CSC 4356

Interactive Computer Graphics
Lecture 7: Rasterization

Jinwel Ye
http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am
218 Tureaud Hall

Rasterization

» Rasterization Is the process that converts
continuous primitives into discontinuous
pixel representation

* Determine coverage
— Which pixels belong to the

primitive?

* Determine pixel parameters
— Such as color, depth, etc.

— How to interpolate?

How does OpenGL draw a line?

glBegin (GL LINES) ;
glVertex3f (x1, yl, zl);
glVertex3f (x2, y2, z2);
glEnd () ;

Pi

xel

Everything is rasterized!

Line Rasterization Problem

* Glven:

— Two endpoints: integers (x1, y1) & (x2, y2)
* |dentify:

— Which pixels (%, y) to display for the line?

(X2, y2)

(x1, y1)

Requirements

Transform continuous primitive Into
discrete samples

Uniform thickness & brightness
Continuous appearance

NoO gaps

Accuracy

Speed

DDA Line Drawing

« DDA stands for Digital Differential Analyzer, the
name of a class of old machines used for plotting
functions

» Slope-intercept form of a line:

/
./
y=mx+Db /

slope: m = dy/dx

Intercept: b is where the line /

Intersects the y-axis /

DDA Line Drawing

« Basic idea: If we increment the x
coordinate by one pixel at each step, the
slope of the line tells us how much to

Increment y per step v=(9/2)x

s

/
- le.,dx=1,dy=m /f
(because m = dy/dx) /

DDA Line Drawing

» This only works if m <=1
— otherwise there are gaps

. vy =(9/2)x .
e Solution: Reverse axes -

and step in y direction // /

—Nowdy =1, dx=1/m<1 I/ /,/

/ _
FoA T

1/ v

A ak

!

DDA: Algorithm

* Given two endpoints (x1, y1), (x2, y2)

— Integer coordinates: Round if endpoints were
originally real-valued

— Assume (x1, y1) is to the left of (x2, y2)
— Swap If they aren’t
 Then we can compute slope:
m =dy/dx = (y2 —yl) / (X2 — x1)
* [teratively find the next pixel to display
starting from (x1,y1)

DDA: Algorithm

e How to lterate?

— If [m| <= 1: Iterate integer x from x1 to X2, incrementing
(or decrementing) by one pixel each step (x =x + 1)

* |nitialize real y =yl
« At each step, y =y + m, and plot pixel (x, round(y))

— Else |m| > 1: Iterate integer y from y1 to y2,
Incrementing (or decrementing) by one pixel each step

(y=y+1)
* Initialize real x = x0
« At each step, x = x + 1/m, and plot pixel (round(x), y)

Any Improvement?

« DDA Is slow

— Floating-point calculations, rounding is
relatively expensive

 |dea: avoid rounding, do everything with
iInteger arithmetic for speedup

Revisit Line Equation

* Recall the slope-intercept form of a line Is
y = (dy/dx)x + b

 Implicit form of a line is
F(X,y) =dy-x-dxy+dx-b=0

/

O9x-2y=0 /

point (x,y) Is on the line T

point (x,y) Is below the line [/

AVl
Q Q9

noint (x,y) Is above the line

__\
\

w——

Decision Making

* Given our assumptions about the slope (|m|<1),
after drawing (X, y) the only choice for the next
pixel is between the upper pixel U = (x+1, y+1)
and the lower one L = (x+1, y)

 We want to draw the pixel (U or L) that is closer
to the "ideal" line .+

How to Make The Decision?

« After drawing (X, y), in order to choose the next pixel
to draw we consider the midpoint M = (x+1, y+0.5)

— If M is on the line, then U and L are equally distant from the
ideal line

— |If M Is below the line, then U is closer to the line
— If M is above the line, ‘
then L is closer to the line

Decision Function

 Therefore F Is a decision function to
determine which pixel to draw:
— If F(M) = F(x+1, y+0.5) > 0 (M below the line), pick U
— If F(M) = F(x+1, y+0.5) <= 0 (M above or on line), pick L

Midpoint Algorithm (Bresenham’s)

 Why is it faster?

