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What We Have Learned 
• 2D & 3D Transformations 
• Rasterization 
• Viewing Transformation 
• Projection Transformation 
• 3D Object Representation 
• User Interaction 
• Hidden Surface Removal 
• Illumination Models 
• Texture Mapping 
• Ray Tracing 
• Image-Based Rendering 
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Illumination Model in OpenGL 
• Final surface reflectance models as combination 

of ambient, diffuse, and specular components 
– Simplified empirical illumination model 
– Approximate global lighting effects 

speculardiffuseambienttotal IIII ++=



Ambient Light Source 
• Even though an object in a scene is not directly lit it 

will still be visible. This is because light is reflected 
indirectly from nearby objects 

• A simple hack that is commonly used to model this 
indirect illumination is to use of an ambient light 
source 

• Ambient light source: 
– No spatial or directional characteristics 
– The amount of ambient light incident on each object is a 

constant for all surfaces in the scene (minimum 
illumination) 

– An ambient light can have a color 
 



Ambient Reflectance 
• The amount of ambient light that is reflected by 

an object is independent of the object's position 
or orientation 

• Surface properties are used to determine how 
much ambient light is reflected 
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Computing Diffuse Reflection 
• The angle between the surface normal and the incoming 

light ray is called the angle of incidence and we can 
express a intensity of the light in terms of this angle θ 
 
 
 

 
• In practice, we can use dot product to compute cosθ  

– If both the surface normal and the lighting direction are 
normalized (unit length) then diffuse reflectance can be 
computed as 
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Diffuse Light Examples 
• Below are several examples of a spherical 

diffuse reflector with a varying lighting angles. 
– Why consider a spherical surface? 
– We need only consider angles from 0 to 90 degrees 
– Greater angles (where the dot product is negative) 

are blocked by the surface and the reflectance is zero 



Phong Illumination 
• Phong Illumination model approximates this fall off 

– This model has no physical basis 
– Yet it is one of the most commonly used illumination models in 

computer graphics 
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•    is the direction to the viewer 
• The nshiny controls how quickly the 

highlight falls off  
– The larger the exponent, the faster fall off 
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How to Compute Reflection Vector? 

• The vector reflection vector R can be 
computed from the incoming light direction 
and the surface normal as shown below: 
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Blinn & Torrance Variation 
• Jim Blinn introduced another approach for 

computing Phong-like illumination based on the 
work of Ken Torrance 
 

• Halfway vector H:  a vector bisecting the 
incoming light direction and the viewing direction 
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What is the difference? 
• The angle between the halfway vector and the 

surface normal is likely to be smaller than the 
angle between R and V used in Phong's model  
– unless the surface is viewed from a very steep angle, 

the angle between H and N is likely to be larger 
• We can set larger exponent (shininess) for Blinn 

Blinn Phong Blinn  
(with 4 x nshiny) 



Putting It All Together 

• Our final empirical illumination model is: 
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Gouraud Shading 
• The Gouraud Shading applies the illumination model on 

a subset of surface points and interpolates the intensity 
of the remaining points on the surface  
– In the case of a polygonal mesh the illumination model is applied 

at each vertex and the colors in the triangles interior are linearly 
interpolated from these vertex values 

– The linear interpolation can be accomplished using the plane 
equation method discussed in the lecture on rasterizing polygons 

– Notice that facet artifacts are still visible 

 



Interpolating Color 

• Now we know how to draw a solid triangle 
(All vertices have the same color) 

• What if they have different colors (or other 
parameters, e.g. depth)? How to interpolate? 

• Idea: triangles are planar in any space: 
– This is the “redness”  

parameter space 
– Also need to do this  

for green and blue 
– Plane equation 
   z = Arx + Bry + Cr 
(here z stands for redness of  
a point (x,y) inside the triangle) 



Phong Shading 
• In Phong shading (not to be confused with Phong's 

illumination model), the surface normal is linearly 
interpolated across polygonal facets, and the illumination 
model is applied at every point 
– Better handling on specular high lights and usually results in a 

very smooth appearance 
– Slower than Gouraud shading 
– NOT built into OpenGL (OpenGL uses Gouraud) 
– Can be implemented on graphics card using fragment shader  



Flat vs. Gouraud vs. Phong 

 

Compute illumination 
model once on facet 
centroid 

Compute illumination model 
on the vertices of a facet and 
then interpolate color for 
interior points 

Interpolate normal for every 
point and then compute 
illumination model for each 
point on a facet 



OpenGL Shading Language 
(GLSL) 

• A C-like language and incorporated into 
OpenGL 2.0 

• Used to write vertex shader and fragment 
shader 

• No distinction in the syntax between a 
vertex shader and a fragment shader 

• Platform independent compared to CG 



GPU Programmability 

• Programmable Processing units  
– Programmable per-Vertex Processors 
– Programmable per-Fragment Processors 
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Vertex Shader 
• A vertex shader is executed on each vertex 

triggered by glVertex*() 
• Each vertex shader must output the 

information that the rasterizer needs 
– At a minimum: transforms the vertex position 

