
CSC 4356

Interactive Computer Graphics
Lecture 9: 3D Viewing (Part 2)

Jinwei Ye

http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am

218 Tureaud Hall

Transformation Recap

• Model (geometric) transformation

– Arrange objects in the world coordinate

• Projection transformation

– Map 3D objects to 2D image in the camera

coordinate

Transformation Recap

• Model (geometric) transformation

– Arrange objects in the world coordinate

• Projection transformation

– Map 3D objects to 2D image in the camera

coordinate

Viewing Transformation

• Map points from world coordinate to

camera/eye coordinate

• Use the MODELVIEW matrix stack in

OpenGL

– Same stack as

model transformation

“Framing” the Picture

• Reorient the entire scene such that the

camera is located at the origin

– OpenGL assumes camera at origin

• Greatly simply the projection steps

Camera/Eye Space

• Origin is located at the center of projection

(COP) for perspective projection

• Image plane is parallel to the x-y plane

• Camera is viewing towards the –z direction

Notes on Camera Space

• Although the goal is to transform the world

space to camera space, it is more natural

to think of camera as an object positioned

in the world space

• In this way, we make it easy to change

viewpoint

– Simply change the camera coordinate in the

world space

• Useful for generating cool visual effects

Visual Effect: Bullet Time

Goal of Viewing Transformation

• Define the camera/eye space

– Specify the position and orientation of the

viewing camera

• Establish mapping between the two

coordinate system

– World space to camera space

– Rotation & Translation

Define Camera Space

• Eye point: camera position (COP)

• Look-at point: center of the image

• Up vector: upwards orientation in the

image

Visual Effect: Bullet Time

• Specify camera path by simply changing the eye point

Viewing Transformation: Derivation

• Let’s first derive the rotation matrix Rv of

the viewing transformation

• Look-at direction:



















































z

y

x

z

y

x

z

y

x

eye

eye

eye

lookat

lookat

lookat

l

l

l

-

222

ˆ

zyx lll

l
l






First Constraint

• Camera is viewing towards –z direction

• So we expect our desired rotation matrix

to map the look-at direction to the vector

[0, 0, -1]T




































z

y

x

v

l

l

l

ˆ

ˆ

ˆ

1

0

0

R

Second Constraint

• There is another special vector that we can compute

• If we find the cross product between the look-at vector

with our up vector, we will get a vector that points to the

right

• We expect the right vector, when normalized, will

transform to the vector [1, 0, 0]T

uplr 

222

0

0

1

zyx

v

rrr

r




















R

Third Constraint

• Finally, from these two vectors we can synthesize a third

vector that is perpendicular to both the look-at and right

vectors. It is also oriented in the up direction

• We expect this vector, when normalized, will transform to

the vector [0, 1, 0]T

lru 

222

0

1

0

zyx

v

uuu

u




















R

Putting Them All Together

• Now lets consider all of these constraints

together

• In order to compute the matrix, Rv, we need only

compute the inverse of the matrix formed by

concatenating our 3 special vectors.

• How to compute the inverse?

 lurv
ˆˆˆ

100

010

001



















R

Inverse is Transpose

• Remember that each of our vectors are unit length (we

normalized them). Also, each vector is perpendicular to

the other two. These two conditions on a matrix makes it,

orthogonal. Rotations are also orthogonal. Orthonormal

matrices have the unique property that:

if is Orthonormal, M
T1

MM 





















T

T

T

v

l

u

r

ˆ

ˆ

ˆ

R

• Therefore, the rotation component of our viewing

transformation is just the transpose of the matrix formed

by our selected vectors as rows.

Translation

• The rotation that we just derived is specified about the

origin in world space.

• Therefore, before we can apply this rotation, we need to

translate all world-space coordinates so that the eye

point is at the origin.

• Translation is simply to move the origin of the world

coordinate to the eye position



























1000

100

010

001

z

y

x

eye
eye

eye

eye

T

Viewing Transformation

• Composing these transformations (translation and

rotation) gives our viewing transformation matrix V

PPP eyev  TRV'












































 

1000

100

010

001

1000

0ˆˆˆ

0ˆˆˆ

0ˆˆˆ

z

y

x

zyx

zyx

zyx

eyev
eye

eye

eye

lll

uuu

rrr

TRV





























1000

ˆˆ

ˆˆ

ˆˆ

eyell

eyeuu

eyerr

T

T

T

Viewing Transformation in OpenGL

• OpenGL provides a function for computing
viewing transformations specified in terms of
world space coordinates in its utility library (glu):

gluLookAt(double eyex, double eyey,

double eyez, double centerx, double

centery, double centerz, double

upx, double upy, double upz);

• It computes the same transformation that we
derived and composes it with the current matrix
(Modelview matrix)

• Viewing transformation is after model
transformation

Transformation Pipeline

Model Transformation

• We start with 3-D models defined in their own model space

• Modeling transformations orient models within a common

coordinate frame called world space

• All objects, light sources,

 and the viewer/camera

 live in the world space

t

n

ttt

mmmm ,...,,, 321

t

w

Viewing Transformation

• Another change of coordinate systems

• Transform points from world space into eye space

• Viewing position is transformed to the origin

• Viewing direction is

 oriented along –z direction

• Together with Model

Transformation, they are

called the Modelview

Transformation

Projection Transformation

• Define a three dimensional viewing frustum

• Eliminate objects that are outside the viewing frustum

• Normalize the viewing frustum

 into a cube (NDC)

• Project the objects into

 2D image

• Transformation from eye space to

 screen space

Analogous to Photography

• Model transformation

– Pose your model!

Image source: https://holmeslewismodels.wordpress.com/

Analogous to Photography

• Viewing transformation

– Position your camera

Images from Pinterest

Analogous to Photography

• Projection transformation

– Adjust your lens settings

– gluperspective()

vert fov: Field of view

near plane: focal length

far plane: infinity

Focal Length and FoV

Focal Length and FoV

Next Time…

• Build a 3D world

– 3D model representation

– data format

– User interaction

Programming Assignment 1

• Due today at midnight! (11:59pm)
– If you want to use free late days, please notify your

TA. Otherwise, penalty will be taken per late day.

• What to submit?
– .cpp file (your source code)

– .exe file (executable)

– Report that explains your implementation

• Where to submit?
– classes.csc.lsu.edu

– Log in using your account and password

– Upload files to folder “prog1”

– Use “p_copy” to submit and “verify” to confirm

