
CSC 4356
Interactive Computer Graphics
Lecture 6: Transformation in OpenGL

Rasterization: Line Drawing
Jinwei Ye 

http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am
218 Tureaud Hall 



Graphics Rendering pipeline

Images	from	Nvdia CG	tutorial:	http://developer.download.nvidia.com/CgTutorial/



Vertex Transformation



ModelView
Transformation



ModelView Transformations
• Modeling Transformation
– Position and orient the model in your scene
– rotate, translate, scale 
– glRotatef(), glTranslatef(), glScalef()

• Viewing Transformation
– Equivalent to position the camera
– OpenGL always assume camera at (0,0,0)
– Instead moving the camera, we have to move 

the scene
– gluLookAt()



OpenGL Matrix Stack
• OpenGL store stacks of 4 X 4 matrices
– Stack: first in, last out
– Initially, each stack contains one matrix, an 

identity matrix.
• glMatrixMode() specifies which matrix is the 

current matrix
– GL_MODELVIEW, GL_PROJECTION, 

GL_TEXTURE, etc.
• Use glGet(GL_MATRIX_MODE) to inquire the 

current matrix stack



Matrix Stack Operations
• OpenGL manages the matrix stack by 

push, pop, multiply matrices on top of the 
stack
– glLoadMatrix()/glLoadIdentity()
– glPushMatrix() 
– glPopMatrix()
– glMultiMatrix()
– glRotatef(), glTranslatef(), glScalef()

• All vertices are multiplied by the top of 
stack



Functions
• glLoadMatrix{fd}(m1,m2,…,m16)
– Set matrix M as the current matrix in stack

• glLoadIdentity()
– Clear the current matrix as a 4 x 4 identity matrix

• glMultMatrix{fd}(m1,m2,…,m16)
– Multiply matrix M onto the top of stack



Functions
• glTranslate{fd}(x,y,z)
– Move the object by (x,y,z)

• glRotate{fd}(angle,x,y,z)
– Rotate the object by the angle 

about axis (x,y,z)
– Direction: counter-clockwise

• glScale{fd}(sx,sy,sz)
– Scale the x, y, z coordinate of 

the object by sx,sy,sz

– Reflection included



Functions
• glPushMatrix()
– pushes the current matrix stack down by one, 

duplicating the current matrix
– the matrix on top of the stack is identical to the one 

below it
• glPopMatrix()
– pops the current matrix stack
– replacing the current matrix with the one below it on 

the stack
• Need to use in pair
• Similar to save(Push)/load(Pop)
• Useful when transforming multiple objects in 

different ways



Example
glMatrixMode(GL_MODELVIEW); 

glLoadIdentity(); //load a 4x4 identity matrix

glMultMatrixf(N); //apply transformation N

glMultMatrixf(M); //apply transformation M 
glMultMatrixf(L); //apply transformation L 

glBegin(GL_POINTS); 

glVertex3f(v); //draw transformed vertex v

glEnd();

v" = NMLv
First apply transformation L, then M, and finally N



Which Order?
glMatrixMode(GL_MODELVIEW); 

glLoadIdentity();

glTranlatef(xt,yt,zt); 

glRotatef(θ,x,y,z);

DrawObject;

Rotation First Translation First



Transform Multiple Objects
glPushMatrix(); 
Transformations for object one;
DrawObject(ONE); 
glPopMatrix(); 

glPushMatrix(); 
Transformations for object two;
DrawObject(TWO); 
glPopMatrix();

…



How does OpenGL draw a line?
glBegin(GL_LINES);

glVertex3f (x1, y1, z1);
glVertex3f (x2, y2, z2);

glEnd();



Everything is rasterized!

Pixel



Line Rasterization Problem
• Given:
– Two endpoints: integers (x1, y1) & (x2, y2)

• Identify:
–Which pixels (x, y) to display for the line?

(x1, y1)

(x2, y2)



Requirements
• Transform continuous primitive into 

discrete samples
• Uniform thickness & brightness
• Continuous appearance
• No gaps
• Accuracy
• Speed



DDA Line Drawing
• DDA stands for Digital Differential Analyzer, the 

name of a class of old machines used for plotting 
functions

• Slope-intercept form of a line:
y = mx + b

slope: m = dy/dx
intercept: b is where the line 

intersects the y-axis 



DDA Line Drawing
• Basic idea: If we increment the x

coordinate by one pixel at each step, the 
slope of the line tells us how much to 
increment y per step
- i.e., dx = 1, dy = m 
(because m = dy/dx)



DDA Line Drawing
• This only works if m <= 1
– otherwise there are gaps

• Solution: Reverse axes 
and step in y direction
– Now dy = 1, dx = 1/m <1