• The program can access all OpenGL states 
– Current color, texture coordinates, material 

properties, transformation matrices, etc 
• The application can also supply additional 

input variables to the vertex program 



Fragment Shader 
• The fragment shader is executed after 

rasterization and operate on each fragment 
– Per-pixel operations 

• Vertex attributes (colors, positions, texture 
coordinates, etc.) are interpolated across a 
primitive automatically as the input to the 
fragment program 

• Fragment shader can access OpenGL state, 
(interpolated) output from vertex program, 
and user defined variables 



Planar Mapping 
• Like projections, take vertex coordinate (x,y,z) and throw 

away one dimention 
–  e.g., drop z such that texture coord (u,v) = (x/W,y/H) 



Cylindrical Mapping 
• Cylinder: r, θ, z with (u,v) = (θ/(2π),z) 

– Note seams when wrapping around (θ = 0 or 2π) 
 



Spherical Mapping 
• Convert to spherical coordinates: use 

latitude/longitude 
– Singularities at north and south poles 

 



Minification & Magnification 

 

(Note that minification is not handled very well here) 



Magnification 

• In magnification, one texel is mapped to 
many pixels 
 

a few texels 

many pixels 

1 to 16 



Minification 

• In minification, many texels are mapped to 
one pixel 
 

many texels 

a few pixels 

16 to 1 



MIP Mapping 
• MIP Mapping is one popular technique for precomputing and performing this 

pre-filtering. MIP is an acronym for the Latin phrase multium in parvo, which 
means “many in a small place”. The technique was first described by Lance 
Williams. The basic idea is to construct a pyramid of images that are pre-
filtered and resampled at sampling frequencies that are a binary fractions 
(1/2, 1/4, 1/8, etc) of the original image's sampling. 

• While rasterizing we compute the index 
of the decimated image that is sampled 
at a rate closest to the density of our 
desired sampling rate 
– Try to maintain pixel to texel ratio 

close to 1  

• Computing this series of filtered images 
requires only a small fraction of 
additional storage over the original 
texture (How small of a fraction?) 



Storing MIP Maps 
• One convenient method of storing a MIP map is shown on the right 

image 
– It also nicely illustrates the 1/3 overhead of maintaining the MIP map 
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Finding MIP Level 
• Idea: Use the projection of a pixel in screen into 

texture space to figure out which level to use 
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Applying chain rule: 

Other derivatives 
can be computed 
in the same way. 



Finding MIP Level 

( ) mlevel 2log=

• Use the lengths of the projected pixel in texture space to define a 
measure of mismatch between sampling densities: 
 
 
 
 
 
 

• Now choose the appropriate level: 
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Summed-Area Tables 
 

• Summed-area tables perform anisotropic filtering  
– It can be used to compute the average color for any arbitrary 

rectangular region in the texture space at a constant speed  
• Summed-area table is a two dimensional array that has 

the same size as the texture  

Each entry stores the sum of all the texel 
colors above and to the left 



Summed-Area Tables 

• How to compute the color of a pixel 
bounded by (x0, y0) and (x1, y1)? 
– Find the sum of region contained in a box 

bounded by (x0, y0) and (x1, y1): 

• Each entry in the summed area table is the sum of all 
entries above and to the left: 

),(),(),(),( 00011011 yxTyxTyxTyxT +−−
– Divide out area  

) - x)(x - y(y 0101

Original Texture Summed-Area Table 



Shadow Map 
• Render an image from the light’s point of view 

– Camera look-from point is the light position 
– Aim camera to look at objects in scene 
– Render only the z-buffer depth values 

• Don’t need colors 
• Don’t need to compute lighting or shading 

– (unless a procedural shader would make an object transparent) 
 

• Store result in a shadow map (a.k.a. depth map) 
– Store the depth values (z-buffer) 
– Also store the (inverse) camera & projection transform 

 

• Remember, z-buffer pixel holds depth of closest object to the 
camera 
– A shadow map pixel contains the distance of the closest object 

to the light (because camera is in the position of light) 



Environment Mapping Steps 
• Create a 2D environment map 
• For each pixel on a reflective object, 

compute the normal  
• Compute the reflection vector based on 

the eye position and surface normal  
• Use the reflection vector to compute an 

index into the environment texture  
• Use the corresponding texel to color the 

pixel  
 



Bump Mapping 
• Textures can be used to alter the surface normals of an object. This 

does not actual shape of the surface -- we are only shading it as if it 
were a different shape! This technique is called bump mapping.  

• The texture map is treated as a single-valued height function. The 
value of the function is not actually used, just its partial derivatives. 
The partial derivatives tell how to alter the true surface normal at 
each point on the surface to make the object appear as if it were 
deformed by the height function. 

