
CSC 4356
Interactive Computer Graphics

Final Review

Jinwei Ye
http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am
218 Tureaud Hall

What We Have Learned
• 2D & 3D Transformations
• Rasterization
• Viewing Transformation
• Projection Transformation
• 3D Object Representation
• User Interaction
• Hidden Surface Removal
• Illumination Models
• Texture Mapping
• Ray Tracing
• Image-Based Rendering

What We Have Learned
• 2D & 3D Transformations
• Rasterization
• Viewing Transformation
• Projection Transformation
• 3D Object Representation
• User Interaction
• Hidden Surface Removal
• Illumination Models
• Texture Mapping
• Ray Tracing
• Image-Based Rendering

Illumination Model in OpenGL
• Final surface reflectance models as combination

of ambient, diffuse, and specular components
– Simplified empirical illumination model
– Approximate global lighting effects

speculardiffuseambienttotal IIII ++=

Ambient Light Source
• Even though an object in a scene is not directly lit it

will still be visible. This is because light is reflected
indirectly from nearby objects

• A simple hack that is commonly used to model this
indirect illumination is to use of an ambient light
source

• Ambient light source:
– No spatial or directional characteristics
– The amount of ambient light incident on each object is a

constant for all surfaces in the scene (minimum
illumination)

– An ambient light can have a color

Ambient Reflectance
• The amount of ambient light that is reflected by

an object is independent of the object's position
or orientation

• Surface properties are used to determine how
much ambient light is reflected

aaambient IkI =

Ambient
Reflectance

Ambient
Reflectivity

Ambient Light
Intensity

Computing Diffuse Reflection
• The angle between the surface normal and the incoming

light ray is called the angle of incidence and we can
express a intensity of the light in terms of this angle θ

• In practice, we can use dot product to compute cosθ

– If both the surface normal and the lighting direction are
normalized (unit length) then diffuse reflectance can be
computed as

θcoslddiffuse IkI =

Diffuse
Reflectance

Diffuse
Reflectivity

Light
Intensity

Incident
Angle

)ˆˆ(lnIkI lddiffuse ⋅=

Diffuse Light Examples
• Below are several examples of a spherical

diffuse reflector with a varying lighting angles.
– Why consider a spherical surface?
– We need only consider angles from 0 to 90 degrees
– Greater angles (where the dot product is negative)

are blocked by the surface and the reflectance is zero

Phong Illumination
• Phong Illumination model approximates this fall off

– This model has no physical basis
– Yet it is one of the most commonly used illumination models in

computer graphics

shinyn
lsspecular IkI)(cosφ=

• is the direction to the viewer
• The nshiny controls how quickly the

highlight falls off
– The larger the exponent, the faster fall off

v
shinyn

ls rvIk)ˆˆ(⋅=

v̂

How to Compute Reflection Vector?

• The vector reflection vector R can be
computed from the incoming light direction
and the surface normal as shown below:

lnlnr ˆˆ))ˆˆ(2(ˆ −⋅=nlnlr ˆ))ˆˆ(2(ˆˆ ⋅=+

Blinn & Torrance Variation
• Jim Blinn introduced another approach for

computing Phong-like illumination based on the
work of Ken Torrance

• Halfway vector H: a vector bisecting the
incoming light direction and the viewing direction

shinyn
lsspecular HnIkI)ˆˆ(⋅=

|ˆˆ|
ˆˆ

ˆ
vl
vlH

+
+

=

What is the difference?
• The angle between the halfway vector and the

surface normal is likely to be smaller than the
angle between R and V used in Phong's model
– unless the surface is viewed from a very steep angle,

the angle between H and N is likely to be larger
• We can set larger exponent (shininess) for Blinn

Blinn Phong Blinn
(with 4 x nshiny)

Putting It All Together

• Our final empirical illumination model is:

∑
=

⋅+⋅+=
lights

i

n
sdiaatotal

shinyrvklnkIIkI
1

))ˆˆ()ˆˆ((

Gouraud Shading
• The Gouraud Shading applies the illumination model on

a subset of surface points and interpolates the intensity
of the remaining points on the surface
– In the case of a polygonal mesh the illumination model is applied

at each vertex and the colors in the triangles interior are linearly
interpolated from these vertex values

– The linear interpolation can be accomplished using the plane
equation method discussed in the lecture on rasterizing polygons

– Notice that facet artifacts are still visible

Interpolating Color

• Now we know how to draw a solid triangle
(All vertices have the same color)

• What if they have different colors (or other
parameters, e.g. depth)? How to interpolate?

