CSC 4356

Interactive Computer Graphics
Lecture 9: 3D Viewing (Part 2)

Jinwel Ye
http://www.csc.lsu.edu/~jye/CSC4356/

Tue & Thu: 10:30 - 11:50am
218 Tureaud Hall

Transformation Recap

* Model (geometric) transformation
— Arrange objects in the world coordinate

* Projection transformation
— Map 3D objects to 2D image in the camera

Transformation Recap

* Model (geometric) transformation
— Arrange objects in the world coordinate

* Projection transformation

— Map 3D objects to 2D image in the camera
coordina

porss

Viewing Transformation

* Map points from world coordinate to
camera/eye coordinate

* Use the MODELVIEW matrix stack in
OpenGL
— Same stack as
model transformation

“Framing” the Picture

 Reorient the entire scene such that the
camera Is located at the origin

— OpenGL assumes camera at origin

Camera/Eye Space

* Origin Is located at the center of projection
(COP) for perspective projection

* Image plane is parallel to the x-y plane

« Camera Is viewing towards the —z direction

y

Notes on Camera Space

 Although the goal Is to transform the world
space to camera space, it Is more natural

to think of camera as an object positioned
In the world space

* In this way, we make It easy to change
viewpoint

— Simply change the camera coordinate in the
world space

« Useful for generating cool visual effects

Visual Effect: Bullet Time

Goal of Viewing Transformation

* Define the camera/eye space

— Specify the position and orientation of the
viewing camera

» Establish mapping between the two
coordinate system

— World space to camera space
— Rotation & Translation

Define Camera Space

* Eye point: camera position (COP)

* Look-at point: center of the image

« Up vector: upwards orientation in the
iImaaoe R S B I B M N

'v 4 “ :
b e -
R N Y ' - .

e T

e e -
‘.‘, A .
ot X B5-1 S

- 5t -

~

.)
: -
-~

.

Visual Effect: Bullet Time

« Specify camera path by simply changing the eye point

Viewing Transformation: Derivation

* Let’s first derive the rotation matrix R, of
the viewing transformation

» Look-at direction: o _
| lookat, | | eye

X

lookat, |-| eye,

I lookat, | | eye,

—_

: |
IZ 2 2 2
JIZ12 41

First Constraint

« Camera Is viewing towards —z direction

* S0 we expect our desired rotation matrix
to map the look-at direction to the vector
[0, O, -1]"

Second Constraint

« There is another special vector that we can compute

 If we find the cross product between the look-at vector
with our up vector, we will get a vector that points to the
right

o

r=1xup

* We expect the right vector, when normalized, will
transform to the vector [1, O, O]T

1 .

:
0|=-R,
0 \/rX2+ry2+rz

Third Constraint

* Finally, from these two vectors we can synthesize a third
vector that is perpendicular to both the look-at and right
vectors. It is also oriented in the up direction

u=rxl
* We expect this vector, when normalized, will transform to
the vector [O, 1, O]T

look-at

Putting Them All Together

* Now lets consider all of these constraints
together

o - O

o o
0 1 0[=R,ff 4 -
O 1

* In order to compute the matrix, R,, we need only
compute the inverse of the matrix formed by
concatenating our 3 special vectors.

 How to compute the inverse?

Inverse Is Transpose

« Remember that each of our vectors are unit length (we
normalized them). Also, each vector is perpendicular to
the other two. These two conditions on a matrix makes it,
orthogonal. Rotations are also orthogonal. Orthonormal
matrices have the unique property that:

if M is Orthonormal, M =M’
« Therefore, the rotation component of our viewing
transformation is just the transpose of the matrix formed
by our selected vectors as rows.

If,\T

AT
R,=| U
T

Translation

« The rotation that we just derived is specified about the
origin in world space.

« Therefore, before we can apply this rotation, we need to
translate all world-space coordinates so that the eye
point is at the origin.

« Translation is simply to move the origin of the world
coordinate to the eye position

1 0 0 -—eye,
_— 0 1 0 -—eye,
10 0 1 -eye,
0 0O 1 |

Viewing Transformation

« Composing these transformations (translation and
rotation) gives our viewing transformation matrix V

f, f, f, 01 0 0 -eye,|
u u u, 0[0 1 0 -—eye
V=RT, =| + 1 = ey
-1, -1, =1, 0|0 0 1 -eye,
0 0 0 1000 1 |
T _feeye]
| a" —d-eye
I T-eye .
000 1 P'=VP=R,T_.P

Viewing Transformation in OpenGL

* OpenGL provides a function for computing
viewing transformations specified in terms of
world space coordinates In its utility library (glu):

gluLookAt (double evyex, double evey,
double eyez, double centerx, double
centery, double centerz, double
upx, double upy, double upz);

It computes the same transformation that we
derived and composes it with the current matrix
(Modelview matrix)

* Viewing transformation is after model
transformation

Transformation Pipeline

Modelview
@’ Mgt iz

EOR owr os=

ohject
coordinates

Frojection
Matriz

coordinates

coordinates

Yiewport
Transformation

narmalzed device
coaordinates

coordinates

Model Transformation

« We start with 3-D models defined in their own model space
—t —t —t —t

M1, M2, M3,..., Mn

* Modeling transformations orient models within a common
coordinate frame called world space

— 1

W

 All objects, light sources,
and the viewer/camera
live in the world space

Viewing Transformation

Another change of coordinate systems
Transform points from world space into eye space
Viewing position is transformed to the origin

Viewing direction is
oriented along —z direction

Together with Model
Transformation, they are
called the Modelview
Transformation

Projection Transformation

Define a three dimensional viewing frustum
Eliminate objects that are outside the viewing frustum

Normalize the viewing frustum
Into a cube (NDC)

Project the objects into
2D image

!
s

screen space

Analogous to Photography

* Model transformation
— Pose your model!

Image source: https://holmeslewismodels.wordpress.com/

Analogous to Photography

* Viewing transformation
— Position your camera

ages from Pinterest

Analogous to Photography

* Projection transformation
— Adjust your lens settings
— gluperspective()
vert fov: Field of view
near plane: focal length
far plane: Infinity

Focal Length and FoV

Focal Length and FoV

S oml

—— 4 ‘l i -
N e 2 .GA n
) | e —_ S s 0.1 goll

v o e

Next Time...

* Build a 3D world
— 3D model representation
— data format
— User interaction

Programming Assignment 1

* Due today at midnight! (11:59pm)

— If you want to use free late days, please notify your
TA. Otherwise, penalty will be taken per late day.

 What to submit?
— .cpp file (your source code)
— .exe file (executable)
— Report that explains your implementation

 Where to submit?
— classes.csc.lsu.edu
— Log in using your account and password
— Upload files to folder “prog1”
— Use “p_copy” to submit and “verify” to confirm

