CSC 4356 Interactive Computer Graphics Lecture 25: Image-Based Rendering

Jinwei Ye http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am 218 Tureaud Hall

From Previous Lectures

- Polygon-based rendering
- Ray tracing

Conventional 3-D Graphics

• Traditionally computer graphics treats rendering as a simulation problem

Motivation

- Modeling is expensive
 - complex geometry, reflectance, etc. hard to specify
 - realistic light transport is computationally intensive
- Results still have an artificial look
- Photos are realistic by definition
- Photos are easy to capture
- Why not just use photos directly?
 - a sampling problem instead of a simulation problem

Image-Based Rendering (IBR)

Simple Image-Based Rendering

Panoramas

- Created by stitching together multiple images
 - one position, wide range of directions
 - Quicktime VR
 - interactive. User controls the gaze direction

Image-Based Rendering (IBR)

- Advantages
 - Modest computation compared to classical C.G.
 - Cost independent of scene complexity
 Imagery from real or virtual scenes
- Limitations of pre-computation
 - Fixed look-from or look at point
 - Static scene geometry
 - Fixed lighting

Ray Space

• all possible rays

– Plenoptic function

Plenoptic Function

$$P(V_x, V_y, V_z, \theta, \phi, \lambda, t)$$

- Captures radiance
 - at a particular point in space (3D)
 - in a particular direction (2D)
 - at a particular wavelength (1D) -- color
 - at a particular time (1D)
- 7D function!

Plenoptic function

 $P(V_x, V_y, V_z, \theta, \phi)$

- Simplifications

 eliminate time
 use only RGB
- Now only 5D
 - position
 - orientation

Plenoptic Function

- Many image-based rendering (IBR) approaches can be cast as sampling from and reconstructing the Plenoptic function
 - Note that the function is generally constant along segments of a line (assuming vacuum)

Light Fields (Two-Plane Parameterization)

- Reduce the Plenoptic function to 4D
- Exploits the fact that radiance doesn't change along a ray through empty space
- We need a way to parameterize rays

Two-Plane Parameterization(2PP)

- Parameterized over two parallel planes (2PP)
- Each ray maps to a 4D point [*u*, *v*, *s*, *t*]
- Relative 2PP $\vec{r} = [u, v, \sigma, \tau]$

$$\sigma = s - u, \ \tau = t - v$$

• Ray direction: [*σ*, *τ*, 1]

Creating a Light Field

 Synthetic light fields can be created from sheared perspective views

A light field is an array of images

Resampling

- For each pixel
 - generate a ray
 - find the closest rays in the light field
 - return a combination of the radiance of those rays

Light Field Example

Capturing real-world light fields

Stanford Multi-Camera Array

cameras closely packed high-X imaging synthetic aperture photography

cameras widely spaced video light fields new computer vision algorithms

Compound Eye

Ommatidia

Complex Light Field Acquisition

- Digital Michelangelo Project
 - Marc Levoy, Stanford University
 - Lightfield ("night") assembled by Jon Shade

Aliasing in Light Field Rendering

Aliasing in Light Field Rendering

Adding geometric information

• Can use rough depth information to improve rendering quality / reduce size

Light Field Rendering with Geometry

Without using geometry

Using approximate Geometry

Surface Light Fields

• Use a scanned model for geometry, but use light fields for reflectance

[Wood et al, SIGGRAPH 2000]

Surface Light Fields Example

Photos Rendering

Image-Based Rendering

- Advantages
 - Modest computation compared to classical C.G.
 - Cost independent of scene complexity
 Imagery from real or virtual scenes
- Limitations of pre-computation
 - Fixed look-from or look at point
 - Static scene geometry
 - Fixed lighting

Image-Based Relighting

[Debevec et al, SIGGRAPH 2000]

Light Stage

Light Stage Images

[Debevec et al, SIGGRAPH 2000]

Light Stage 1 & 2

Light Stage 2

[Debevec et al, 2000]

[Hawkins et al, 2001]

Light Stage 5

[Wenger et al, 2005]

Light Stage 5

Light Stage Example

The Spider-Man Chronicles: The Art and Making of Spider-Man 3

The Curious Case of Benjamin Button

Spider-Man 2

Avatar

Next Time...

- Final Review
- Final exam will be held on December 8 from 3:00-5:00pm
 - -218 Tureaud Hall
 - Question types similar to midterm

Course Evaluation

- Course evaluation is open until Dec 3
- Online: <u>www.cae.lsu.edu/eval</u>
- Our course ID is CSC 4356 001
- Please complete carefully
 - You will get 1 extra credit if you complete the course evaluation!