CSC 4356
 Interactive Computer Graphics Lecture 7: Rasterization

Jinwei Ye
http://www.csc.Isu.edu/~jye/CSC4356/

Tue \& Thu: 10:30-11:50am
218 Tureaud Hall

Rasterization

- Rasterization is the process that converts continuous primitives into discontinuous pixel representation
- Determine coverage
- Which pixels belong to the primitive?
- Determine pixel parameters
- Such as color, depth, etc.
- How to interpolate?

How does OpenGL draw a line?

glBegin (GL_LINES);
glVertex3f (x1, y1, z1);
glVertex3f (x2, y2, z2);

glEnd () ;

Everything is rasterized!

Line Rasterization Problem

- Given:
- Two endpoints: integers (x1, y1) \& (x2, y2)
- Identify:
- Which pixels (x, y) to display for the line?

Requirements

- Transform continuous primitive into discrete samples
- Uniform thickness \& brightness
- Continuous appearance
- No gaps
- Accuracy
- Speed

DDA Line Drawing

- DDA stands for Digital Differential Analyzer, the name of a class of old machines used for plotting functions
- Slope-intercept form of a line:

$$
y=m x+b
$$

slope: $m=d y / d x$
intercept: b is where the line intersects the y-axis

DDA Line Drawing

- Basic idea: If we increment the x coordinate by one pixel at each step, the slope of the line tells us how much to increment y per step $\quad y=(9 / 2) x$
- i.e., $d x=1, d y=m$
(because $m=d y / d x$)

DDA Line Drawing

- This only works if $\mathrm{m}<=1$
- otherwise there are gaps
- Solution: Reverse axes ${ }^{y=(9 / 2) x}$ and step in y direction
- Now $d y=1, d x=1 / m<1$

DDA: Algorithm

- Given two endpoints (x1, y1), (x2, y2)
- Integer coordinates: Round if endpoints were originally real-valued
- Assume ($\mathrm{x} 1, \mathrm{y} 1$) is to the left of ($\mathrm{x} 2, \mathrm{y} 2$)
- Swap if they aren't
- Then we can compute slope:

$$
m=d y / d x=(y 2-y 1) /(x 2-x 1)
$$

- Iteratively find the next pixel to display starting from (x1,y1)

DDA: Algorithm

- How to Iterate?
- If $|\mathrm{m}|<=1$: Iterate integer x from $\times 1$ to $\times 2$, incrementing (or decrementing) by one pixel each step $(x=x+1)$
- Initialize real $y=y 1$
- At each step, $\mathrm{y}=\mathrm{y}+\mathrm{m}$, and plot pixel (x , round(y))
- Else $|m|>1$: Iterate integer y from y 1 to y 2 , incrementing (or decrementing) by one pixel each step $(y=y+1)$
- Initialize real $\mathrm{x}=\mathrm{x} 0$
- At each step, $x=x+1 / m$, and plot pixel (round(x), y)

Any Improvement?

- DDA is slow
- Floating-point calculations, rounding is relatively expensive
- Idea: avoid rounding, do everything with integer arithmetic for speedup

Revisit Line Equation

- Recall the slope-intercept form of a line is

$$
y=(d y / d x) x+b
$$

- Implicit form of a line is

$$
F(x, y)=d y \cdot x-d x \cdot y+d x \cdot b=0
$$

$-F=0$: point (x, y) is on the line
$-F>0$: point (x, y) is below the line
$-F<0$: point (x, y) is above the line

$$
\begin{aligned}
& 9 x-2 y \\
& \text { line }
\end{aligned}
$$

Decision Making

- Given our assumptions about the slope $(|m|<1)$, after drawing (x, y) the only choice for the next pixel is between the upper pixel $U=(x+1, y+1)$ and the lower one $L=(x+1, y)$
- We want to draw the pixel (U or L) that is closer to the "ideal" line

How to Make The Decision?

- After drawing (x, y), in order to choose the next pixel to draw we consider the midpoint $\mathrm{M}=(\mathrm{x}+1, \mathrm{y}+0.5)$
- If M is on the line, then U and L are equally distant from the ideal line
- If M is below the line, then U is closer to the line
- If M is above the line,
then L is closer to the line

Decision Function

- Therefore F is a decision function to determine which pixel to draw:
- If $F(M)=F(x+1, y+0.5)>0(M$ below the line), pick U
- If $F(M)=F(x+1, y+0.5)<=0(M$ above or on line $)$, pick L

Midpoint Algorithm (Bresenham’s)

-Why is it faster?

