CSC 4356
 Interactive Computer Graphics Lecture 9: 3D Viewing (Part 2)

Jinwei Ye http://www.csc.Isu.edu/~jye/CSC4356/

Tue \& Thu: 10:30-11:50am 218 Tureaud Hall

Transformation Recap

- Model (geometric) transformation
- Arrange objects in the world coordinate
- Projection transformation
- Map 3D objects to 2D image in the camera coordinate

Transformation Recap

- Model (geometric) transformation
- Arrange objects in the world coordinate
- Projection transformation
- Map 3D objects to 2D image in the camera coordinate

Viewing Transformation

- Map points from world coordinate to camera/eye coordinate
- Use the MODELVIEW matrix stack in OpenGL
- Same stack as model transformation

"Framing" the Picture

- Reorient the entire scene such that the camera is located at the origin
- OpenGL assumes camera at origin
- Greatly simply the projection steps

Camera/Eye Space

- Origin is located at the center of projection (COP) for perspective projection
- Image plane is parallel to the $x-y$ plane
- Camera is viewing towards the -z direction

Notes on Camera Space

- Although the goal is to transform the world space to camera space, it is more natural to think of camera as an object positioned in the world space
- In this way, we make it easy to change viewpoint
- Simply change the camera coordinate in the world space
- Useful for generating cool visual effects

Visual Effect: Bullet Time

Goal of Viewing Transformation

- Define the camera/eye space
- Specify the position and orientation of the viewing camera
- Establish mapping between the two coordinate system
- World space to camera space
- Rotation \& Translation

Define Camera Space

- Eye point: camera position (COP)
- Look-at point: center of the image
- Up vector: upwards orientation in the image

Visual Effect: Bullet Time

- Specify camera path by simply changing the eye point

Viewing Transformation: Derivation

- Let's first derive the rotation matrix \mathbf{R}_{v} of the viewing transformation
- Look-at direction:

$$
\begin{gathered}
{\left[\begin{array}{l}
l_{x} \\
l_{y} \\
l_{z}
\end{array}\right]=\left[\begin{array}{l}
\text { lookat }_{x} \\
\text { lookat }_{y} \\
\text { lookat }_{z}
\end{array}\right]-\left[\begin{array}{l}
\text { eye }_{x} \\
\text { eye }_{y} \\
\text { eye }_{z}
\end{array}\right]} \\
\hat{l}=\frac{\vec{l}}{\sqrt{l_{x}^{2}+l_{y}^{2}+l_{z}^{2}}}
\end{gathered}
$$

First Constraint

- Camera is viewing towards -z direction
- So we expect our desired rotation matrix to map the look-at direction to the vector
$[0,0,-1]^{\top}$

$$
\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right]=\mathbf{R}_{v}\left[\begin{array}{l}
\hat{l}_{x} \\
\hat{l}_{y} \\
\hat{l}_{z}
\end{array}\right]
$$

Second Constraint

- There is another special vector that we can compute
- If we find the cross product between the look-at vector with our up vector, we will get a vector that points to the right

$$
\vec{r}=\vec{l} \times \overrightarrow{u p}
$$

- We expect the right vector, when normalized, will transform to the vector $[1,0,0]^{\top}$

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\mathbf{R}_{v} \frac{\vec{r}}{\sqrt{r_{x}^{2}+r_{y}^{2}+r_{z}^{2}}}
$$

Third Constraint

- Finally, from these two vectors we can synthesize a third vector that is perpendicular to both the look-at and right vectors. It is also oriented in the up direction

$$
\vec{u}=\vec{r} \times \vec{l}
$$

- We expect this vector, when normalized, will transform to the vector $[0,1,0]^{\top}$

$$
\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\mathbf{R}_{v} \frac{\vec{u}}{\sqrt{u_{x}^{2}+u_{y}^{2}+u_{z}^{2}}}
$$

Putting Them All Together

- Now lets consider all of these constraints together

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\mathbf{R}_{v}\left[\begin{array}{lll}
\hat{r} & \hat{u} & -\hat{l}
\end{array}\right]
$$

- In order to compute the matrix, \mathbf{R}_{v}, we need only compute the inverse of the matrix formed by concatenating our 3 special vectors.
- How to compute the inverse?

