CSC 4356
 Interactive Computer Graphics Lecture 8: 3D Viewing (Part 1)

Jinwei Ye http://www.csc.Isu.edu/~jye/CSC4356/

Tue \& Thu: 10:30-11:50am 218 Tureaud Hall

3D Scene \rightarrow 2D Image

- We have learned how to build a 3D scene by modeling transformation
- How to map the 3D scene into 2D image? - Camera projection

What is a camera?

- In real world, camera is a light sensing device that collects light rays emitted from the scene to form 2D images
- In computer graphics, a camera projects 3D scene to 2D images
- Projection matrix
- Common methods:

Orthographic projection Perspective projection

Orthographic Projection

- Project every 3D points along lines parallel to the z-axis (in camera coordinate)
- Simplest form of projection
- Also called parallel projection
- Commonly used for top, bottom, and side view in drafting and modeling

Orthographic Image

- Parallel lines remains parallel
- Appear unnatural due to lack of perspective foreshortening

Perspective Projection

- Artists during the renaissance discovered the importance of perspective for making images appear realistic

Perspective Camera (a.k.a. Pinhole Camera)

Perspective Image Properties

- Objects closer to the viewer appear larger
- Farther away objects appear smaller

Perspective Images

Ames Room

[Ames Jr. '35]

Perspective Image Properties

- Parallel lines converge at a vanishing point

Perspective Images

- Distinguish a perspective image by vanishing points

Stenop.Es Project

How to perform projection in OpenGL?

- Need to specify a viewing frustum
- Projection performed by multiplying scene point with a projection matrix
- Use Homogeneous coordinate

Orthographic Projection Matrix

- $[x, y, z] \rightarrow[x, y, 0]$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right] \quad \begin{gathered}
\mathrm{P}(x, y, z) \\
0 \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
(x, y, 0)
\end{gathered}
$$

Orthographic Projection Matrix

- Orthographics projection matrix is simple
- Problem: the units of the transformed points are still the same as the model
- Need to map to normalized coordinate space

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Normalized Device Coordinate (NDC)

- Normalized coordinate for display window
- Always ranging from -1 to 1 for x, y, and z

Mapping to NDC

- Translation \& Scaling

Normalized Device Coordinates

Orthographic Projection in NDC

$\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ \hline z^{\prime} \\ \hline 1\end{array}\right]=\left[\begin{array}{cc}\frac{2}{\text { right }- \text { left }} & 0 \\ 0 & \frac{2}{\text { top }- \text { bottom }} \\ 0 & 0 \\ 0 & 0\end{array}\right.$
$\left.\begin{array}{cc}0 & \frac{-(\text { right }+ \text { left })}{\text { right }- \text { left }} \\ 0 & \frac{-(\text { top }+ \text { bottom })}{\text { top }- \text { bottom }} \\ \frac{2}{\text { far-near }} & \frac{-(\text { far }+ \text { near })}{\text { far }- \text { near }} \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$

- Sanity check:

$$
\begin{aligned}
& x=\text { right } \rightarrow x^{\prime}=\frac{2 \text { right }}{\text { right }- \text { left }}+\frac{-(\text { right }+ \text { left })}{\text { right }- \text { left }}=1 \\
& x=\text { left } \rightarrow x^{\prime}=\frac{2 l e f t}{\text { right }- \text { left }}+\frac{-(\text { right }+ \text { left })}{\text { right }- \text { left }}=-1
\end{aligned}
$$

Orthographic Projection in OpenGL

- Projection Transformation happens after Modelview Transformation
- MVP transformation: $\mathrm{v}^{\prime}=\mathrm{PVMv}$
- Set matrix stack:
glMatrixMode (GL_PROJECTION);
- Orthographic projection matrix is constructed by void glOrtho(double left, double right, double bottom, double top, double near, double far); void glortho2D(double left, double right, double bottom, double top);
(assume near $=-1$, far $=1$)

Perspective Projection

Perspective Projection: Derivation

- Assume the pinhole (or center of projection) is the origin $(0,0,0)$
- Image plane at $\mathrm{z}=\mathrm{d}$

Perspective Projection: Derivation

- What are the coordinates of projected point?

Perspective Projection Matrix

- How to express in form of matrix multiplication?

Divide w to make the fourth element 1

Perspective Projection Matrix

- Why closer objects appear larger?

Another Perspective Projection

- CoP at (0,0,-d)

$$
x_{p}=\frac{d \cdot x}{d+z}=\frac{x}{z / d+1}
$$

- Image plane at $z=0$
(x-y plane)
$y_{p}=\frac{d \cdot y}{d+z}=\frac{y}{z / d+1}$

What happens if d goes to infinity?

Perspective Viewing Frustum

- Perspective viewing frustum looks like a rectangular pyramid

Mapping to NDC

- Scaling, Shear, \& Translation

Perspective Projection in NDC

$\left[\begin{array}{c}w x^{\prime} \\ w y^{\prime} \\ w z^{\prime} \\ w\end{array}\right]=\left[\begin{array}{cccc}\frac{2 \cdot \text { near }}{\text { right }- \text { left }} & 0 & \frac{-(\text { right }+ \text { left })}{\text { right }- \text { left }} & 0 \\ 0 & \frac{2 \cdot \text { near }}{\text { top }- \text { bottom }} & \frac{-(\text { top }+ \text { bottom })}{\text { top }- \text { bottom }} & 0 \\ 0 & 0 & \frac{\text { far }+ \text { near }}{\text { far }- \text { near }} & \frac{-2 \cdot \text { far } \cdot \text { near })}{\text { far }- \text { near }} \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$

- Sanity check:

$$
\begin{gathered}
\begin{array}{l}
x=\text { right } \\
z=\text { near }
\end{array} \\
x=\text { right } \cdot \frac{\text { far }}{\text { near }} \\
z=\text { far }
\end{gathered} \rightarrow x^{\prime}=\frac{\frac{2 \cdot n e a r \cdot r i g h t}{\text { right }- \text { left }}+\frac{-(\text { right }+ \text { left }) \cdot \text { near }}{\text { right }- \text { left }}}{\text { near }}=1
$$

Perspective Projection in OpenGL

- Set matrix stack: glMatrixMode (GL_PROJECTION) ;
- Perspective projection matrix is constructed by
void glFrustum(double left, double right, double bottom, double top, double near, double far);
or
void gluPerspective(double vertfov, double aspect, double near, double far);

gluPerspective()

- Use vertical FOV and aspect ratio to specify the viewing frustum
- vert fov: $\theta=2 \arctan (0.5$ height $/$ near $)$