- F does not have to be fully evaluated everytime
- Suppose we do the full evaluation once and get $F(x+1, y+0.5)$ for the first pixel to decide
- Then for the second pixel:
- If we choose L, the next midpoint M^{\prime} is $(\mathrm{x}+2, \mathrm{y}+0.5)$
- If we choose U, the next midpoint $\mathrm{M}^{\prime \prime}$ is $(\mathrm{x}+2, \mathrm{y}+1.5)$

Midpoint Algorithm (Bresenham's)

- Now let's plug the current midpoint M and the next midpoints M ' and M ' into the decision function $F(x, y)=d y \cdot x-d x \cdot y+d x \cdot b=0$
$F_{M}=F(x+1, y+0.5)=d y(x+1)-d x(y+0.5)+d x \cdot b$
$F_{M^{\prime}}=F(x+2, y+0.5)=d y(x+2)-d x(y+0.5)+d x \cdot b$
$F_{M "}=F(x+2, y+1.5)=d y(x+2)-d x(y+1.5)+d x \cdot b$
- So we have

$$
\begin{aligned}
& F_{M^{\prime}}-F_{M}=d y \\
& F_{M^{\prime \prime}}-F_{M}=d y-d x
\end{aligned}
$$

Depending on whether we choose L or U, we just have to add dy or dy - dx to the old value of F to get the new value

Midpoint Algorithm (Bresenham's)

- To initialize, we do a full calculation of F at the first midpoint next to the left line endpoint ($\mathrm{x} 1, \mathrm{y} 1$)

$$
\begin{aligned}
& F(x 1+1, y 1+0.5) \\
= & d y(x 1+1)-d x(y 1+0.5)+d x \cdot b \\
= & F(x 1, y 1)+d y-0.5 d x
\end{aligned}
$$

- $F(x 1, y 1)=0$ because the end point is on the line, so

$$
F=d y-0.5 d x
$$

- Only the sign matters for the decision, so to make it an integer value we multiply by 2 to get $2 \mathrm{~F}=2 \mathrm{dy}-\mathrm{dx}$
- To update, keep current values for x and y and evaluate F by its increment:
- When L is chosen: $\mathrm{F}+=2 \mathrm{dy}$ and $\mathrm{x}++$
- When U is chosen: $F+=2(d y-d x)$ and $x++, y++$

Algorithm Summary

- Decision Function: F = 2(dy•x-dx•y+dx•b)
- Initialization:
- $\mathrm{dx}=\mathrm{x}$ _end -x _start
$-d y=y _$end $-y _$start
$-F=2 d y-d x$
- Iterate:
- if $F<=0$, choose the lower point and $F=F+2 d y$
- if $F>0$, choose the upper point and $F=F+2(d y-d x)$
- All integer operations!

Line Parameters

- Now we know how to determine the line pixels
- How to determine the line parameters, such as color?
- If the two vertices have the same color, the line will be in uniform color.
- If the two vertices have different colors, what would be the color for the line?

Blending by Linear Interpolation

- If the two vertices have different colors, the line color would be blended by linear interpolation
- Colors vary with distance fraction
- Parametric representation:

$$
\begin{aligned}
P(t) & =P_{0}+t\left(P_{1}-P_{0}\right) \\
& =P_{0}+t P_{1}-t P_{0} \\
& =(1-t) P_{0}+t P_{1} \\
& \text { where } t \in[0,1]
\end{aligned}
$$

What About Triangle?

- Given three vertices of a triangle
- How to fill in the area?
- How to determine the pixel properties?
- color, depth, etc.

Why Triangle?

- Triangle is simple
- A triangle can be defined by three vertices $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right),\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$, and ($\mathrm{x}_{2}, \mathrm{y}_{2}$)
- A triangle can also be defined by three edges

$$
\begin{aligned}
& A_{1} \mathrm{x}+\mathrm{B}_{1} \mathrm{y}+\mathrm{C}_{1}=0 \\
& \mathrm{~A}_{2} \mathrm{x}+\mathrm{B}_{2} \mathrm{y}+\mathrm{C}_{2}=0 \\
& \mathrm{~A}_{3} \mathrm{x}+\mathrm{B}_{3} \mathrm{y}+\mathrm{C}_{3}=0
\end{aligned}
$$

- Why numbers of unknowns are different?
- As a result, scan converting triangles only involve linear equations

Why Triangle?

- What is convex?

- Triangle is always convex
- No matter how a triangle is oriented on the screen, a given scan line will contain only a single segment or span of the triangle

Why Triangle?

