
CSC 4356

Interactive Computer Graphics
Lecture 7: Rasterization

Jinwei Ye

http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am

218 Tureaud Hall

Rasterization

• Rasterization is the process that converts
continuous primitives into discontinuous
pixel representation

• Determine coverage

– Which pixels belong to the

 primitive?

• Determine pixel parameters

– Such as color, depth, etc.

– How to interpolate?

How does OpenGL draw a line?

glBegin(GL_LINES);

 glVertex3f (x1, y1, z1);

 glVertex3f (x2, y2, z2);

glEnd();

Everything is rasterized!

Pixel

Line Rasterization Problem

• Given:

– Two endpoints: integers (x1, y1) & (x2, y2)

• Identify:

– Which pixels (x, y) to display for the line?

(x1, y1)

(x2, y2)

Requirements

• Transform continuous primitive into

discrete samples

• Uniform thickness & brightness

• Continuous appearance

• No gaps

• Accuracy

• Speed

DDA Line Drawing

• DDA stands for Digital Differential Analyzer, the

name of a class of old machines used for plotting

functions

• Slope-intercept form of a line:

 y = mx + b

 slope: m = dy/dx

 intercept: b is where the line

intersects the y-axis

DDA Line Drawing

• Basic idea: If we increment the x

coordinate by one pixel at each step, the

slope of the line tells us how much to

increment y per step

- i.e., dx = 1, dy = m

(because m = dy/dx)

y = (9/2)x

y=(2/9)x

DDA Line Drawing

• This only works if m <= 1

– otherwise there are gaps

• Solution: Reverse axes

and step in y direction

– Now dy = 1, dx = 1/m <1

y = (9/2)x

y=(2/9)x

DDA: Algorithm

• Given two endpoints (x1, y1), (x2, y2)

– Integer coordinates: Round if endpoints were
originally real-valued

– Assume (x1, y1) is to the left of (x2, y2)

– Swap if they aren’t

• Then we can compute slope:

 m = dy/dx = (y2 – y1) / (x2 – x1)

• Iteratively find the next pixel to display
starting from (x1,y1)

DDA: Algorithm

• How to Iterate?
– If |m| <= 1: Iterate integer x from x1 to x2, incrementing

(or decrementing) by one pixel each step (x = x + 1)

• Initialize real y = y1

• At each step, y = y + m, and plot pixel (x, round(y))

– Else |m| > 1: Iterate integer y from y1 to y2,
incrementing (or decrementing) by one pixel each step
(y = y + 1)

• Initialize real x = x0

• At each step, x = x + 1/m, and plot pixel (round(x), y)

Any Improvement?

• DDA is slow

– Floating-point calculations, rounding is

relatively expensive

• Idea: avoid rounding, do everything with

integer arithmetic for speedup

Revisit Line Equation

• Recall the slope-intercept form of a line is

y = (dy/dx)x + b

– F = 0: point (x,y) is on the line

– F > 0: point (x,y) is below the line

– F < 0: point (x,y) is above the line

F(x, y) = dy∙x - dx∙y + dx∙b = 0

9x - 2y = 0

2x - 9y = 0

• Implicit form of a line is

Decision Making

• Given our assumptions about the slope (|m|<1),

after drawing (x, y) the only choice for the next

pixel is between the upper pixel U = (x+1, y+1)

and the lower one L = (x+1, y)

• We want to draw the pixel (U or L) that is closer

to the "ideal" line

How to Make The Decision?

• After drawing (x, y), in order to choose the next pixel

to draw we consider the midpoint M = (x+1, y+0.5)

– If M is on the line, then U and L are equally distant from the

ideal line

– If M is below the line, then U is closer to the line

– If M is above the line,

 then L is closer to the line

Decision Function

• Therefore F is a decision function to

determine which pixel to draw:
– If F(M) = F(x+1, y+0.5) > 0 (M below the line), pick U

– If F(M) = F(x+1, y+0.5) <= 0 (M above or on line), pick L

Midpoint Algorithm (Bresenham’s)

• Why is it faster?

