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Rasterization 

• Rasterization is the process that converts 
continuous primitives into discontinuous 
pixel representation 

• Determine coverage 

– Which pixels belong to the  

   primitive? 

• Determine pixel parameters 

– Such as color, depth, etc. 

– How to interpolate? 

 



How does OpenGL draw a line? 

 
glBegin(GL_LINES); 

        glVertex3f (x1, y1, z1); 

        glVertex3f (x2, y2, z2); 

glEnd(); 



Everything is rasterized! 

 

Pixel 



Line Rasterization Problem 

• Given: 

– Two endpoints: integers (x1, y1) & (x2, y2) 

• Identify: 

– Which pixels (x, y) to display for the line? 

(x1, y1) 

(x2, y2) 



Requirements 

• Transform continuous primitive into  

discrete samples 

• Uniform thickness & brightness 

• Continuous appearance 

• No gaps 

• Accuracy 

• Speed 

 



DDA Line Drawing 

• DDA stands for Digital Differential Analyzer, the 

name of a class of old machines used for plotting 

functions 

• Slope-intercept form of a line: 

 y = mx + b 

     slope: m = dy/dx 

     intercept: b is where the line 

intersects the y-axis  



DDA Line Drawing 

• Basic idea: If we increment the x 

coordinate by one pixel at each step, the 

slope of the line tells us how much to 

increment y per step 

- i.e., dx = 1, dy = m  

(because m = dy/dx) 

 

y = (9/2)x 

y=(2/9)x 



DDA Line Drawing 

• This only works if m <= 1 

– otherwise there are gaps 

• Solution: Reverse axes 

and step in y direction 

– Now dy = 1, dx = 1/m <1 

y = (9/2)x 

y=(2/9)x 



DDA: Algorithm 

• Given two endpoints (x1, y1), (x2, y2) 

– Integer coordinates: Round if endpoints were 
originally real-valued 

– Assume (x1, y1) is to the left of (x2, y2) 

–  Swap if they aren’t 

• Then we can compute slope: 

  m = dy/dx = (y2 – y1) / (x2 – x1) 

• Iteratively find the next pixel to display 
starting from (x1,y1) 



DDA: Algorithm 

• How to Iterate? 
– If |m| <= 1: Iterate integer x from x1 to x2, incrementing 

(or decrementing) by one pixel each step (x = x + 1) 

• Initialize real y = y1 

• At each step, y = y + m, and plot pixel (x, round(y)) 

 

– Else |m| > 1: Iterate integer y from y1 to y2,  
incrementing (or decrementing) by one pixel each step 
(y = y + 1) 

• Initialize real x = x0 

• At each step, x = x + 1/m, and plot pixel (round(x), y) 



Any Improvement? 

• DDA is slow 

– Floating-point calculations, rounding is 

relatively expensive 

• Idea: avoid rounding, do everything with 

integer arithmetic for speedup 



Revisit Line Equation 

• Recall the slope-intercept form of a line is 

y = (dy/dx)x + b 

 

– F = 0: point (x,y) is on the line 

– F > 0: point (x,y) is below the line 

– F < 0: point (x,y) is above the line 

F(x, y) = dy∙x - dx∙y + dx∙b = 0 

9x - 2y = 0 

2x - 9y = 0 

• Implicit form of a line is 



Decision Making 

• Given our assumptions about the slope (|m|<1), 

after drawing (x, y) the only choice for the next 

pixel is between the upper pixel U = (x+1, y+1) 

and the lower one L = (x+1, y) 

• We want to draw the pixel (U or L) that is closer 

to the "ideal" line 



How to Make The Decision? 

• After drawing (x, y), in order to choose the next pixel 

to draw we consider the midpoint M = (x+1, y+0.5) 

– If M is on the line, then U and L are equally distant from the 

ideal line 

– If M is below the line, then U is closer to the line 

– If M is above the line,  

   then L is closer to the line 



Decision Function 

• Therefore F is a decision function to 

determine which pixel to draw: 
– If F(M) = F(x+1, y+0.5) > 0 (M below the line), pick U 

– If F(M) = F(x+1, y+0.5) <= 0 (M above or on line), pick L 



Midpoint Algorithm (Bresenham’s) 

• Why is it faster?  