- Triangles can approximate any shape
- Any 2D shape can be approximated by a polygon using locally linear approximation
- Any 3D surfaces can be approximated by polygons
- Polygons can be decomposed into triangles

to a curve

Triangle Rasterization

- Common triangle rasterization algorithms:

Edge walking

- Edge equations
- Recursive subdivision (primitive or screen)

Edge Walking Algorithm

- Basic idea:
- Draw edges vertically
- Fill in horizontal spans for each scanline
- Interpolate colors down edges
- At each scanline, interpolate edge colors across span

Algorithm Overview

- Sort the vertices in both x and y
- Determine if the middle vertex, or breakpoint lies on the left or right side of the polygon
- If the trianlge has an edge parallel to the scanline direction then there is no breakpoint
- Determines the left and right edge for each scanline (called spans)
- Walk down the left and right edges filling the pixels in-between until
- A breakpoint is reached: switch edge
- The bottom vertex is reached: exit

Notes on Edge Walking

- Advantage:
- Generally very fast
- Disadvantages:
- Loaded with special cases (left and right breakpoints, no breakpoints)
- Difficult to get right
- Requires computing fractional offsets when interpolating parameters across the triangle

Edge Equations

- An edge equation is simply the equation of the line containing that edge
- Line equation: $A x+B y+C=0$
- Given a point $P(x, y)$:
P is on the line:
$A x+B y+C=0$
P is above the line:
$A x+B y+C>0$
P is below the line:
$A x+B y+C<0$

$$
A x+B y+C<0
$$

- An edge equation define two half-spaces

Triangle Rasterization by Edge Equations

- A triangle can be defined as the intersection of three positive half-spaces
- We can choose which
- half-space is positive by multiplying -1
- Turn on those pixels for which all edge equations evaluate to >0

Edge-Equation Rasterizer: Implementation

- How to implement an edge-equation rasterizer in software?
- Which pixels do you consider?
- How do you compute the edge equations?
- How do you orient the edges correctly?

Which pixels to consider?

- Screen space is large
- Display resolution (HD): 1920×1080 (Megapixel)
- It is in-efficient to test all pixels
- We can compute a bounding box
- Only consider the pixels inside the bounding box

Compute Edge Equations?

- Edge equation can be computed using the coordinates of its two vertices $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ \& $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
- Treat it as a linear system:
$A x_{0}+B y_{0}+C=0$
$A x_{1}+B y_{1}+C=0$
- Two Equations, three unknowns?
- Line equations are up to a scalar
- Solve A and B in terms of C

Compute Coefficients

- Setup the linear system:

$$
\left[\begin{array}{ll}
x_{0} & y_{0} \\
x_{1} & y_{1}
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=-C\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Multiply both side by inverse matrix:

$$
\left[\begin{array}{l}
A \\
B
\end{array}\right]=\frac{-C}{x_{0} y_{1}-x_{1} y_{0}}\left[\begin{array}{l}
y_{1}-y_{0} \\
x_{1}-x_{0}
\end{array}\right]
$$

- If we choose $\mathrm{C}=\mathrm{x}_{0} \mathrm{y}_{1}-\mathrm{x}_{1} \mathrm{y}_{0}$
- Then we have $A=y_{0}-y_{1}$ and $B=x_{0}-x_{1}$

Numerical Issue

- Calculating $C=x_{0} y_{1}-x_{1} y_{0}$ involves some numerical precision issues
- Floating point number subtraction has numerical precision issue
- For example:

- We lose most of the significant digits in result
- When two vertices are very close to each other, we have this problem
$-\mathrm{x}_{0} \approx \mathrm{x}_{1}, \mathrm{y}_{0} \approx \mathrm{y}_{1}$, thus $\mathrm{C}=\mathrm{x}_{0} \mathrm{y}_{1}-\mathrm{x}_{1} \mathrm{y}_{0} \approx 0$

Numerical Issue

- We can avoid the subtraction by using our line equation:

$$
\begin{aligned}
& A x_{0}+B y_{0}+C=0 \\
& A x_{1}+B y_{1}+C=0
\end{aligned}
$$

- So given $\mathrm{A}=\mathrm{y}_{0}-\mathrm{y}_{1}$ and $\mathrm{B}=\mathrm{x}_{1}-\mathrm{x}_{0}$
- We have $C=-A x_{0}-B y_{0}$ or $C=-A x_{1}-B y_{1}$
- Why is this better? Which should we choose?
- We average the two to avoid bias:

$$
C=-\left[A\left(x_{0}+x_{1}\right)+\mathrm{B}\left(\mathrm{y}_{0}+\mathrm{y}_{1}\right)\right] / 2
$$

Edge Orientation?

