CSC 4356 Interactive Computer Graphics Lecture 21: Ray Tracing (Part 1)

Jinwei Ye http://www.csc.Isu.edu/~jye/CSC4356/

Tue \& Thu: 10:30-11:50am
218 Tureaud Hall

Illumination Models

- Interaction between light sources and objects in scene that results in perception of intensity and color at eye
- Local vs. global models
- Local illumination: Perception of a particular primitive only depends on light sources directly affecting that one primitive
- Geometry
- Material properties
- Global illumination: Also take into account indirect effects on light of other objects in the scene
- Shadows cast
- Light reflected/refracted

"Forward" Ray Tracing

- Proper global illumination means simulation of physics of light
- Rays are emitted from light source, bounce off objects in the scene, and some eventually hit our eye, forming an image
- Problem: Not many rays make it to the image

- Waste of computation for those that don't

"Backward" Ray Tracing

- Idea: Only consider those rays that create the image
- Trace rays from pixels

Backward Ray "Following": Types

- Ray casting: Compute illumination at first intersected surface point only
- Takes care of hidden surface elimination
- Ray tracing: Recursively spawn rays at hit points to simulate reflection, refraction, etc.

Lighting a point

- Let $\mathrm{c}=(\mathrm{r}, \mathrm{g}, \mathrm{b})$ be perceived material
c) 学: color, $\mathbf{s}(\mathrm{l})$ be color of light I
- Sum over all lights I for each color channel (clamp overflow to [0, 1]):

$$
\begin{aligned}
& c_{\text {total }}=\sum_{l} c_{\text {amb }}(l)+c_{\text {diff }}(l)+c_{\text {spec }}(l) \\
& c_{\text {amb }}(l)=m_{\text {amb }} \otimes s_{\text {amb }}(l) \\
& c_{\text {diff }}(l)=\max (0, \mathbf{n} \cdot \mathbf{l}(l)) m_{\text {diff }} \otimes s_{\text {diff }}(l) \\
& c_{\text {spec }}(l)=\max (0, \mathbf{v} \cdot \mathbf{r}(l))^{\text {shine }} m_{\text {spec }} \otimes s_{\text {spec }}(l)
\end{aligned}
$$

One of the earliest ray-traced scenes

Ray Tracing: Example

Ray Tracing: More recent example

Ray Tracing: Example from "Cars"

Ray Tracing: Another car

From a CAD model using Nvidia's mental ray (http://www.nvidia-arc.com/products/nvidia-mental-ray)

Ray Casting

- Simulation of irradiance (incoming light ray) at each pixel
- Send a ray from the focal point through each pixel and out into the scene and see if it intersects an object
- Use background color if nothing
 is hit
- Local shading model is applied to first point hit

Ray Casting: Details

- Must compute 3D ray into scene for each 2D image pixel

$$
\mathbf{p}=\mathbf{o}+t \mathbf{d}
$$

- Compute 3-D position of ray's intersection with nearest object and normal at that point
- Apply lighting model such as Phong to get color at that point and fill in pixel with it

Does Ray Intersect any Scene Primitives?

- Test each primitive in scene for intersection individually
- Different methods for different kinds of primitives
- Polygon
- Sphere
- Cylinder, torus
- Etc.
- Make sure intersection point is in front of eye and nearest one
a)

b)

Ray-Sphere Intersection I

- Combine implicit definition of sphere

$$
\left|\mathbf{p}-\mathbf{p}_{c}\right|^{2}-r^{2}=0
$$

with ray equation

$$
\mathbf{p}=\mathbf{o}+t \mathbf{d}
$$

Thus we have

$$
\left|\mathbf{0}+t \mathbf{d}-\mathbf{p}_{c}\right|^{2}-r^{2}=0
$$

Ray-Sphere Intersection II

- Substitute $\Delta \mathbf{p}=\mathbf{p}_{c}-\mathbf{0}$ and use

$$
|\mathbf{a}+\mathbf{b}|^{2}=|\mathbf{a}|^{2}+2 \mathbf{a} \cdot \mathbf{b}+|\mathbf{b}|^{2}
$$

- To solve for t, resulting in a quadratic equation with roots given by:

$$
t=d \cdot \Delta p \pm \sqrt{(d \cdot \Delta p)^{2}-\left(|\Delta p|^{2}-r^{2}\right)}
$$

-d is a unit vector $|\mathrm{d}|=1$

- Notes
- Real solutions mean there actually are 1 or 2 intersections -- what does this correspond to?
- Negative solutions are behind eye

Ray-Polygon Intersection

- Express point \mathbf{p} on a ray as some distance t along direction d from origin $\mathbf{0}: \mathbf{p}=\mathbf{0}+$ td
- Use plane equation $\mathbf{n} \cdot \mathbf{x}+\mathrm{m}=0$, substitute $\mathbf{o}+$ td for \mathbf{x}, and solve for t
- Only positive t's mean the intersection is in front of the eye
- Then plug t back into $\mathbf{p}=\mathbf{0}+$ td to get \mathbf{p}
- Is the 2-D location of p on the plane inside the 2-D polygon?
- For convex polys, Cohen-Sutherland-style outcode test will work

Ray-Triangle Intersection

- Direct barycentric coordinates expression

$$
\mathbf{t}(u, v)=(1-u-v) \mathbf{v}_{0}+u \mathbf{v}_{1}+v \mathbf{v}_{2}
$$

- Set this equal to parametric form of ray o + td and solve for intersection point (t, u, v)
- Only inside triangle if u, v, and $1-u-v$ are between 0 and 1

How to render shadow?

Shadow Rays

- For point being locally shaded, spawn new ray in each light direction and check for intersection to make sure light is "visible"

Shadow Rays

- For point p being locally shaded, only add diffuse \& specular components for light I if light is not blocked
- Test for occlusion of I for \mathbf{p} :
- Spawn shadow ray for I with origin p, direction I(I)
- Check whether shadow ray intersects any scene object
- Intersection only "counts" if:

$$
0<t<\left|\mathbf{p}_{l}-\mathbf{p}\right|
$$

Ray-Cast Scene with and without Shadows

Next Time...

- More about ray tracing
- Programming assignment 3 is due today!
- Office hour change (this week only)
- Friday (tomorrow) morning 10:00-12:00