– F does not have to be fully evaluated everytime

• Suppose we do the full evaluation once and get
F(x+1, y+0.5) for the first pixel to decide

• Then for the second pixel:

– If we choose L, the next

 midpoint M' is (x+2, y+0.5)

– If we choose U, the next

 midpoint M'' is (x+2, y+1.5)

Midpoint Algorithm (Bresenham’s)

• Now let’s plug the current midpoint M and the

next midpoints M’ and M’’ into the decision

function

FM = F(x + 1, y + 0.5) = dy(x + 1) - dx(y + 0.5) + dx∙b

FM' = F(x + 2, y + 0.5) = dy(x + 2) - dx(y + 0.5) + dx∙b

FM'' = F(x + 2, y + 1.5) = dy(x + 2) - dx(y + 1.5) + dx∙b

 F(x, y) = dy∙x - dx∙y + dx∙b = 0

• So we have

 FM' - FM = dy

 FM'' - FM = dy - dx

Depending on whether we choose L or U,

we just have to add dy or dy – dx to the

old value of F to get the new value

• To initialize, we do a full calculation of F at the first

midpoint next to the left line endpoint (x1,y1)

 F(x1 + 1, y1 + 0.5)

= dy(x1 + 1) - dx(y1+ 0.5) + dx∙b

= F(x1, y1) + dy - 0.5 dx

• F(x1, y1) = 0 because the end point is on the line, so

 F = dy - 0.5 dx

• Only the sign matters for the decision, so to make it an

integer value we multiply by 2 to get 2F = 2 dy - dx

• To update, keep current values for x and y and evaluate F

by its increment:

• When L is chosen: F += 2dy and x++

• When U is chosen: F += 2(dy - dx) and x++ , y++

Midpoint Algorithm (Bresenham’s)

Algorithm Summary

• Decision Function: F = 2(dy∙x - dx∙y + dx∙b)

• Initialization:

– dx = x_end – x_start

– dy = y_end – y_start

– F = 2dy - dx

• Iterate:

– if F<= 0, choose the lower point and F=F+2dy

– if F > 0, choose the upper point and F=F+2(dy-dx)

• All integer operations!

Line Parameters

• Now we know how to determine the line

pixels

• How to determine the line parameters,

such as color?

– If the two vertices have the same color, the

line will be in uniform color.

– If the two vertices have different colors, what

would be the color for the line?

Blending by Linear Interpolation

• If the two vertices have different colors,

the line color would be blended by linear

interpolation

• Colors vary with distance fraction

• Parametric representation:

P0

P1

P(t)
t

P(t)= P0 + t(P1 - P0)

 = P0 + tP1 - tP0

 = (1 - t)P0 + tP1

where t ∈ [0,1]

What About Triangle?

• Given three vertices of a triangle

• How to fill in the area?

• How to determine the pixel properties?

– color, depth, etc.

Why Triangle?

• Triangle is simple

– A triangle can be defined by three vertices

 (x0,y0), (x1,y1), and (x2,y2)

– A triangle can also be defined by three
edges

 A1x + B1y + C1 = 0

 A2x + B2y + C2 = 0

 A3x + B3y + C3 = 0

– Why numbers of unknowns are different?

• As a result, scan converting triangles
only involve linear equations

Why Triangle?

• What is convex?

• Triangle is always convex

– No matter how a triangle is oriented on the
screen, a given scan line will contain only a
single segment or span of the triangle

Why Triangle?
• Triangles can approximate any shape

– Any 2D shape can be approximated by a

polygon using locally linear approximation

– Any 3D surfaces can be approximated by

polygons

– Polygons can be decomposed into triangles

Triangle Rasterization

• Common triangle rasterization algorithms:

– Edge walking

– Edge equations

– Recursive subdivision (primitive or screen)

Edge Walking Algorithm

• Basic idea:

– Draw edges vertically

– Fill in horizontal spans for each scanline

– Interpolate colors down edges

– At each scanline, interpolate

edge colors across span

Algorithm Overview
• Sort the vertices in both x and y

• Determine if the middle vertex,

or breakpoint lies on the left or right side of

the polygon

– If the trianlge has an edge parallel to the scanline

direction then there is no breakpoint

• Determines the left and right edge

 for each scanline (called spans)

• Walk down the left and right edges

 filling the pixels in-between until

– A breakpoint is reached: switch edge

– The bottom vertex is reached: exit

Notes on Edge Walking

• Advantage:

– Generally very fast

• Disadvantages:

– Loaded with special cases (left and right

breakpoints, no breakpoints)