- does not have to be fully evaluated everytime

« Suppose we do the full evaluation once and get
F(x+1, y+0.5) for the first pixel to decide

« Then for the second pixel:

If we choose L, the next
midpoint M'is (x+2, y+0.5)
If we choose U, the next

midpoint M" Is (x+2, y+1.5)

Midpoint Algorithm (Bresenham’s)

* Now let’s plug the current midpoint M and the
next midpoints M” and M” into the decision
function F(X,y) =dy-x -dx'y+dx-b=0

F,y=F(Xx+1,y+0.5 =dy(x+1)-dx(y + 0.5) + dx:b
F,y = F(X+2,y+0.5)=dy(x + 2) - dx(y + 0.5) + dx-b
Fyro = F(X+ 2,y + 1.5 =dy(X + 2) - dx(y + 1.?) + dx-b
 So we have - """" """"
Fy - Fy =dy e
Fye - Fy =dy-dx - () ------- CHEE. - line
Depending on whether we choose L or U, | '

we just have to add dy or dy —dx to the _~
old value of F to get the new value P=(pp)

Midpoint Algorithm (Bresenham’s)

« To initialize, we do a full calculation of F at the first
midpoint next to the left line endpoint (x1,y1)
F(x1+1,yl +0.5)
=dy(x1 +1) - dx(yl+ 0.5) + dx:b
= F(x1, y1) + dy - 0.5 dx

* F(x1, y1) = 0 because the end point is on the line, so
F=dy-0.5dx
« Only the sign matters for the decision, so to make it an
Integer value we multiply by 2 to get 2F = 2 dy - dx

« To update, keep current values for x and y and evaluate F
by its increment:
« When L is chosen: F += 2dy and x++
« When U is chosen: F +=2(dy - dx) and x++ , y++

Algorithm Summary

Decision Function: F = 2(dy-x - dx'y + dx-b)
Initialization:

— dx = x_end — x_start

—dy =y end -y _ start

— F = 2dy - dx

lterate:

— If F<= 0, choose the lower point and F=F+2dy
— If F > 0, choose the upper point and F=F+2(dy-dx)

All integer operations!

LiIne Parameters

 Now we know how to determine the line
pixels
 How to determine the line parameters,

such as color?

— If the two vertices have the same color, the
Ine will be in uniform color.

— If the two vertices have different colors, what
would be the color for the line?

Blending by Linear Interpolation

* If the two vertices have different colors,

the line color would be blended by linear
iInterpolation

» Colors vary with distance fraction
« Parametric representation:
P(t)= Py + (P - Py)

t
=Py + tP, - tP, / Pt

=1 -9)Py + 1P, P,
where t € [0,1]

What About Triangle?

* Given three vertices of a triangle
* How to fill In the area?

 How to determine the pixel properties?
— color, depth, etc.

Why Triangle?

* Triangle I1s simple
— A triangle can be defined by three vertices
(X0,Y0): (X1,¥1), and (X5,Yy>)

— A triangle can also be defined by three
edges

Ax+By+C;=0
Ax+Byy+C,=0
Ax+ By +C;=0
— Why numbers of unknowns are different?

* As a result, scan converting triangles
only involve linear equations

edgel]

Why Triangle?

« What Is convex?

Convex

v Non-convex

* Triangle Is always convex

— No matter how a triangle Is oriented on the
screen, a given scan line will contain only a
single segment or span of the triangle

Why Triangle?
* Triangles can approximate any shape

— Any 2D shape can be approximated by a
polygon using locally linear approximation

— Any 3D surfaces can be approximated by
polygons

— Polygons can be decomposed Into trlangles

FPolygonal
Apprnmmatmn o

to acurve Convex polygon ™ NDH convex

Triangle Rasterization

« Commaoan triangle rasterization algorithms:
— Edge walking
Edge equation
— Recursive subdivision (primitive or screen)

Edge Walking Algorithm

 Basic idea

— Draw edges vertically

— Fill in horizontal spans for each scanline

— Interpolate colors down edges

800N 9808000008000
ey
0800 6008008000800
T

TRy qJ--ll--jiinih
G0 000808e".
R *;;.;-

B Oeee,
Seeees .ttt --
...‘_ L AR AR IR R SE SE RS RS D ‘....
=]

f!ﬂ_..‘ .i..i..i..i..f.f.i..i.i.

