AP =P, —0and use
la+bP=laf +2a-b+|b]
* To solve for t, resulting in a quadratic equation
with roots given by:
t=d-Ap=+/(d-Ap)’ —(|Ap [—r°)
— disaunit vector |d| =1
 Notes

— Real solutions mean there actually are 1 or 2
Intersections -- what does this correspond to?

— Negative solutions are behind eye

Ray-Polygon Intersection

Express point p on a ray as some distance t
along direction d from origin o: p =0 + td

Use plane equation n - x + m= 0, substitute
0 + td for x, and solve for t

Only positive t's mean the intersection Is In
front of the eye

Then plugtbackintop =0 +td togetp
Is the 2-D location of p on the plane inside
the 2-D polygon?

— For convex polys, Cohen-Sutherland-style
outcode test will work

Ray-Triangle Intersection

* Direct barycentric coordinates expression

t(u,v)=1-u-v)v,+uv, +vv

. Set this equal to parametric form of ray
0 + td and solve for intersection point
(t, u, v)

e Only inside triangle ifu,v,and 1 —u—v
are between O and 1

How to render shadow?

Shadow Rays

* For point being locally shaded, spawn new
ray In each light direction and check for
Intersection to make sure light is “visible”

Shadow Rays

* For point p being locally shaded, only add diffuse
& specular components for light | if light is not

blocked
e Test for occlusion of | for p:
— Spawn shadow ray for | with origin p, direction I(l)

— Check whether shadow ray intersects any scene
object \\
— Intersection only “counts” if: o~ s

O<t<|p,—p]

Ray-Cast Scene with and without
Shadows

T

||

gl 1

Next Time...

 More about ray tracing
 Programming assignment 3 is due today!

« Office hour change (this week only)
— Friday (tomorrow) morning 10:00-12:00

	CSC 4356�Interactive Computer Graphics�Lecture 21: Ray Tracing (Part 1)
	Illumination Models
	“Forward” Ray Tracing
	“Backward” Ray Tracing
	Backward Ray “Following”: Types
	Lighting a point
	One of the earliest ray-traced scenes
	Ray Tracing: Example
	Ray Tracing: More recent example
	Ray Tracing: Example from “Cars”
	Ray Tracing: Another car
	Ray Casting
	Ray Casting: Details
	Does Ray Intersect any Scene Primitives?
	Ray-Sphere Intersection I
	Ray-Sphere Intersection II
	Ray-Polygon Intersection
	Ray-Triangle Intersection
	How to render shadow?
	Shadow Rays
	Shadow Rays
	Ray-Cast Scene with and without Shadows
	Next Time…