• Idea: triangles are planar in any space:
– This is the “redness”

parameter space
– Also need to do this

for green and blue
– Plane equation
 z = Arx + Bry + Cr
(here z stands for redness of
a point (x,y) inside the triangle)

Phong Shading
• In Phong shading (not to be confused with Phong's

illumination model), the surface normal is linearly
interpolated across polygonal facets, and the illumination
model is applied at every point
– Better handling on specular high lights and usually results in a

very smooth appearance
– Slower than Gouraud shading
– NOT built into OpenGL (OpenGL uses Gouraud)
– Can be implemented on graphics card using fragment shader

Flat vs. Gouraud vs. Phong

Compute illumination
model once on facet
centroid

Compute illumination model
on the vertices of a facet and
then interpolate color for
interior points

Interpolate normal for every
point and then compute
illumination model for each
point on a facet

OpenGL Shading Language
(GLSL)

• A C-like language and incorporated into
OpenGL 2.0

• Used to write vertex shader and fragment
shader

• No distinction in the syntax between a
vertex shader and a fragment shader

• Platform independent compared to CG

GPU Programmability

• Programmable Processing units
– Programmable per-Vertex Processors
– Programmable per-Fragment Processors

Application Vertex
Processor

Fragment
Processor

Process
and

Rasterize
Primitive

Per
Fragment
& Frame
Buffer

ops

Frame
Buffer

Application
Program

Vertex
Shader

Fragment
Shader

Vertex Shader
• A vertex shader is executed on each vertex

triggered by glVertex*()
• Each vertex shader must output the

information that the rasterizer needs
– At a minimum: transforms the vertex position

• The program can access all OpenGL states
– Current color, texture coordinates, material

properties, transformation matrices, etc
• The application can also supply additional

input variables to the vertex program

Fragment Shader
• The fragment shader is executed after

rasterization and operate on each fragment
– Per-pixel operations

• Vertex attributes (colors, positions, texture
coordinates, etc.) are interpolated across a
primitive automatically as the input to the
fragment program

• Fragment shader can access OpenGL state,
(interpolated) output from vertex program,
and user defined variables

Planar Mapping
• Like projections, take vertex coordinate (x,y,z) and throw

away one dimention
– e.g., drop z such that texture coord (u,v) = (x/W,y/H)

Cylindrical Mapping
• Cylinder: r, θ, z with (u,v) = (θ/(2π),z)

– Note seams when wrapping around (θ = 0 or 2π)

Spherical Mapping
• Convert to spherical coordinates: use

latitude/longitude
– Singularities at north and south poles

Minification & Magnification

(Note that minification is not handled very well here)

Magnification

• In magnification, one texel is mapped to
many pixels

a few texels

many pixels

1 to 16

Minification

• In minification, many texels are mapped to
one pixel

many texels

a few pixels

16 to 1

MIP Mapping
• MIP Mapping is one popular technique for precomputing and performing this

pre-filtering. MIP is an acronym for the Latin phrase multium in parvo, which
means “many in a small place”. The technique was first described by Lance
Williams. The basic idea is to construct a pyramid of images that are pre-
filtered and resampled at sampling frequencies that are a binary fractions
(1/2, 1/4, 1/8, etc) of the original image's sampling.

• While rasterizing we compute the index
of the decimated image that is sampled
at a rate closest to the density of our
desired sampling rate
– Try to maintain pixel to texel ratio

close to 1

• Computing this series of filtered images
requires only a small fraction of
additional storage over the original
texture (How small of a fraction?)

Storing MIP Maps
• One convenient method of storing a MIP map is shown on the right

image
– It also nicely illustrates the 1/3 overhead of maintaining the MIP map

3
4

4
11

1
4
1

0
=

−
=






=∑

∞

=

i

i
sizemapmip

Finding MIP Level
• Idea: Use the projection of a pixel in screen into

texture space to figure out which level to use

thtextureWidus
CyBxAwyxo
CyBxAwuyxu

ooo

uuu

⋅=
++==

++==

/1),(
/),(

*

*

dx
du

du
ds

dx
ds

=

thtextureWid
du
ds

=

2*

),(
),(),()),(/),((

yxo
yxuAyxoA

dx
yxoyxud

dx
du ou −

==

Applying chain rule:

Other derivatives
can be computed
in the same way.