-r A8
S8 ” N Aeeeeee
--lr **.;_u-ll--l

T
7 Seeee8ses)
----f-----
80088080 s-000008B0N
000008 BeN!

Q
o
@©
O
=
= O
LK
< n
W
25
=]
S o
n O
o)
MC
O S
- O
<< O
_

Algorithm Overview

Sort the vertices in both x and y
Determine If the middle vertex,

or breakpoint lies on the left or right side of

the polygon

— If the trianlge has an edge parallel to the scanline

direction then there is no breakpoint
Determines the left and right edge
for each scanline (called spans)
Walk down the left and right edges

filling the pixels in-between until
— A breakpoint is reached: switch edge
— The bottom vertex is reached: exit

e rar tals e
608608067880
LA LL L L XLl) CH
1 [~ R~
SO A
SEOSNNr
o

A, e, et

-1*=
i

e Lo
| A 1|r=

i *.

o

:

o

L

3
LAk
4]
.

)
S

=
=
=

e

E it

LI L)
L

"+

- |

-

o
et

-

)
.

-l
l.:;.*]

-
-
]
-
-
-

*

*

-
-
a

Z
=¢- '!-=¢-
e —
.-*- -i-.-i
N
'i-.'i-
C g
L SECSE CSE]
A e
A L e
-
e ot
=¢- +=-i
.i- +.¢-
.'i- 'i-.'i-
.'i- '!-.'!-
.'i- '!-.'!-
1-.1- i
'i-.#
 —

'!-.'i-
'i-.'i
'i-.'i
Ly
r
+

AL
:

-

AL L L

A
'i-.'i
'i-.'i-
'!-.'!-
'!-.'!-
*.
L)
]
2

L
.-l-.-t-'i-

e
;
ol
.
.
.
.
.
.
.+

)
)
]
-
L

L)
L)

rl"
-r-"'§

+=+
q*
¥
4+
*
SRS RLAE R AR P Y
ks
S
+.+
.
+.+
+.+
*.
1“.
1|r.

=1
IESeewL., ., ., . SESS09
S8eaeeh. " 988808
IS ees. . ., VEeSe
T T)

ottt et
Seeeeeeeses,
LAL L L X L L L L T
LA L L L XL L L XL L L T
200000 ESNeeseN:.
S S B

*i
ol

i,
.
L
"'."‘
)

4

/
o =i
2

o
L&
3
]
2

=3

o

1)
)

)
o
L

o

Notes on Edge Walking

« Advantage:
— Generally very fast

* Disadvantages:

— Loaded with special cases (left and right
oreakpoints, no breakpoints)

— Difficult to get right

— Requires computing fractional offsets when
Interpolating parameters across the triangle

Edge Equations

* An edge equation is simply the equation of

the line containing that edge

— Line equation: Ax + By + C =0

— Given a point P(x,y):
P is on the line:
Ax+By+C=0
P is above the line:
Ax+By+C>0
P is below the line:
Ax+By+C<O0

* An edge equation define two half-spaces

Ax+By+C > 0

Ax+By+C < ()

Triangle Rasterization by
Edge Equations

« Atriangle can be defined as the

Intersection of three positive half-spaces

..r
B8N =000 in
T
T
IS 00008088 ". 40N
R
e T
888100 aeraesss
IS0 = 4000 a0ees
"““““““““““""""""
l..tiiiiiﬂiiiiiii,
u----g----
-
-
n

L L L gl rr L r X
A
iﬁ..l..l!llll..l
BN SeE . I8N
Illjﬁﬂllliilllll.
III....IIII!I.III.
.Iﬂl.lﬂlll..#ﬁll...