– F does not have to be fully evaluated everytime 

• Suppose we do the full evaluation once and get 
F(x+1, y+0.5) for the first pixel to decide 

• Then for the second pixel: 

– If we choose L, the next  

   midpoint  M' is (x+2, y+0.5) 

– If we choose U, the next  

   midpoint M'' is (x+2, y+1.5) 

 

 

 
 



Midpoint Algorithm (Bresenham’s) 

• Now let’s plug the current midpoint M and the 

next midpoints M’ and M’’  into the decision 

function  

FM = F(x + 1, y + 0.5) = dy(x + 1) - dx(y + 0.5) + dx∙b 

FM' = F(x + 2, y + 0.5) = dy(x + 2) - dx(y + 0.5) + dx∙b 

FM'' = F(x + 2, y + 1.5) = dy(x + 2) - dx(y + 1.5) + dx∙b 

 F(x, y) = dy∙x - dx∙y + dx∙b = 0 

 

 

• So we have 

     FM' - FM  = dy  

      FM''  - FM  = dy - dx 

Depending on whether we choose L or U, 

we just have to add dy or dy – dx to the 

old value of F to get the new value 



• To initialize, we do a full calculation of F at the first 

midpoint next to the left line endpoint (x1,y1) 

   F(x1 + 1, y1 + 0.5) 

= dy(x1 + 1) - dx(y1+ 0.5) + dx∙b 

= F(x1, y1) + dy - 0.5 dx 

• F(x1, y1) = 0 because the end point is on the line, so  

                  F = dy - 0.5 dx 

• Only the sign matters for the decision, so to make it an 

integer value we multiply by 2 to get 2F = 2 dy - dx 

• To update, keep current values for x and y and evaluate F 

by its increment:  

• When L is chosen: F += 2dy and x++ 

• When U is chosen: F += 2(dy - dx) and x++ , y++ 

Midpoint Algorithm (Bresenham’s) 



Algorithm Summary 

• Decision Function: F = 2(dy∙x - dx∙y + dx∙b) 

• Initialization:  

– dx = x_end – x_start 

– dy = y_end – y_start 

– F = 2dy - dx 

• Iterate: 

– if F<= 0, choose the lower point and F=F+2dy 

– if F > 0, choose the upper point and F=F+2(dy-dx) 

• All integer operations! 



Line Parameters 

• Now we know how to determine the line 

pixels 

• How to determine the line parameters, 

such as color? 

– If the two vertices have the same color, the 

line will be in uniform color. 

– If the two vertices have different colors, what 

would be the color for the line? 



Blending by Linear Interpolation 

• If the two vertices have different colors, 

the line color would be blended by linear 

interpolation 

• Colors vary with distance fraction 

• Parametric representation: 

P0 

P1 

P(t) 
t 

P(t)= P0 + t(P1 - P0) 

    = P0 + tP1 - tP0 

    = (1 - t)P0 + tP1 

where t ∈ [0,1] 



What About Triangle? 

• Given three vertices of a triangle 

• How to fill in the area? 

• How to determine the pixel properties? 

– color, depth, etc.  



Why Triangle? 

• Triangle is simple  

– A triangle can be defined by three vertices 

   (x0,y0), (x1,y1), and (x2,y2) 

– A triangle can also be defined by three 
edges 

    A1x + B1y + C1 = 0 

    A2x + B2y + C2 = 0 

    A3x + B3y + C3 = 0 

– Why numbers of unknowns are different? 

• As a result, scan converting triangles 
only involve linear equations 



Why Triangle? 

• What is convex? 

 

 

 

 

 

• Triangle is always convex 

– No matter how a triangle is oriented on the 
screen, a given scan line will contain only a 
single segment or span of the triangle 



Why Triangle? 
• Triangles can approximate any shape 

– Any 2D shape can be approximated by a 

polygon using locally linear approximation 

– Any 3D surfaces can be approximated by 

polygons 

– Polygons can be decomposed into triangles 



Triangle Rasterization 

• Common triangle rasterization algorithms: 

– Edge walking 

– Edge equations 

– Recursive subdivision (primitive or screen) 



Edge Walking Algorithm 

• Basic idea:  

– Draw edges vertically 

– Fill in horizontal spans for each scanline 

– Interpolate colors down edges 

– At each scanline, interpolate  

edge colors across span 

 



Algorithm Overview 
• Sort the vertices in both x and y 

• Determine if the middle vertex, 

or breakpoint lies on the left or right side of 

the polygon 

– If the trianlge has an edge parallel to the scanline 

direction then there is no breakpoint 

• Determines the left and right edge  

   for each scanline (called spans) 

• Walk down the left and right edges  

   filling the pixels in-between until  

– A breakpoint is reached: switch edge 

– The bottom vertex is reached: exit 



Notes on Edge Walking 

• Advantage:  

– Generally very fast 

• Disadvantages:  

– Loaded with special cases (left and right 

breakpoints, no breakpoints) 