– Difficult to get right

– Requires computing fractional offsets when

interpolating parameters across the triangle

Edge Equations

• An edge equation is simply the equation of
the line containing that edge

– Line equation: Ax + By + C = 0

– Given a point P(x,y):

P is on the line:

Ax + By + C = 0

P is above the line:

Ax + By + C > 0

P is below the line:

Ax + By + C < 0

• An edge equation define two half-spaces

Triangle Rasterization by

Edge Equations

• A triangle can be defined as the

intersection of three positive half-spaces

– We can choose which

– half-space is positive by

 multiplying -1

– Turn on those pixels for

 which all edge equations

 evaluate to > 0

Edge-Equation Rasterizer:

Implementation

• How to implement an edge-equation

rasterizer in software?

– Which pixels do you consider?

– How do you compute the edge equations?

– How do you orient the edges correctly?

Which pixels to consider?

• Screen space is large

– Display resolution (HD): 1920 x 1080

(Megapixel)

– It is in-efficient to test all pixels

• We can compute a bounding box

– Only consider the

 pixels inside the

 bounding box

Compute Edge Equations?

• Edge equation can be computed using the
coordinates of its two vertices (x0,y0) &
(x1,y1)

• Treat it as a linear system:

Ax0 + By0 + C = 0

Ax1 + By1 + C = 0

• Two Equations, three unknowns?

– Line equations are up to a scalar

– Solve A and B in terms of C

Compute Coefficients

• Setup the linear system:

• Multiply both side by inverse matrix:

• If we choose C = x0 y1 - x1 y0

– Then we have A = y0 - y1 and B = x0 – x1



























1

1

11

00

C
B

A

yx

yx



























01

01

0110 xx

yy

yxyx

C

B

A

Numerical Issue

• Calculating C = x0 y1 - x1 y0 involves some
numerical precision issues

– Floating point number subtraction has
numerical precision issue

– For example:
• 1.234x104 - 1.233x104 = 1.000x101

• We lose most of the significant digits in result

• When two vertices are very close to each
other, we have this problem

– x0≈x1, y0≈y1, thus C = x0 y1 - x1 y0 ≈ 0

Numerical Issue

• We can avoid the subtraction by using our line

equation:

Ax0 + By0 + C = 0

Ax1 + By1 + C = 0

• So given A = y0 - y1 and B = x1 - x0

– We have C = -Ax0 - By0 or C = -Ax1 - By1

• Why is this better? Which should we choose?

– We average the two to avoid bias:

 C = -[A(x0+x1) + B(y0+y1)] / 2

Edge Orientation?

• Now we know how to find edge equation from
two vertices

• Given three vertices P0, P1, P2 of a triangle,
what would be the orientations of the three
edge?
– such that the half-spaces defined by the edge

equations all share the same sign on the interior
of the triangle

• Be consistent (e.g.: [P0 P1], [P1 P2], [P2 P0])

• Test the sign for triangle interior on one edge
– Flip if needed (A= -A, B= -B, C= -C)

Edge-Equation Rasterizer: Code

• Basic structure of code:

– Setup: compute edge

equations & bounding box

– Outer loop: for each scanline

in bounding box...

– Inner loop: check each pixel

on scanline, evaluating edge

equations and drawing the

pixel if all three are positive

+ +

+

Edge Equations: Interpolating Color

• Now we know how to draw a solid triangle
(All vertices have the same color)

• What if they have different colors (or other
parameters, e.g. depth)? How to interpolate?

• Idea: triangles are planar in any space:
– This is the “redness”

parameter space

– Also need to do this
for green and blue

– Plane equation

 z = Arx + Bry + Cr

(here z stands for redness of

a point (x,y) inside the triangle)

Edge Equations: Interpolating Color

• How to find the plane equation?

• Given redness values r0, r1, and r2 at the 3

vertices, we can set up the linear system

to for Ar ,Br , and Cr

Edge Equations: Interpolating Color

• Linear system:

• The solution is

Edge Equations: Interpolating Color

• Notice that the matrix elements are exactly
the coefficients of the edge equations

 2area = x0y1 – x1y0 + x1y2 – x2y1 + x2y0 – x0y2

 = C0 +C1+C2

• So the setup of plane equation coefficients is
easy and cost-effective

– Simply take coefficients from the edge equation

– Matrix multiplication

