CSC 4356 Interactive Computer Graphics Lecture 2: Math for Computer Graphics

Jinwei Ye http://www.csc.lsu.edu/~jye/CSC4356/

Tue \& Thu: 10:30-11:50am 218 Tureaud Hall

Update

- Course Website: http://www.csc.Isu.edu/~jye/CSC4356/
- Syllabus available on the website
- Office hours
- Jinwei Ye:

2:00-4:00pm Thursday
3272T PFT

- Simron Thapa

2:00-4:00pm Tuesday
174A Coates Hall (May change to PFT in late Sept)

Lecture 2: Math for Computer Graphics

- Analytic Geometry
- Vectors
- Matrices
- Math problem set will be assigned today

Build A 3D World

- What geometric primitives will you need?
- Point
- Line
- Plane
- Cube
- Sphere

How to represent a point?

- Coordinate system (Cartesian)
- Origin
- Orthogonal Axes
- Unit

3D Coordinate

- Left-handed system Right-handed system

Left hand

Right hand

Lines?

- Line Segment
- Defined by two end points

- Vector
- Line with direction!

Vector

- Vector looks like an arrow
- Defined by direction and length
- Absolute location is not important
- Usually written with bold letters or letters with arrow top
- For example: \boldsymbol{a} or \vec{a}

Vector Representation

- Vectors are represented by their coordinates on x and y axes

Vector Representation

- What if the starting point is not at origin?
- Take difference between the two end points

Vector Properties

- Length: $\|\boldsymbol{a}\|=\sqrt{x_{\boldsymbol{a}}{ }^{2}+y_{\boldsymbol{a}}{ }^{2}}$
- Direction in angle: $\theta=\cos ^{-1}\left(\frac{x_{a}}{\|a\|}\right)$

Vector Operations

- Addition
- Subtraction
- Scaling
- Multiplication
- Dot product
- Cross product

Vector Addition

- Geometrically: Parallelogram rule
- Arithmetically: Simply add coordinates
- Vector addition is commutative

$$
\boldsymbol{a}+\boldsymbol{b}=\boldsymbol{b}+\boldsymbol{a}=\left(x_{\boldsymbol{a}}+x_{\boldsymbol{b}}, y_{\boldsymbol{a}}+y_{\boldsymbol{b}}\right)
$$

Vector Subtraction

- We define minus (or negative) such that

$$
-a+a=\mathbf{0}
$$

- Simply reverse the direction
- Length keeps the same
- Zero vector $\mathbf{0}$: length $=0$ \& direction undefined
- Subtraction is defined as $-\boldsymbol{b}$

$$
a-b=-b+a
$$

Parallelogram Rule

- If two vectors share the same origin, the two diagonals in the formed parallelogram give $\boldsymbol{a}+\boldsymbol{b}$ and $\boldsymbol{a}-\boldsymbol{b}$

Vector Scaling

- Scaling operation scales the vector's length while the direction remains the same

$$
\|k \boldsymbol{a}\|=k\|\boldsymbol{a}\|
$$

- Scaling can be combined with addition and subtraction
- Linear combination

Vector Coordinate

- Vector coordinate can be expressed by linear combination (scaling and addition) of two unit basis vectors \boldsymbol{i} and \boldsymbol{j}

Vector Multiplication

- Dot product
- Produce a scalar
- Cross product
- Produce a new vector

Dot Product

- Dot product is defined as

$$
\boldsymbol{a} \cdot \boldsymbol{b}=\|\boldsymbol{a}\|\|\boldsymbol{b}\| \cos \boldsymbol{\theta}
$$

 where $\boldsymbol{\theta}$ is the angle between the two vectors

- Dot product is also called scalar product
- because its result is a scalar
- Dot product is commutative

$$
a \cdot b=b \cdot a
$$

- Dot product is distributive

$$
a \cdot(b+c)=a \cdot b+a \cdot c
$$

Dot Products in Coordinate

- Dot product is defined as

$$
\boldsymbol{a} \cdot \boldsymbol{b}=\|\boldsymbol{a}\|\|\boldsymbol{b}\| \cos \boldsymbol{\theta}
$$

where $\boldsymbol{\theta}$ is the angle between the two vectors

$$
\begin{aligned}
& \boldsymbol{a}=\left(x_{\boldsymbol{a}}, y_{\boldsymbol{a}}\right) \\
& \boldsymbol{b}=\left(x_{\boldsymbol{b}}, y_{\boldsymbol{b}}\right) \\
& \boldsymbol{a} \cdot \boldsymbol{b}=\dot{x}_{\boldsymbol{a}} x_{\boldsymbol{b}}+y_{\boldsymbol{a}} y_{\boldsymbol{b}}
\end{aligned}
$$

