Lighting
Why Lighting?

- What light source is used and how the object response to the light makes difference
 - Ocean looks bright bluish green in sunny day but dim gray green in cloudy day

- Lighting gives you a 3D view to an object
 - A unlit sphere looks no different from a 2D disk

- To get realistic pictures, the color computation of pixels must include lighting calculations
Types of Light

• Ambient
 Light that’s been scattered so much by the environment that its direction is impossible to determine - it seems to come from all directions

• Diffuse
 Light that comes from one direction, but it gets scattered equally in all directions

• Specular
 Light comes from a particular direction, and its tends to bounce off the surface in a preferred direction
Materials Colors

- A material’s color depends on the percentage of the incoming different lights it reflects

- Materials have different ambient, diffuse and specular reflectances

- Material can also have an emissive color which simulates light originating from an object
 - Headlights on a automobile
OpenGL Lighting Model

• Lighting has four independent components that are computed independently
 Emission, Ambient, Diffuse, and Specular

• OpenGL approximates lighting as if light can be broken into red, green, and blue components
 ➢ The RGB values for lights mean different than for materials
 For light, the numbers correspond to a percentage of full intensity for each color
 For materials, the numbers correspond to the reflected proportions of those colors

• Total effect is a combination of corresponding components of incoming light and illuminated material surface
 \((LR*MR, LG*MG, LB*MB)\)
Theory of Illumination

- Not only knowledge about light but also about what happens when light is reflected from an object into our eyes is important to obtain realistic images.

- The general problem is to compute the apparent color at each pixel that corresponds to part of the object on the screen.

- The color produced by lighting a vertex (or a object) has several contributions:
 - Emission
 - Global ambient light
 - Contributions from light sources
Material Emission

- Emissive brightness of the material $= M_e$

- There is no attempt to model properties of the light or its effects on the objects

- The emissive color adds intensity to the object

$$I_E = M_e$$
Global Ambient Light

- Light from all directions but not from any specific sources
- Ambient light intensity $= G_a$
- Ambient reflection coefficient of material $= M_a$

$$I_G = G_a M_a$$
A Point Source of Light

- Contribution from a point source of light include three terms
 - Light has ambient (I_a), diffuse (I_d) and specular (I_s) components
 - Material has ambient (M_a), diffuse (M_d) and specular reflection (M_s) properties
Point Light’s Contribution

\[I_L^1 = I_a M_a + I_d M_d (\max\{N \cdot L, 0\}) + I_s M_s (\max\{R \cdot V, 0\})^n \]

First term = ambient
Second term = diffuse
Third term = specular
Point Light’s Contribution

• Ambient term
 - The ambient component of each incoming light source is combined with a material’s ambient reflectance

• Diffuse term
 - Brightness is inversely proportional to the area of the object illuminated (dot product of light vector and surface normal)
 - greatest when \(N \) and \(L \) are parallel
 - smallest when \(N \) and \(L \) are orthogonal
 - In calculations, \(\max\{N\cdot L, 0\} \) is used to avoid negative values

• Specular term
 - Brightness depends on the angle between reflection vector (\(R \)) and viewer vector (\(V \)), i.e., on direction of viewer
 - The specular reflection exponent \(n \) is 1 for a slightly glossy surface and infinity for a perfect mirror
Attenuation

- **Attenuation factor**
 - Light attenuates with distance from the source
 \[
 f = \frac{1}{k_c + k_l d + k_q d^2}
 \]

 where \(d\) = distance between the light and object

 \(k_c\) = constant attenuation
 - A light source does not give an infinite amount of light

 \(k_l\) = linear term
 - The light source is not a point

 \(k_q\) = quadratic term
 - Models the theoretical attenuation from a point source

- The intensity becomes
 \[
 I_L^2 = f \left[I_a M_a + I_d M_d \left(\max\{N \cdot L, 0\} \right) + I_s M_s \left(\max\{R \cdot V, 0\} \right)^n \right]
 \]
Spotlight Effect

When the vertex lies inside the cone of illumination produced by spotlight, its contribution to the light intensity is

\[s = (\max\{D \cdot L, 0\})^m \]

Where \(D \) gives the spotlight’s direction. The intensity is maximum in the center of cone and is attenuated toward the edge of the cone.
\(s \) is 1 if the source is not spotlight.
\(m \) is exponent determining the concentration of the light.

The intensity of light source is

\[I_L = f s[I_a M_a + I_d M_d (\max\{N \cdot L, 0\}) + I_s M_s (\max\{R \cdot V, 0\})^n] \]
Putting All Together

Entire lighting calculation in RGB mode gives

$$\text{Vertex color} = M_e + G_a M_a + \sum_{i=1}^{n-1} f_i s_i [I_a M_a + I_d M_d (\max\{N \cdot L, 0\}) + I_s M_s (\max\{R \cdot V, 0\})^n]_i$$
Adding Lighting to the Scene

- Define normal vectors for each vertex of each object
- Create, select, and position one or more light sources
- Create and select a lighting model
- Define material properties for the objects in the scene
Creating Light Sources

• Properties of light sources are color, position, and direction

• \texttt{void glLight\{if\}(GLenum light, GLenum pname, TYPE param);};

 \texttt{void glLight\{if\}v(GLenum light, GLenum pname, TYPE *param);};

 - Creates the light specified by \textit{light} that can be \texttt{GL_LIGHT0}, \texttt{GL_LIGHT1}, \ldots or \texttt{GL_LIGHT7}