Finding MIP Level

() mlevel 2log=

• Use the lengths of the projected pixel in texture space to define a
measure of mismatch between sampling densities:

• Now choose the appropriate level:

dx
dt

dx
ds

22







+








dx
dt

dx
ds

))()(,)()(max(||)||||,max(|| 2222

dy
dt

dy
ds

dx
dt

dx
ds

dy
pd

dx
pdm ++==



)),max(),,max(max(
dy
dt

dy
ds

dx
dt

dx
ds

≈

Summed-Area Tables

• Summed-area tables perform anisotropic filtering
– It can be used to compute the average color for any arbitrary

rectangular region in the texture space at a constant speed
• Summed-area table is a two dimensional array that has

the same size as the texture

Each entry stores the sum of all the texel
colors above and to the left

Summed-Area Tables

• How to compute the color of a pixel
bounded by (x0, y0) and (x1, y1)?
– Find the sum of region contained in a box

bounded by (x0, y0) and (x1, y1):

• Each entry in the summed area table is the sum of all
entries above and to the left:

),(),(),(),(00011011 yxTyxTyxTyxT +−−
– Divide out area

) - x)(x - y(y 0101

Original Texture Summed-Area Table

Shadow Map
• Render an image from the light’s point of view

– Camera look-from point is the light position
– Aim camera to look at objects in scene
– Render only the z-buffer depth values

• Don’t need colors
• Don’t need to compute lighting or shading

– (unless a procedural shader would make an object transparent)

• Store result in a shadow map (a.k.a. depth map)
– Store the depth values (z-buffer)
– Also store the (inverse) camera & projection transform

• Remember, z-buffer pixel holds depth of closest object to the
camera
– A shadow map pixel contains the distance of the closest object

to the light (because camera is in the position of light)

Environment Mapping Steps
• Create a 2D environment map
• For each pixel on a reflective object,

compute the normal
• Compute the reflection vector based on

the eye position and surface normal
• Use the reflection vector to compute an

index into the environment texture
• Use the corresponding texel to color the

pixel

Bump Mapping
• Textures can be used to alter the surface normals of an object. This

does not actual shape of the surface -- we are only shading it as if it
were a different shape! This technique is called bump mapping.

• The texture map is treated as a single-valued height function. The
value of the function is not actually used, just its partial derivatives.
The partial derivatives tell how to alter the true surface normal at
each point on the surface to make the object appear as if it were
deformed by the height function.

Sphere w/Diffuse Texture Swirly Bump Map Sphere w/Diffuse Texture & Bump Map

Displacement Mapping
• Texture maps can be used to actually move surface points.
• This is called displacement mapping. How is this fundamentally

different than bump mapping?

Backward Ray Tracing

• Ray casting: Compute
illumination at first
intersected surface point
only
– Takes care of hidden surface

elimination
• Ray tracing: Recursively

spawn rays at hit points to
simulate reflection,
refraction, etc.

Ray Casting: Details
• Must compute 3D ray into

scene for each 2D image pixel

• Compute 3-D position of ray’s intersection with
nearest object and normal at that point

• Apply lighting model such as Phong to get color
at that point and fill in pixel with it

dop t+= o

d

Ray-Sphere Intersection I

• Combine implicit definition of sphere

with ray equation

Thus we have

0|| 22 =−− rcpp

dop t+=

0|| 22 =−−+ rt cpdo

• To solve for t, resulting in a quadratic equation
with roots given by:

– d is a unit vector |d| = 1

• Notes
– Real solutions mean there actually are 1 or 2

intersections -- what does this correspond to?
– Negative solutions are behind eye

Ray-Sphere Intersection II
• Substitute and use opp −=∆ c

222 ||2|||| bbaaba +⋅+=+

)|(|)(222 rppdpdt −∆−∆⋅±∆⋅=

Ray-Polygon Intersection
• Express point p on a ray as some distance t

along direction d from origin o: p = o + td
• Use plane equation n ⋅ x + m= 0, substitute

o + td for x, and solve for t
• Only positive t’s mean the intersection is in

front of the eye
• Then plug t back into p = o + td to get p
• Is the 2-D location of p on the plane inside

the 2-D polygon?
– For convex polys, Cohen-Sutherland-style

outcode test will work

Ray-Triangle Intersection

• Direct barycentric coordinates expression

• Set this equal to parametric form of ray
o + td and solve for intersection point
(t, u, v)