Dot Product: Applications

- Find angle between two vectors

$$
\theta=\cos ^{-1}\left(\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\|\boldsymbol{a}\|\|\boldsymbol{b}\|}\right)
$$

- Finding projection of one vector on another
- Useful in coordinate transformation
- Projection of \mathbf{a} on \mathbf{b}

$$
\|\boldsymbol{a} \rightarrow \boldsymbol{b}\|=\|\boldsymbol{a}\| \cos \theta=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\|\boldsymbol{b}\|}
$$

Cross Product

- Cross product is only used for 3D vectors
- Cross product results in a new vector

$$
c=a \times b
$$

- Direction of \boldsymbol{c} is orthogonal to the two initial vectors
- Direction is determined by right-hand rule

Cross Product

- Length of cross product?
$\|\boldsymbol{c}\|=\|\boldsymbol{a} \times \boldsymbol{b}\|=\|\boldsymbol{a}\|\|\boldsymbol{b}\| \sin \boldsymbol{\theta}$ where $\boldsymbol{\theta}$ is the angle formed the
c initial two vectors

Area of the parallelogram formed by the two vectors!

Cross Product: Properties

- Cross product is distributive

$$
\begin{gathered}
\boldsymbol{a} \times(\boldsymbol{b}+\boldsymbol{c})=\boldsymbol{a} \times \boldsymbol{b}+\boldsymbol{a} \times \boldsymbol{c} \\
(k \boldsymbol{a}) \times \boldsymbol{b}=\boldsymbol{a} \times(k \boldsymbol{b})=k(\boldsymbol{a} \times \boldsymbol{b})
\end{gathered}
$$

- Cross product is NOT commutative

$$
a \times b=-b \times a
$$

- Order matter!
- Think about the right-hand rule

Cross Product in Coordinate

- Given $\boldsymbol{a}=\left(x_{\boldsymbol{a}}, y_{\boldsymbol{a}}, z_{\boldsymbol{a}}\right) \& \boldsymbol{b}=\left(x_{\boldsymbol{b}}, y_{\boldsymbol{b}}, z_{\boldsymbol{b}}\right)$
- Calculated by determinant

$$
\begin{aligned}
\boldsymbol{a} \times \boldsymbol{b} & =\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
x_{\boldsymbol{a}} & y_{\boldsymbol{a}} & z_{\boldsymbol{a}} \\
x_{\boldsymbol{b}} & y_{\boldsymbol{b}} & z_{\boldsymbol{b}}
\end{array}\right| \\
& =\left(y_{a} z_{\boldsymbol{b}}-z_{\boldsymbol{a}} y_{b}\right) \boldsymbol{i} \\
& +\left(z_{a} x_{b}-x_{\boldsymbol{a}} z_{\boldsymbol{b}}\right) \boldsymbol{j} \\
& +\left(x_{\boldsymbol{a}} y_{\boldsymbol{b}}-y_{\boldsymbol{a}} x_{\boldsymbol{b}}\right) \boldsymbol{k}
\end{aligned}
$$

Applications in Computer Graphics

- Constructing a coordinate system
- Axes are mutually orthogonal
- Follow right-hand rule
- For any 3D Cartesian system ($\mathrm{x}-\mathrm{y}-\mathrm{z}$):

$$
z=x \times y ; x=y \times z ; y=z \times x
$$

- Find Normal Vector of a plane
- Normal Vector \mathbf{n} is a vector perpendicular to a plane
- Important to many graphics calculations

Quiz

- Cross product of two parallel vectors?

$a \| b$

$$
a \times b=?
$$

$$
\begin{gathered}
\boldsymbol{a} \| \boldsymbol{b} \Rightarrow \sin \theta=0 \\
\|\boldsymbol{a} \times \boldsymbol{b}\|=\|\boldsymbol{a}\|\|\boldsymbol{b}\| \sin \boldsymbol{\theta}=0 \\
\boldsymbol{a} \times \boldsymbol{b}=\mathbf{0}
\end{gathered}
$$

Matrices

- What are matrices?
- Array of numbers ($\mathrm{m} \times \mathrm{n}=\mathrm{m}$ rows, n columns)

$$
\left[\begin{array}{cc}
2 & 10 \\
5 & 6 \\
8 & 7 \\
1 & 3
\end{array}\right](4 \times 2)
$$

- Important to geometric transformations
- Translation, rotation, shear, scale (will talk about next time)

Matrix Operations

- Addition/Subtraction
- per-element operation
- Multiply by scalar
- per-element operation
- Matrix-matrix multiplication
- A little tricky... we'll see how