Illlllliﬁlllllllll

1
which all edge equations

evaluate to > 0

— We can choose which
multiplying

— half-space Is positive by
— Turn on those pixels for

Edge-Equation Rasterizer:
Implementation

 How to implement an edge-equation
rasterizer in software?
— Which pixels do you consider?
— How do you compute the edge equations?
— How do you orient the edges correctly?

Which pixels to consider?

* Screen space Is large
— Display resolution (HD): 1920 x 1080
(Megapixel)
— It is in-efficient to test all pixels
* We can compute a bounding box
— Only consider the
pixels inside the
bounding box

Compute Edge Egquations?

* Edge equation can be computed using the
coordinates of its two vertices (Xq,Y) &

(X1,Y1)
* Treat it as a linear system:
AXy,+ By, + C =0
Ax; + By, +C=0
* Two Equations, three unknowns?
— Line equations are up to a scalar
— Solve Aand B in terms of C

Compute Coefficients

« Setup the linear system:

Xo VYol A 1
=—C
X1 y1|| B 1
* Multiply both side by inverse matrix:
A _C [yi—-yo

B B XoY1— X1yo| X1—Xo_
* |f we choose C = X,Y; - X1 Y,
—Then we have A=y, -y, and B =X, —X;

Numerical Issue

» Calculating C = XyY; - X; Y, Involves some
numerical precision issues

— Floating point number subtraction has
numerical precision issue

— For example:
e 1.234x10% - 1.233x10% = 1.000x10?
* We lose most of the significant digits in result
* When two vertices are very close to each
other, we have this problem

— Xg™X1, Yo=Y1, thus C = Xgy; - X1 =0

Numerical Issue

* We can avoid the subtraction by using our line
equation:

AX, + By, +C=0
Ax; +By; +C=0
» Sogiven A=Yy, -Yy; and B =X, - X,
— We have C = -Ax, - By, or C = -Ax; - By,
* Why is this better? Which should we choose?
— We average the two to avoid bias:
C = -[A(XotXxy) + B(yoty))] / 2

Edge Orientation?

Now we know how to find edge equation from
two vertices

Given three vertices P, P, P, of a triangle,
what would be the orientations of the three
edge?

— such that the half-spaces defined by the edge

equations all share the same sign on the interior
of the triangle

Be consistent (e.g.: [Py P4l, [P1 Psl, [P> Pol)
Test the sign for triangle interior on one edge
— Flip if needed (A= -A, B=-B, C=-C)

Edge-Equation Rasterizer: Code

 Basic structure of code:

— Setup: compute edge
equations & bounding box

— Outer loop: for each scanline
In bounding box...

— Inner loop: check each pixel
on scanline, evaluating edge
equations and drawing the
pixel if all three are positive

Edge Equations: Interpolating Color

* Now we know how to draw a solid triangle
(All vertices have the same color)

 What Iif they have different colors (or other
parameters, e.g. depth)? How to interpolate?

 |dea: triangles are planar in any space:

— This is the “redness”
parameter space

— Also need to do this
for green and blue

— Plane equation
z=AXx+By+C, X
(here z stands for redness of -\

a point (x,y) inside the triangle} s

Edge Equations: Interpolating Color

* How to find the plane equation?

» Given redness valuesr,, ry, andr, at the 3
vertices, we can set up the linear system

to for A, ,B, , and C,
IREEEE
ni=1x o »n 1

F X, ¥y, 1] C

o by

Edge Equations: Interpolating Color

* Linear system:

7y x ¥y 1C

 The solution Is

{ ¥i— ¥ Y — M Yo— W o A,
Xy T A Xg — A X T A o= 8,
2ared
XY AN AN AN, Xy AN | B LG

Edge Equations: Interpolating Color

* Notice that the matrix elements are exactly
the coefficients of the edge equations

A, Ay A # A,
B, B, B |#|=|B
& G G Rl LG
2area = XpYq, — X1Yo * X1Y2 — Xo¥1 + Xo¥o — XoY2

= Gy +C4+C,
* So the setup of plane equation coefficients Is
easy and cost-effective
— Simply take coefficients from the edge equation

— Matrix multiplication

1
2ared