– Difficult to get right 

– Requires computing fractional offsets when 

interpolating parameters across the triangle 

 



Edge Equations 

• An edge equation is simply the equation of 
the line containing that edge 

– Line equation: Ax + By + C = 0 

– Given a point P(x,y): 

P is on the line:  

Ax + By + C = 0  

P is above the line:  

Ax + By + C > 0  

P is below the line:  

Ax + By + C < 0  

• An edge equation define two half-spaces 



Triangle Rasterization by  

Edge Equations 

• A triangle can be defined as the 

intersection of three positive half-spaces 

– We can choose which 

– half-space is positive by  

   multiplying -1 

– Turn on those pixels for  

   which all edge equations 

   evaluate to > 0 

 

 

 



Edge-Equation Rasterizer: 

Implementation 

• How to implement an edge-equation 

rasterizer in software? 

– Which pixels do you consider? 

– How do you compute the edge equations? 

– How do you orient the edges correctly? 

 



Which pixels to consider? 

• Screen space is large 

– Display resolution (HD): 1920 x 1080 

(Megapixel) 

–  It is in-efficient to test all pixels 

• We can compute a bounding box  

– Only consider the  

   pixels inside the  

   bounding box 

 



Compute Edge Equations? 

• Edge equation can be computed using the 
coordinates of its two vertices (x0,y0) & 
(x1,y1) 

• Treat it as a linear system:  

Ax0 + By0 + C = 0 

Ax1 + By1 + C = 0 

• Two Equations, three unknowns? 

– Line equations are up to a scalar 

– Solve A and B in terms of C 



Compute Coefficients 

• Setup the linear system: 

 

 

• Multiply both side by inverse matrix: 

 

 

• If we choose C = x0 y1 - x1 y0  

– Then we have A = y0 - y1 and  B = x0 – x1  
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Numerical Issue 

• Calculating C = x0 y1 - x1 y0 involves some 
numerical precision issues 

– Floating point number subtraction has 
numerical precision issue  

– For example:  
• 1.234x104 - 1.233x104 = 1.000x101 

• We lose most of the significant digits in result 

• When two vertices are very close to each 
other, we have this problem 

– x0≈x1, y0≈y1, thus C = x0 y1 - x1 y0 ≈ 0  

 



Numerical Issue 

• We can avoid the subtraction by using our line 

equation:  

Ax0 + By0 + C = 0 

Ax1 + By1 + C = 0 

• So given A = y0 - y1 and  B = x1 - x0  

– We have C = -Ax0 - By0 or C = -Ax1 - By1 

• Why is this better? Which should we choose? 

– We average the two to avoid bias: 

   C = -[A(x0+x1) + B(y0+y1)] / 2 

 



Edge Orientation? 

• Now we know how to find edge equation from 
two vertices  

• Given three vertices P0, P1, P2 of a triangle, 
what would be the orientations of the three 
edge? 
– such that the half-spaces defined by the edge 

equations all share the same sign on the interior 
of the triangle 

• Be consistent (e.g.: [P0 P1], [P1 P2], [P2 P0]) 

• Test the sign for triangle interior on one edge 
– Flip if needed (A= -A, B= -B, C= -C) 



Edge-Equation Rasterizer: Code 

• Basic structure of code: 

– Setup: compute edge 

equations & bounding box 

– Outer loop: for each scanline 

in bounding box...  

– Inner loop: check each pixel 

on scanline, evaluating edge 

equations and drawing the 

pixel if all three are positive 

 

+ + 

+ 



Edge Equations: Interpolating Color 

• Now we know how to draw a solid triangle 
(All vertices have the same color) 

• What if they have different colors (or other 
parameters, e.g. depth)? How to interpolate? 

• Idea: triangles are planar in any space: 
– This is the “redness”  

parameter space 

– Also need to do this  
for green and blue 

– Plane equation 

   z = Arx + Bry + Cr 

(here z stands for redness of  

a point (x,y) inside the triangle) 



Edge Equations: Interpolating Color 

• How to find the plane equation? 

• Given redness values r0, r1, and r2 at the 3 

vertices, we can set up the linear system 

to for Ar ,Br , and Cr 

 

 

 



Edge Equations: Interpolating Color 

• Linear system: 

 

 

 

• The solution is 



Edge Equations: Interpolating Color 

• Notice that the matrix elements are exactly 
the coefficients of the edge equations 

 

 

 

    2area = x0y1 – x1y0 + x1y2 – x2y1 + x2y0 – x0y2 

              = C0 +C1+C2   

• So the setup of plane equation coefficients is 
easy and cost-effective 

– Simply take coefficients from the edge equation 

– Matrix multiplication 