Matrix-Matrix Multiplication

- To compute the (i, j)th element in the result:
- Multiply the ith row in the first matrix with the jth column in the second matrix
- Then sum them up

$$
\left[\begin{array}{cc}
2 & 10 \\
5 & 6 \\
8 & 7 \\
1 & 3
\end{array}\right]\left[\begin{array}{lll}
3 & 9 & 4 \\
1
\end{array}\right]=\left[\begin{array}{ccc}
16 & 58 & 28 \\
4 & 21 & 69 \\
31 & 100 & 46 \\
6 & 21 & 10
\end{array}\right]
$$

Matrix-Matrix Multiplication

- To compute the (i,j)th element in the result:
- Multiply the ith row in the first matrix with the jth column in the second matrix
- Then sum up

$$
\left[\begin{array}{cc}
2 & 10 \\
5 & 6 \\
8 & 7 \\
1 & 3
\end{array}\right]\left[\begin{array}{lll}
3 & \boxed{9} & 4 \\
1 & 4 & 2
\end{array}\right]=\left[\begin{array}{ccc}
16 & 58 & 28 \\
21 & 69 & 32 \\
31 & 100 & 46 \\
6 & 21 & 10
\end{array}\right]
$$

Matrix-Matrix Multiplication

- To compute the (i, j)th element in the result:
- Multiply the ith row in the first matrix with the jth column in the second matrix
- Then sum up

$$
\left[\begin{array}{cc}
2 & 10 \\
5 & 6 \\
8 & 7 \\
1 & 3
\end{array}\right]\left[\begin{array}{lll}
3 & 9 & 4 \\
1 & 4 & 2
\end{array}\right]=\left[\begin{array}{ccc}
16 & 58 & 28 \\
21 & 69 & 32 \\
31 & 100 & 46 \\
6 & 21 & 10
\end{array}\right]
$$

Multiplication Properties

- Number of columns in the first matrix must equal to the number of rows in the second matrix
- Non-commutative!
- $\mathrm{AB} \neq \mathrm{BA}$
- Sometimes changing order even makes the operation illegal!
- Associative
- (AB)C=A(BC)
- Distributive
$-A(B+C)=A B+A C$
$-(A+B) C=A C+B C$

Matrix-Vector Multiplication

- Later we'll use a lot!
- Treat Vector as a column matrix
- Example: given vector $\boldsymbol{a}=\left(x_{\boldsymbol{a}}, y_{\boldsymbol{a}}\right)$

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{a} \\
y_{a}
\end{array}\right]=\left[\begin{array}{c}
-x_{a} \\
y_{a}
\end{array}\right]
$$

Matrix Transpose

- Switch rows and column indices
- If A is a $m \times n$ matrix, its transpose A^{\top} is a $\mathrm{n} \times \mathrm{m}$ matrix
- Example:

$$
\left[\begin{array}{cc}
2 & 10 \\
5 & 6 \\
8 & 7 \\
1 & 3
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cccc}
2 & 5 & 8 & 1 \\
10 & 6 & 7 & 3
\end{array}\right]
$$

Identity Matrix \& Inversion

- Identity matrix is a square matrix (row = column) with all its diagonal elements equal to 1 and the rest 0

$$
\mathrm{I}_{(3 \times 3)}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Inverse Matrix A^{-1}

$$
A A^{-1}=A^{-1} A=1
$$

Compute Inverse Matrix

- Only square matrix can be inversed
- Matrix inversion formula:

$$
\mathrm{A}^{-1}=\frac{1}{\operatorname{det}(\mathrm{~A})} \operatorname{adj}(\mathrm{A})
$$

where $\operatorname{det}(A)$ is the determinant of A
$\operatorname{adj}(\mathrm{A})$ is the adjugate matrix of A

Example

- Given a 2×2 matrix $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
- Let's compute its inverse matrix A^{-1}

$$
\begin{gathered}
\operatorname{adj}(\mathrm{A})=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
\operatorname{det}(\mathrm{A})=a d-c b \\
\mathrm{~A}^{-1}=\frac{1}{a d-c b}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\left[\begin{array}{cc}
\frac{d}{a d-c b} & \frac{-b}{a d-c b} \\
\frac{-c}{a d-c b} & \frac{a}{a d-c b}
\end{array}\right]
\end{gathered}
$$

Math Problem Set

- Due on next Thursday (8/31)
- Turn in by yourself in class
- Submission will not be accepted after Thursday class
- Your solution will be graded based on each step! (only writing the final result will earn a small portion of the score)
- Write clearly and staple all paper together