• Only inside triangle if u, v, and 1 – u – v
are between 0 and 1

210)1(),(vvvt vuvuvu ++−−=

Shadow Rays
• For point p being locally shaded, only add diffuse

& specular components for light l if light is not
blocked

• Test for occlusion of l for p:
– Spawn shadow ray for l with origin p, direction l(l)
– Check whether shadow ray intersects any scene

object
– Intersection only “counts” if:

||0 pp −<< lt

Ray Tracing
• Model: Perceived color at point p is an additive

combination of local illumination (e.g., Phong) + reflection +
refraction effects
– Weights on last two terms are additional material properties

• Compute reflection, refraction contributions by tracing
respective rays back from p to surfaces they came from
and evaluating local illumination at those locations

• Apply operation recursively to some maximum depth to
get:
– Reflections of reflections of ...
– Refractions of refractions of ...
– And of course mixtures of the two

Ray Tracing: Recursion

Ray Tracing Reflection Formula

• The formula used for Phong illumination is
not what we want here because our
incident ray v is pointing in toward the
surface, whereas the light direction l was
pointed away from the surface

• So just negate the formula to get:
 l)n(nlr ⋅−= 2

Refraction
• Definition: Bending of light ray as it crosses interface

between media (e.g., air → glass or vice versa)
• Index of refraction (IOR) n for a medium: Ratio of

speed of light in vacuum to speed in that medium
(wavelength-dependent ⇒ prisms)

• By definition, n ≥ 1
• Examples: nair (1.0003) < nwater (1.33) < nglass (1.52)

courtesy of
Wolfram

θ1: Angle of incidence

θ2: Angle of refraction

Snell’s Law

• The relationship between the angle of
incidence and the angle of refraction is
given by:

2211 sinsin θθ nn =

courtesy of
Wolfram

Computing the Transmission
Direction t

Total internal reflection happens when the term in the
square root above isn’t positive, which is when

2

1

n
nn =

v

n

n1
n2

m

nv ⋅−== 11 cosθc

)1(1cos 2
1

2
22 cnc −−== θ

nvt)(21 cncn −+=

1)1(2
1

2 ≥− cn

Distributed Ray Tracing (DRT)
• Main idea: Replace our single ray

approximations with a distribution of rays
• Improvements to this image:

– Anti-aliased edges
– Objects in/out of focus according to a lens
– Motion blur of fast moving objects
– Soft shadows
– Glossy reflection
– “Glossy” translucency

Two-Plane Parameterization(2PP)

• Parameterized over
two parallel planes
(2PP)

• Each ray maps to
a 4D point [u, v, s, t]

• Relative 2PP

• Ray direction: [σ, τ, 1]

[]τσ ,,, vur =

vtus −=−= τσ ,

Resampling

• For each pixel
– generate a ray
– find the closest rays in the light field
– return a combination of the radiance of those

rays

Reminders
• Final exam

– 12/8 from 3:00-5:00pm
– 218 Tureaud Hall
– You can bring one page single-sided note and

calculator
• Programming Assignment 4 is due on 12/5
• Course evaluation

– Open until Dec 3
– Online: www.cae.lsu.edu/eval
– Course ID: CSC 4356 001

http://www.cae.lsu.edu/eval

	CSC 4356�Interactive Computer Graphics�Final Review
	What We Have Learned
	What We Have Learned
	Illumination Model in OpenGL
	Ambient Light Source
	Ambient Reflectance
	Computing Diffuse Reflection
	Diffuse Light Examples
	Phong Illumination
	How to Compute Reflection Vector?
	Blinn & Torrance Variation
	What is the difference?
	Putting It All Together
	Gouraud Shading
	Interpolating Color
	Phong Shading
	Flat vs. Gouraud vs. Phong
	OpenGL Shading Language (GLSL)
	GPU Programmability
	Vertex Shader
	Fragment Shader
	Planar Mapping
	Cylindrical Mapping
	Spherical Mapping
	Minification & Magnification
	Magnification
	Minification
	MIP Mapping
	Storing MIP Maps
	Finding MIP Level
	Finding MIP Level
	Summed-Area Tables
	Summed-Area Tables
	Shadow Map
	Environment Mapping Steps
	Bump Mapping
	Displacement Mapping
	Backward Ray Tracing
	Ray Casting: Details
	Ray-Sphere Intersection I
	Ray-Sphere Intersection II
	Ray-Polygon Intersection
	Ray-Triangle Intersection
	Shadow Rays
	Ray Tracing
	Ray Tracing: Recursion
	Ray Tracing Reflection Formula
	Refraction
	Snell’s Law
	Computing the Transmission Direction t
	Distributed Ray Tracing (DRT)
	Two-Plane Parameterization(2PP)
	Resampling
	Reminders