- Now we know how to find edge equation from two vertices
- Given three vertices $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}$ of a triangle, what would be the orientations of the three edge?
- such that the half-spaces defined by the edge equations all share the same sign on the interior of the triangle
- Be consistent (e.g.: $\left[\mathrm{P}_{0} \mathrm{P}_{1}\right],\left[\mathrm{P}_{1} \mathrm{P}_{2}\right],\left[\mathrm{P}_{2} \mathrm{P}_{0}\right]$)
- Test the sign for triangle interior on one edge
- Flip if needed ($A=-A, B=-B, C=-C$)

Edge-Equation Rasterizer: Code

- Basic structure of code:
- Setup: compute edge equations \& bounding box
- Outer loop: for each scanline in bounding box...
- Inner loop: check each pixel on scanline, evaluating edge equations and drawing the pixel if all three are positive

Edge Equations: Interpolating Color

- Now we know how to draw a solid triangle (All vertices have the same color)
- What if they have different colors (or other parameters, e.g. depth)? How to interpolate?
- Idea: triangles are planar in any space:
- This is the "redness" parameter space
- Also need to do this for green and blue
- Plane equation

$$
z=A_{r} x+B_{r} y+C_{r}
$$

(here z stands for redness of
a point (x, y) inside the triangle

Edge Equations: Interpolating Color

- How to find the plane equation?
- Given redness values r_{0}, r_{1}, and r_{2} at the 3 vertices, we can set up the linear system to for $\mathrm{A}_{\mathrm{r}}, \mathrm{B}_{\mathrm{r}}$, and C_{r}

$$
\left[\begin{array}{l}
r_{0} \\
r_{1} \\
r_{2}
\end{array}\right]=\left[\begin{array}{lll}
x_{0} & y_{0} & 1 \\
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1
\end{array}\right]\left[\begin{array}{c}
A_{r} \\
B_{r} \\
C_{r}
\end{array}\right]
$$

Edge Equations: Interpolating Color

- Linear system:

$$
\left[\begin{array}{l}
r_{0} \\
r_{1} \\
r_{2}
\end{array}\right]=\left[\begin{array}{lll}
x_{0} & y_{0} & 1 \\
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1
\end{array}\right]\left[\begin{array}{l}
A_{r} \\
B_{r} \\
C_{r}
\end{array}\right]
$$

- The solution is
$\frac{1}{\text { 2area }}\left[\begin{array}{ccc}y_{1}-y_{2} & y_{2}-y_{0} & y_{0}-y_{1} \\ x_{2}-x_{1} & x_{0}-x_{2} & x_{1}-x_{0} \\ x_{1} y_{2}-x_{2} y_{1} & x_{2} y_{0}-x_{0} y_{2} & x_{0} y_{1}-x_{1} y_{0}\end{array}\right]\left[\begin{array}{l}r_{0} \\ r_{1} \\ r_{2}\end{array}\right]=\left[\begin{array}{c}A_{r} \\ B_{r} \\ C_{r}\end{array}\right]$

Edge Equations: Interpolating Color

- Notice that the matrix elements are exactly the coefficients of the edge equations

$$
\begin{aligned}
& \frac{1}{\text { 2area }}\left[\begin{array}{ccc|}
A_{2} & A_{3} & A_{1} \\
B_{2} & B_{3} & B_{1} \\
C_{2} & C_{3} & C_{1}
\end{array}\right]\left[\begin{array}{l}
r_{0} \\
r_{1} \\
r_{2}
\end{array}\right]=\left[\begin{array}{l}
A_{r} \\
B_{r} \\
C_{r}
\end{array}\right] \\
& \text { 2area }=\mathrm{x}_{0} \mathrm{y}_{1}-\mathrm{x}_{1} \mathrm{y}_{0}+\mathrm{x}_{1} \mathrm{y}_{2}-\mathrm{x}_{2} \mathrm{y}_{1}+\mathrm{x}_{2} \mathrm{y}_{0}-\mathrm{x}_{0} \mathrm{y}_{2} \\
& =\mathrm{C}_{0}+\mathrm{C}_{1}+\mathrm{C}_{2}
\end{aligned}
$$

- So the setup of plane equation coefficients is easy and cost-effective
- Simply take coefficients from the edge equation
- Matrix multiplication