Sphere w/Diffuse Texture Swirly Bump Map Sphere w/Diffuse Texture & Bump Map 



Displacement Mapping 
• Texture maps can be used to actually move surface points. 
• This is called displacement mapping. How is this fundamentally 

different than bump mapping? 



Backward Ray Tracing 

• Ray casting: Compute 
illumination at first 
intersected surface point 
only 
– Takes care of hidden surface 

elimination 
• Ray tracing: Recursively 

spawn rays at hit points to 
simulate reflection, 
refraction, etc. 



Ray Casting: Details 
• Must compute 3D ray into 

scene for each 2D image pixel 

• Compute 3-D position of ray’s intersection with 
nearest object and normal at that point 

• Apply lighting model such as Phong to get color 
at that point and fill in pixel with it 
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Ray-Sphere Intersection I 

• Combine implicit definition of sphere 

 
with ray equation 

 
Thus we have 
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•  To solve for t, resulting in a quadratic equation 
with roots given by: 

 
– d is a unit vector |d| = 1 

• Notes  
– Real solutions mean there actually are 1 or 2 

intersections -- what does this correspond to? 
– Negative solutions are behind eye  

Ray-Sphere Intersection II 
• Substitute                      and use opp −=∆ c
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Ray-Polygon Intersection 
• Express point p on a ray as some distance t 

along direction d from origin o: p = o + td  
• Use plane equation n ⋅ x +  m= 0, substitute 

o + td for x, and solve for t 
• Only positive t’s mean the intersection is in 

front of the eye 
• Then plug t back into p = o + td to get p 
• Is the 2-D location of p on the plane inside 

the 2-D polygon? 
– For convex polys, Cohen-Sutherland-style 

outcode test will work 
 
 
 
 
 



Ray-Triangle Intersection 

• Direct barycentric coordinates expression 

• Set this equal to parametric form of ray     
o + td and solve for intersection point       
(t, u, v) 

• Only inside triangle if u, v, and 1 – u – v 
are between 0 and 1 

210)1(),( vvvt vuvuvu ++−−=



Shadow Rays 
• For point p being locally shaded, only add diffuse 

& specular components for light l if light is not 
blocked 

• Test for occlusion of l for p: 
– Spawn shadow ray for l with origin p, direction l(l)  
– Check whether shadow ray intersects any scene 

object  
– Intersection only “counts” if:  

||0 pp −<< lt



Ray Tracing 
• Model: Perceived color at point p is an additive 

combination of local illumination (e.g., Phong) + reflection + 
refraction effects 
– Weights on last two terms are additional material properties 

• Compute reflection, refraction contributions by tracing 
respective rays back from p to surfaces they came from 
and evaluating local illumination at those locations 

• Apply operation recursively to some maximum depth to 
get: 
– Reflections of reflections of ... 
– Refractions of refractions of ... 
– And of course mixtures of the two 



Ray Tracing: Recursion 



Ray Tracing Reflection Formula 

• The formula used for Phong illumination is 
not what we want here because our 
incident ray v is pointing in toward the 
surface, whereas the light direction l was 
pointed away from the surface 

• So just negate the formula to get: 
 l)n(nlr ⋅−= 2



Refraction 
• Definition: Bending of light ray as it crosses interface 

between media (e.g., air → glass or vice versa) 
• Index of refraction (IOR) n for a medium: Ratio of 

speed of light in vacuum to speed in that medium 
(wavelength-dependent ⇒ prisms) 

• By definition, n ≥ 1   
• Examples: nair (1.0003) < nwater (1.33) < nglass  (1.52) 

 

courtesy of 
Wolfram 

θ1: Angle of incidence 

θ2: Angle of refraction 



Snell’s Law 

• The relationship between the angle of 
incidence and the angle of refraction is 
given by: 
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Computing the Transmission 
Direction t 

Total internal reflection happens when the term in the 
square root above isn’t positive, which is when  
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Distributed Ray Tracing (DRT) 
• Main idea: Replace our single ray 

approximations with a distribution of rays 
• Improvements to this image: 

– Anti-aliased edges 
– Objects in/out of focus according to a lens 
– Motion blur of fast moving objects 
– Soft shadows 
– Glossy reflection 
– “Glossy” translucency 

 



Two-Plane Parameterization(2PP) 

• Parameterized over  
two parallel planes 
(2PP) 

• Each ray maps to 
a 4D point [u, v, s, t] 

• Relative 2PP 
 
 
 

• Ray direction: [σ, τ, 1]  
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Resampling 

• For each pixel 
– generate a ray 
– find the closest rays in the light field 
– return a combination of the radiance of those 

rays 



Reminders 
• Final exam  

– 12/8 from 3:00-5:00pm 
– 218 Tureaud Hall 
– You can bring one page single-sided note and 

calculator 
• Programming Assignment 4 is due on 12/5 
• Course evaluation 

– Open until Dec 3 
– Online: www.cae.lsu.edu/eval  
– Course ID: CSC 4356 001 

 

http://www.cae.lsu.edu/eval
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