Inverse is Transpose

- Remember that each of our vectors are unit length (we normalized them). Also, each vector is perpendicular to the other two. These two conditions on a matrix makes it, orthogonal. Rotations are also orthogonal. Orthonormal matrices have the unique property that:
if \mathbf{M} is Orthonormal, $\mathbf{M}^{-1}=\mathbf{M}^{\mathrm{T}}$
- Therefore, the rotation component of our viewing transformation is just the transpose of the matrix formed by our selected vectors as rows.

$$
\mathbf{R}_{v}=\left[\begin{array}{c}
\hat{r}^{T} \\
\hat{u}^{T} \\
-\hat{l}^{T}
\end{array}\right]
$$

Translation

- The rotation that we just derived is specified about the origin in world space.
- Therefore, before we can apply this rotation, we need to translate all world-space coordinates so that the eye point is at the origin.
- Translation is simply to move the origin of the world coordinate to the eye position

$$
\mathbf{T}_{\text {-eye }}=\left[\begin{array}{cccc}
1 & 0 & 0 & - \text { eve }_{x} \\
0 & 1 & 0 & - \text { eve }_{y} \\
0 & 0 & 1 & - \text { eye }_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Viewing Transformation

- Composing these transformations (translation and rotation) gives our viewing transformation matrix V

$$
\left.\begin{array}{rl}
\mathbf{V}=\mathbf{R}_{v} \mathbf{T}_{- \text {eye }} & =\left[\begin{array}{cccc}
\hat{r}_{x} & \hat{r}_{y} & \hat{r}_{z} & 0 \\
\hat{u}_{x} & \hat{u}_{y} & \hat{u}_{z} & 0 \\
-\hat{l}_{x} & -\hat{l}_{y} & -\hat{l}_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & - \text { eye }_{x} \\
0 & 1 & 0 & - \text { eye }_{y} \\
0 & 0 & 1 & - \text { eye }_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\hat{r}^{T} & -\hat{r} \cdot \overrightarrow{\text { eye }} \\
\hat{u}^{T} & -\hat{u} \cdot \text { eye } \\
-\hat{l}^{T} & \hat{l} \cdot \overrightarrow{\text { eye }} \\
0 & 0 & 0
\end{array} 1\right.
\end{array}\right] \quad P^{\prime}=\mathbf{V} P=\mathbf{R}_{v} \mathbf{T}_{- \text {eye }} P .
$$

Viewing Transformation in OpenGL

- OpenGL provides a function for computing viewing transformations specified in terms of world space coordinates in its utility library (glu): gluLookAt(double eyex, double eyey, double eyez, double centerx, double centery, double centerz, double upx, double upy, double upz);
- It computes the same transformation that we derived and composes it with the current matrix (Modelview matrix)
- Viewing transformation is after model transformation

Transformation Pipeline

object
coordinates

Model Transformation

- We start with 3-D models defined in their own model space

$$
\rightarrow_{t}^{t} \rightarrow_{m_{2}}, \vec{m}_{3}, \ldots, \vec{m}_{n}^{t}
$$

- Modeling transformations orient models within a common coordinate frame called world space
\vec{w}
- All objects, light sources, and the viewer/camera live in the world space

Viewing Transformation

- Another change of coordinate systems
- Transform points from world space into eye space
- Viewing position is transformed to the origin
- Viewing direction is oriented along -z direction
- Together with Model Transformation, they are called the Modelview Transformation

Projection Transformation

- Define a three dimensional viewing frustum
- Eliminate objects that are outside the viewing frustum
- Normalize the viewing frustum into a cube (NDC)
- Project the objects into 2D image
- Transformation from eye space to screen space

Analogous to Photography

- Model transformation
- Pose your model!

Analogous to Photography

- Viewing transformation
- Position your camera

Analogous to Photography

- Projection transformation
- Adjust your lens settings
- gluperspective()
vert fov: Field of view
near plane: focal length
far plane: infinity

Focal Length and FoV

Focal Length and FoV

Next Time...

- Build a 3D world
- 3D model representation
- data format
- User interaction

Programming Assignment 1

- Due today at midnight! (11:59pm)
- If you want to use free late days, please notify your TA. Otherwise, penalty will be taken per late day.
- What to submit?
- .cpp file (your source code)
- .exe file (executable)
- Report that explains your implementation
- Where to submit?
- classes.csc.Isu.edu
- Log in using your account and password
- Upload files to folder "prog1"
- Use "p_copy" to submit and "verify" to confirm