 - \textit{Pname} specifies the characteristics of the light being set

 - \textit{Param} indicates the values to which the \textit{pname} characteristic is set

• \texttt{glEnable(GL_LIGHT0);}
Color for a Light Source

GLfloat light_ambient[] = {0.0,0.0,0.0,1.0};
GLfloat light_diffuse[] = {1.0,1.0,1.0,1.0};
GLfloat light_specular[] = {1.0,1.0,1.0,1.0};

glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);
Position of Light Source

• Positional light source
 ➢ (x, y, z) values specify the location of the light
 GLfloat light_position[] = {x, y, z, w};
 glLightfv(GL_LIGHT0, GL_POSITION, light_position);

• Directional light source
 ➢ (x, y, z) values specify the direction of the light located at the infinity
 ➢ No attenuation
 GLfloat light_position[] = {x, y, z, 0};
 glLightfv(GL_LIGHT0, GL_POSITION, light_position);
Attenuation

• Attenuation factor for a positional light
 ➢ Needs to specify three coefficients
 \[
 \text{glLightf}(\text{GL_LIGHT0}, \text{GL_CONSTANT_ATTENUATION}, 2.0); \\
 \text{glLightf}(\text{GL_LIGHT0}, \text{GL_LINEAR_ATTENUATION}, 1.0); \\
 \text{glLightf}(\text{GL_LIGHT0}, \text{GL_QUADRATIC_ATTENUATION}, 1.0); \\
 \]

• Ambient, diffuse, and specular contributions are all attenuated
Spotlights

- The shape of the light emitted is restricted to a cone

- `glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 45.0);`
 - The cutoff parameter is set to 45 degrees

- `GLfloat spot_direction[] = {-1.0, -1.0, 0.0};
glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, spot_direction);`
 - Specifies the spotlight’s direction which determines the axis of the cone of light

- `glLightf(GL_LIGHT0, GL_SPOT_EXPONENT, 2.0);`
 - Controls how concentrated the light is
Multiple Lights

- You can define up to eight light sources
 - Need to specify all the parameters defining the position and characteristics of the light

- OpenGL performs calculations to determine how much light each vertex gets from each source

- Increasing number of lights affects performance
Controlling a Light’s Position and Direction

• A light source is subject to the same matrix transformations as a geometric model
 ➢ Position or direction is transformed by the current modelview matrix and stored in eye coordinates

• Keeping the light stationary
 ➢ Specify the light position after modelview transformations

• Independently moving the light
 ➢ Set the light position after the modeling transformation that you want to apply for light

• Moving the light together with the viewpoint
 ➢ Set the light position before the viewing transformation
Selecting a Lighting Model

• How to specify a lighting model

• `glLightModel{if}(GLenum pname, TYPE param);`
 `glLightModel(if)v(GLenum pname, TYPE *param);`
 - Sets properties of the lighting model
 - `pname` defines the characteristic of the model being set
 - `param` indicates the values to which the `pname` characteristic is set

• Needs to be enabled or disabled
 `glEnable(GL_LIGHTING);`
 `glDisable(GL_LIGHTING);`
Components of Lighting Model

• Global ambient light
 ➢ Ambient light from not any particular source

 GLfloat lmodel_ambient[] = {0.2, 0.2, 0.2, 1.0}

gllightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient);

• Local or Infinite viewpoint
 ➢ Whether the viewpoint position is local to the scene or whether it should be considered to be an infinite distance away

 gllightModell(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_TRUE);

 Default is an infinite viewpoint

• Two-sided lighting
 ➢ Whether lighting calculations should be performed differently for both the front and back faces of objects

 gllightModell(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
Defining Material Properties

• Specifying the ambient, diffuse, and specular colors, the shininess, and the color of any emitted light

• void glMaterial{if}(GLenum face, GLenum pname, TYPE param);
 void glMaterial{if}v(GLenum face, GLenum pname, TYPE *param);
 ➢ Specifies a current material property for use in lighting calculations
 ➢ *Face* can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK
 ➢ *Pname* identifies the particular material property being set
 ➢ *Param* defines the desired values for that property
Reflectances

- **Diffuse and ambient reflection**
 - Gives color

    ```c
    GLfloat mat_amb_diff[] = {0.1, 0.5, 0.8, 1.0};
    glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, mat_amb_diff);
    ```

- **Specular reflection**
 - Produces highlights

    ```c
    GLfloat mat_specular[] = {1.0, 1.0, 1.0, 1.0};
    GLfloat low_shininess[] = {5.0};
    glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
    glMaterialfv(GL_FRONT, GL_SHININESS, low_shininess);
    ```

- **Emission**
 - Make an object glow (to simulate lamps and other light sources)

    ```c
    GLfloat mat_emission[] = {0.3, 0.2, 0.2, 0.0};
    glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);
    ```

CSC 7443: Scientific Information Visualization

BB Karki, LSU
Changing Material Properties

• Different material properties for different vertices on the same object or different objects

• `glMaterialfv()` needs to be called repeatedly to set the material property that needs to be re-specified for each case

• `glColorMaterial(GLenum face, GLenum mode);`
 - Specifies the property (properties) defined by `mode` of the selected material `face` (or faces) to track the value of the current color at all times
 - Needs enabling
Example: A lit sphere

- 2D disk in the absence of lighting
- 3D sphere
- Shinning sphere
- Emissive sphere
- Moving light source