
CSC 4356

Interactive Computer Graphics
Lecture 8: 3D Viewing (Part 1)

Jinwei Ye

http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am

218 Tureaud Hall

3D Scene → 2D Image

• We have learned how to build a 3D scene

by modeling transformation

• How to map the 3D scene into 2D image?

– Camera projection

What is a camera?

• In real world, camera is a light sensing
device that collects light rays emitted from
the scene to form 2D images

• In computer graphics, a camera projects
3D scene to 2D images

– Projection matrix

– Common methods:

Orthographic projection

Perspective projection

Orthographic Projection

• Project every 3D points along lines parallel

to the z-axis (in camera coordinate)

– Simplest form of projection

– Also called parallel projection

– Commonly used for top, bottom, and side

view in drafting and modeling

y

x

z

Orthographic Image

• Parallel lines remains parallel

• Appear unnatural due to lack of perspective

foreshortening

Perspective Projection

• Artists during the renaissance discovered

the importance of perspective for making

images appear realistic

Perspective Camera

(a.k.a. Pinhole Camera)

Perspective Image Properties

• Objects closer to the viewer appear larger

• Farther away objects appear smaller

Perspective Images

Images from Twitter and Flicker

Ames Room

[Ames Jr. ‘35]

Perspective Image Properties

• Parallel lines converge at a vanishing point

Images from Flicker

Perspective Images

• Distinguish a perspective image by

vanishing points

Image from Flicker

Stenop.Es Project

How to perform projection in OpenGL?

• Need to specify a viewing frustum

• Projection performed by multiplying scene

point with a projection matrix

• Use Homogeneous coordinate

Viewing Frustum

Orthographic Projection Matrix

• [x,y,z] → [x,y,0]

y

x

z O

P(x,y,z)

(x,y,0)

























































11000

0000

0010

0001

1

'

'

'

z

y

x

z

y

x

Orthographic Projection Matrix

• Orthographics projection matrix is simple

• Problem: the units of the transformed

points are still the same as the model

• Need to map to normalized coordinate

space

























































11000

0000

0010

0001

1

'

'

'

z

y

x

z

y

x

Normalized Device Coordinate (NDC)

• Normalized coordinate for display window

• Always ranging from -1 to 1 for x, y, and z

-1

-1

1

1

Mapping to NDC

• Translation & Scaling

Orthographic Projection in NDC

• Sanity check:

𝑥 = 𝑟𝑖𝑔ℎ𝑡 → 𝑥′ =
2𝑟𝑖𝑔ℎ𝑡

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡
+

−(𝑟𝑖𝑔ℎ𝑡 + 𝑙𝑒𝑓𝑡)

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡
= 1

𝑥 = 𝑙𝑒𝑓𝑡 → 𝑥′ =
2𝑙𝑒𝑓𝑡

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡
+

−(𝑟𝑖𝑔ℎ𝑡 + 𝑙𝑒𝑓𝑡)

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡
= −1

















































































1

1000

)(2
00

)(
0

2
0

)(
00

2

1

'

'

'

z

y

x

nearfar

nearfar

nearfar

bottomtop

bottomtop

bottomtop

leftright

leftright

leftright

z

y

x

Orthographic Projection in OpenGL

• Projection Transformation happens after Modelview
Transformation

– MVP transformation: v′ = PVMv

• Set matrix stack:
 glMatrixMode(GL_PROJECTION);

• Orthographic projection matrix is constructed by
void glOrtho(double left, double right,

 double bottom, double top,

 double near, double far);

void glOrtho2D(double left, double right,

 double bottom, double top);

(assume near = -1, far =1)

Perspective Projection

Perspective Projection: Derivation

• Assume the pinhole (or center of projection)

is the origin (0,0,0)

• Image plane at z = d

Perspective Projection: Derivation

• What are the coordinates of projected

point?

dz

z

d

y

y

z

d

x

x

p

p

p







dz

z

yd
y

z

xd
x

p

p

p









Perspective Projection Matrix

• How to express in form of matrix

multiplication?

dz

dz

y

z

yd
y

dz

x

z

xd
x

p

p

p













/

/

























































10/100

0100

0010

0001

'

'

'

z

y

x

dw

wz

wy

wx

Divide w to make the fourth element 1

Perspective Projection Matrix

• Why closer objects appear larger?

























































10/100

0100

0010

0001

'

'

'

z

y

x

dw

wz

wy

wx

dzw /

Another Perspective Projection

• CoP at (0,0,-d)

• Image plane at z = 0

 (x-y plane)

0

1/

1/



















p

p

p

z

dz

y

zd

yd
y

dz

x

zd

xd
x

























































11/100

0000

0010

0001

'

'

'

z

y

x

dw

wz

wy

wx

What happens if d goes to infinity?

Perspective Viewing Frustum

• Perspective viewing frustum looks like a

rectangular pyramid

Mapping to NDC

• Scaling, Shear, & Translation

Perspective Projection in NDC























































































1

0100

)2
00

0
)(2

0

0
)(

0
2

'

'

'

z

y

x

nearfar

nearfar

nearfar

nearfar

bottomtop

bottomtop

bottomtop

near

leftright

leftright

leftright

near

w

wz

wy

wx

• Sanity check:

→ 𝑥′ =

2 ∙ 𝑛𝑒𝑎𝑟 ∙ 𝑟𝑖𝑔ℎ𝑡
𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡

+
−(𝑟𝑖𝑔ℎ𝑡 + 𝑙𝑒𝑓𝑡) ∙ 𝑛𝑒𝑎𝑟

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡

𝑛𝑒𝑎𝑟
= 1

𝑥 = 𝑟𝑖𝑔ℎ𝑡
𝑧 = 𝑛𝑒𝑎𝑟

→ 𝑥′ =

2 ∙ 𝑓𝑎𝑟 ∙ 𝑟𝑖𝑔ℎ𝑡
𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡

+
−(𝑟𝑖𝑔ℎ𝑡 + 𝑙𝑒𝑓𝑡) ∙ 𝑓𝑎𝑟

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡

𝑓𝑎𝑟
= 1

𝑥 = 𝑟𝑖𝑔ℎ𝑡 ∙
𝑓𝑎𝑟

𝑛𝑒𝑎𝑟

𝑧 = 𝑓𝑎𝑟

Perspective Projection in OpenGL

• Set matrix stack:

 glMatrixMode(GL_PROJECTION);

• Perspective projection matrix is

constructed by
void glFrustum(double left, double

right, double bottom, double top,

double near, double far);

 or
void gluPerspective(double vertfov,

double aspect, double near, double far);

gluPerspective()

• Use vertical FOV and aspect ratio to

specify the viewing frustum

• vert fov: 𝜃 = 2arctan (0.5ℎ𝑒𝑖𝑔ℎ𝑡/𝑛𝑒𝑎𝑟)

